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PENGKELASAN DAN PERMODELAN KOMPOSIT GENTIAN JUT 

BERPULTRUD DIPERKUAT POLYESTER TAK LARUT  

 

ABSTRAK 

 

Komposit Gentian Jut Terpultrisi diperkuat Poliester tak tepu (PJFRC) telah disediakan 

dan diuji secara berperingkat dalam kajian ini. Tiga pecahan isipadu PJFRC yang berbeza 

dengan 50, 60, dan 70% telah dihasilkan melalui kaedah pultrisi. PJFRC yang 

mengandungi 70% pecahan isipadu telah berjaya dihasilkan dan mempamerkan taburan 

gentian yang sekata. Pecahan isipadu melebihi 70% tidak dapat disediakan kerana gentian 

akan mengalami terikan yang kuat di permukaannya. Analisa yang dilakukan meliputi 

analisa mekanikal, analisa dinamik mekanikal, kekonduksian haba, dan analisa mekanikal 

haba. Dalam setiap satu analisa, arah penyusunan gentian dalam bahan komposit telah 

dibahagikan kepada memanjang dan melintang. Peningkatan dalam sifat-sifat  mekanikal 

adalah kerana pemindahan tegasan antara gentian dan matriks yang efektif. Keputusan 

morfologi dilaksanakan melalui pemerhatian mikrograf bagi setiap ujian mekanikal yang 

dilakukan. Pada 60% dan 70% kandungan gentian jut, kekuatan tarikan meningkat 

dengan masing – masing sebanyak 0.06% dan 0.03% sementara  modulus keelastikan  

dengan masing – masing meningkat sebanyak 0.01% dan 0.08%. Dengan meningkatnya 

isipadu pecahan gentian, ia dikatakan akan meningkatkan sifat mekanikal dan fizikal bagi 

spesimen PJFRC. Kesemua parameter ini akan digunakan untuk analisis selanjutnya 

menggunakan analisa elemen terhad. Program penganalisaan elemen terhad ini telah 

digunakan untuk menganggar pekali pengembangan haba pada dua arah gentian yang 



 xx 

berbeza (memanjang dan melintang). Dengan menganggap simetri bagi komposit 

menggunakan susunan segiempat sama dalam mewakili setiap unit sel, sifat komposit 

telah dimodelkan melalui analisa elemen terhad menggunakan perisian ANSYS.  Pekali 

pengembangan haba bagi komposit matrik polimer secara signifikannya dipengaruhi oleh 

ciri-ciri parameter di antarafasa. Analisa analitik bagi menganggar nilai CTE untuk arah 

memanjang dan arah melintang telah didapati daripada kajian terdahulu. Kesemua model 

tersebut digunapakai untuk menganggarkan nilai CTE bagi bahan komposit searah. 

Beberapa model yang digunakan adalah seperti model Van Fo Fy, model Schapery, 

model Chamberlain, model Schneider dan model Chamis. Keputusan pelbagai  

penyelesaian persamaan kepelbagaian elemen terhad bagi komposit yang berbeza telah 

dibandingkan dengan pelbagai keputusan dari kaedah analitik dan keputusan dari 

eksperimen. Kesemua model dan analisa elemen terhad adalah selari dengan data-data 

eksperimen bagi arah CTE yang memanjang. Walau bagaimanapun, keputusan bagi 

model Chamis dan analisa elemen terhad secara amnya berada lebih baik dan selari 

dengan data eksperimen berbanding kaedah-kaedah yang lain bagi semua pecahan 

isipadu gentian yang diselidiki. 
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CHARACTERIZATION AND MODELLING OF PULTRUDED NATURAL 

FIBRE REINFORCED UNSATURATED POLYESTER COMPOSITE  

 

                                                             ABSTRACT 

 

Pultruded Jute Fibre Reinforced Unsaturated Polyester Composites (PJFRC) was 

prepared and examined stage by stage in this study. Three different fibre volume percent 

of PJFRC with 50, 60 and 70% were prepared using the pultrusion technique. The PJFRC 

with 70% of fibre volume percent was successfully produced and displayed a 

homogeneous fibre distribution before having a high attrition to the fibre surface if the 

fibre volume percent more than 70%. Analysis was done by means of mechanical 

analysis, dynamic mechanical analysis, thermal conductivity and thermal mechanical 

analysis. In every analysis, the unidirectional composite material was determined in the 

longitudinal and transverse fibre direction. Improvement in properties suggests effective 

stress transfer between fibre and matrix. Morphological assessment was done through 

micrograph observation in every mechanical testing evaluation. At 60% and 70% of jute 

fibre loading, tensile strength improved by 0.06% and 0.03% respectively, while the 

modulus of elasticity improved at 60 and 70% with 0.01% and 0.08% respectively. 

Increasing of fibre volume percent is said to improve the mechanical and physical 

properties of the PJFRC specimens. All of these parameters were then used for further 

analysis using finite element analysis. The finite element analysis program was used in 

order to estimate the coefficient of the thermal expansion at two different directions 

(longitudinal and transverse). Considering symmetry of the composite using the square 



 xxii 

array in representative unit cell, it was modeled for the Finite Element (FE) analysis 

using ANSYS software. The coefficient of thermal expansion of the considered polymer 

matrix composites were significantly affected by the parameters characterizing the 

interphase. The analytical analysis to predict the CTE values for the longitudinal and 

transverse direction was taken from the previous study. All of these models were used for 

predicting the CTE value for the unidirectional composite materials. Some of the models 

are Van Fo Fy model, Schapery model, Chamberlain model, Schneider model, and 

Chamis model.  Results of various finite element solutions for different types of 

composites were compared with the results of various analytical methods and with the 

available experimental results. All of the models and finite element analysis are in good 

agreement with the experimental data for longitudinal CTEs, however Chamis and Finite 

Element results for transverse CTE were generally showed better agreement with the 

experimental data than the other methods for all the different fibre volume percent 

investigated.  



 1 

 
CHAPTER 1 

 
INTRODUCTION 

 

1.1 General introduction. 

In the past two decades, the used of plant fibres such as jute, sisal, kenaf, banana 

leaves, kapok for manufacturing industry have been the subject of extensive research 

(Bledzki and Gassan, 1999). Owing to the low prices and the steadily rising performance 

of technical and standard plastics, the application of natural fibres has come to a near-

halt. More recently, the critical discussion about the preservation of natural resources and 

recycling has led to a renewed interest concerning natural materials with the focus on 

renewable raw materials. Among the natural fibres, jute fibre is considered to be the most 

promising material because of its availability in the required form and at a low cost 

processing. Moreover, jute based composites have already proven to be a potential 

material for various structural and non structural low load bearing capacity (Ahmed et al., 

2007). Jute belongs to the genus Corchorus, family Tiliaceae is an example of a number 

of woody-stemmed herbaceous dicotyledons grown in the tropic and subtropics, from the 

bast of whose stems fibre can be extracted (Lewin and Pearce, 1998).  

Fibre-reinforced polymer (FRP) composites offer several advantages in relation to 

traditional materials, such as high specific strength, good corrosion resistance, low 

thermal conductivity and rapid component installation. Despite the great potentia l of 

these materials, two major disadvantages limit their acceptance in civil engineering 

applications: their lack of inherent ductility and the fact that their fibrous and anisotropic 

character makes the joining of structural components difficult. natural fibre-based FRP is 
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still new especially a continuous FRP product compared to the synthetic fibre-based FRP. 

The complexities of FRP composite materials are due to the unknown features such as 

chemical compatibility, wettability, adsorption characteristics, and development of 

complex stress states resulting from differences in thermal and moisture expansion, have 

so far restricted their complete characterization. Understanding the behavior of 

composites related to the properties of fibre and matrix material is desirable not only for 

the practical purpose of predicting the properties of composites but also the fundamental 

knowledge required in developing new material.  

 

 Several techniques in FRP fabrications are like pultrusion, filament winding, and 

resin transfer moulding (RTM) was discovered to obtain large production of  composite 

structures, using low cost facilities, tools and materials (Calabrese and Valenza, 2003). 

Pultrusion is one of the techniques that had becoming promising in recent years. Many 

investigations have been done on the pultrusion process using various types of 

reinforcements and resin  (Van de Velde and Kiekens, 2001; Carlsson and Tomas 

Åström, 1998; Paciornik et al., 2003; Angelov et al., 2007). Pultrusion processing has 

shown a growth of interest because of its cost effectiveness for high volume production 

of constant cross section parts and offers continuous production of profiles.  

 

Thermal expansion is an important parameter for characterization of different 

binding forces, lattice dynamics, bands and crystal structure of any solid. Many 

investigators have focused their attention to study these properties theoretically and 

experimentally at different temperatures. These studies were very important since these 
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materials are used as structural materials for cryogenic use . Thermal expansion is the 

fractional change in the length of a body when heated or cooled through a given 

temperature range and usually it is given as a coefficient per unit temperature interval, 

either as an average over a stated range, or as a tangent to the expansion curve as a given 

temperature. The longitudinal and transverse coefficient of thermal expansion of the 

orthotropic unidirectional composites must be known for the design purposes. The CTE 

of composite properties can be experimentally measured which can be expansive and 

time consuming when evaluating many parameters and different material systems, or 

predicted using the thermal and mechanical properties of the constituents. Furthermore, 

as the result of increasing computer technology, numerical solution such as finite element 

analysis (FEA) is being used to determine the coefficient of the thermal expansion (CTE) 

of composite materials. The problem of relating effective properties of fib re reinforced 

composite materials to constituent properties has received considerable attention. There 

are many analytical models exist for predicting the effective coeffic ient of thermal 

expansion either longitudinal or transverse for unidirectional fib re reinforced composites 

with isotropic and anisotropic phases (Fo Fy and Savin, 1965; Fo-Fê, 1966; Schapery, 

1968; Rosen and Hashin, 1970; Sideridis, 1994). 

 

1.2 Problem Statement 

Recently, there are only a few substantial researches in introducing the natural 

fibres in the composite fabrication. The idea of using the natural fibres as reinforced 

materials is because they have low density, exhibit high specific properties, non-abrasive 

nature, high level of filler loading, availability, renew ability and safe working 
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environment compared to the synthetic fibres - - , 

2004; Behzad and Sain, 2007). Pultrusion is one of the techniques to produce a composite 

with the fibre volume percent up to 50-70%. It can produce a constant cross section parts 

and offers continuous production of profiles comparing to other processing techniques.  

 

Another crucial parameter in the design and analysis of composite structures is the 

Coefficient of Thermal Expansion (CTE). The thermal expansion response is correlated 

to the microstructure, the deformation of the matrix, and the internal stress conditions. 

The CTE prediction is very important in order to explain the abnormalities in the thermal 

expansion behaviors obtained experimentally. Since the CTE of polymer matrix is much 

higher than the fibres and the fibres often exhibit anisotropic thermal and mechanical 

properties, the stress induced in composites due to temperature change is very complex.  

For the purpose of calculating the CTE of unidirectional composites, analytical models 

have been developed by simple rules of mixtures to thermo elastic energy principles. 

When different models for the transverse and longitudinal CTE are compared, large 

discrepancies exist. Which model is to be used will be discussed in this study.  

 

As a result of increasing computer technology, numerical solution like Finite 

Element Analysis (FEA) is widely used. The use of micromechanical model using FEA 

in predicting the longitudinal and transverse CTE direction is to reduce man power and 

cost consumption in the sense of making a prototype for a new material development.  

FEA has been proven to offer better accuracy than analytical models. For a better 

accuracy in determining the transverse and longitudinal CTE direction, the experiment 
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was set up for several times. This will give an average data in order to get a precise value 

of CTE.  

Thus, in this study, the CTE of composites were calculated by FEA using a 

representative unit cell with various analytical methods, and with the available 

experimental results. Also, the expansion behavior of different material systems with 

respect to fibre content was determined numerically. All of the numerical models and 

FEA results for the longitudinal and transverse CTE will be compared with the 

experimental data obtained.  

 

1.3 Research Objectives  

 

How to develop a high strength and predict the best CTE results of the PJFRC structures? 

This is the main question underlying the research presented in this thesis. In order to 

answer this question, the following objectives have been defined: 

1) To produce FRP composite material using natural fibre pultruded profile 

with the high strength performance to provide in the construction 

applications; 

2) To study the effect of the fibre volume fraction on the mechanical and 

thermal properties of the Pultruded Jute Fibre Reinforced Composite 

(PJFRC); 

3) To measure, calculate and predict the longitudinal and transverse CTE 

using TMA, ANSYS simulation and existing models; 



 6 

4) Identify the best method for predicting the CTE of the natural fibre-based 

composite and validate this through experimental investigation.  

 

1.4 Outline of Thesis Structures 

 

The following is a summary of the thesis structures.  

Chapter 1: Contains the introduction to the project. It covers brief introduction about the 

research background, problem statements, research objectives and outline of the thesis 

structure. 

Chapter 2: Contains the literature review. It covers brief explanations and classification 

regarding FRP composite materials, natural fibre-based FRP, types of composites 

fabrications for the continuous and non-continuous reinforcement. The Finite Element 

Analysis and its importance also described and a review about Coefficient of the Thermal 

Expansion (CTE). 

Chapter 3: Contains the information about the materials specifications, samples 

preparations, experimental procedures and equipment used in this study. Method for 

calculating and predicting the CTE for the longitudinal and transverse direction is 

presented and validated with experimental measurement.  

Chapter 4: Contains results and discussion of this study. Design philosophy and design 

methods are developed according to both numerical and analytical model results. 

Chapter 5: Contains conclusions of the research and suggestions for future studies. It 

proposes to further study by incorporating the hybrid composites.   
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CHAPTER 2 

 

 

2.1 Introduction to Composite Materials 

 

Composites are combinations of two materials in which one of the materials, 

called the reinforced phase, is in the form of fibres sheets, or particles or are embedded in 

the other materials called the matrix phase. The reinforcing material and the matrix 

material can be metal, ceramic, or polymer as in Figure  2.1. Typically, reinforcing 

materials are strong with low density while the matrix is usually ductile or tough 

material. If the composite is designed and fabricated correctly, it combines the strength 

and the reinforcement with the toughness of the matrix to achieve the combination of 

desirable properties not available in any single conventional material.   

 

        

 

 

 

 

Figure 2.1: Classification scheme of composite materials.  

Natural fibre such as jute, kenaf, sisal, kapok and several waste cellulosic 

products have been used as suitable alternatives to synthetic reinforcements for 

composites in many applications. The natural fibres offers more benefits such as less 

pollutant emission, low density, biodegradability, high specific properties and low cost 
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production (Behzad and Sain, 2007; Joshi, Drzal et al., 2004; Mohanty, Misra et al., 

2002). Many studies have been carried out to develop different manufacturing processes 

and to study the mechanical performances of natural fib re composites -

- , 2004; Cantero et al., 2003; Jacob et al., 2004). Composite is a 

combination of two or  more materials to exhibits a significant mechanical characteristic 

such as stiffness, toughness, and ambient and high temperature strength (Callister, 1999). 

There are also many numbers of composites that occur in nature. For example, wood 

consists of strong and flexible cellulose fibres surrounded and held together by a stiffer 

material called lignin. Classification of composite materials is based on of three main 

divisions; particle reinforced; fibre reinforced; and structural composites. 

Technologically, the most important composites are those in which the dispersed phase is 

in the form of a fibre.  

 

Design goals of fibre-reinforced composites often include high strength and/or 

stiffness on a weight basis. These characteristics are expressed in terms of specific 

strength and specific modulus parameters, which correspond respectively to the ratios of 

tensile strength to specific gravity and modulus of elasticity to specific gravity. Fibre-

reinforced composites with exceptionally high specific strength and moduli have been 

produced that utilize low-density fibre and matrix materials. As shown in Figure 2.2, 

fibre-reinforced composites are sub classified by fibre length. For short fibre, the fibres 

are too short to produce a significant improvement in strength.  
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Figure 2.2: A classification scheme for the various polymer reinforced composite types  

2.2 Fibre Reinforced Polymers (FRP) 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.3: Deviation of Fibre Reinforced Polymer (FRP) commonly used in composite 

application (Ritchie et al., 1991; George et al., 2001; Bakis et al., 2002). 
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Fibre Reinforced Polymer comprises of two different types namely synthetic and 

natural fibres as shown in Figure 2.3. Nowadays, the composite fabrication were 

commonly based on the synthetic fibre due to the high mechanical s trength, corrosive and 

chemical resistance, high durability and many more as mentioned by many researchers 

(Ahmed et al., 2007; Joshi et al., 2004;  Wonderly et al., 2005; Wambua et al., 2003; 

Paciornik et al., 2003). But as industry attempts to lessen the dependence on synthetic 

fibre reinforced composite, there is an increasing need to investigate and explore more 

environmentally friendly, sustainable materials to replace the existing fibre. With this 

highly concern, natural fibre reinforced composite were introduced as early as 1908 

(Bledzki and Gassan, 1999). The types of natural fibre can be divided into 3 groups; 

animal fibre, plant fibre, and mineral fibre as shown in Figure 2.3.  Agricultural crop 

from plantation are greatly produced in billion of tones around the  world represent an 

abundant, inexpensive, and readily available sources of natural fibre reinforced 

composites. Among these enormous amounts of agricultural crops, only a minor quantity 

of residue is reserved as animal feed or household fuel and the major portion of the straw 

is burned in the field creating the environmental pollution (Sain and Panthapulakkal, 

2006). The exploration of these inexpensive agricultural crops for making industrial 

composite products will open a new avenue for the utilization of agricultural crops by 

reducing the need for disposal and environmental deterioration through pollution, and at 

the same time add value to the creation of rural agricultural based economy.  
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2.2.1 Synthetic Fibre 

 

2.2.1.1 Glass Fibre Reinforced Polymers (GFRP) 

 

Glass fibre has seen limited usage in the construction and building industry for 

decades (Chambers, 1965; Halloway and Robinson, 1981; Green, 1987). This is because 

of the need to repair and retrofit the rapidly deteriorating infrastructure in recent years, 

the potential for using glass fibre reinforced composites become popular in a wide range  

of applications recently (Barbero and GangaRao, 1991). Glass fibre materials exhibit 

better resistance to environmental agents, and fatigue as well as the advantages of high 

stiffness to weight and strength to weight ratios compared to other synthetic fibres (Liao, 

et al., 1999). Many researchers reported that the construction industry recently had 

focused on lower cost glass reinforcement rather than the carbon fibre reinforced in the 

aerospace applications.   

 

Glass fibre is a material made from extremely fine fibre of glass. It is used as 

reinforcing agent for many polymer products, and resulting in a composite material 

properly known as glass-reinforced polymer (GRP). It is formed when thin strands of 

silica-based or other formulation glass is extruded into many fibres with small diameters 

suitable for the textile fabrication. The technique of heating and drawing glass into fine 

fibres has been known for millennia; however, the use of these fibres for textiles 

applications is more recent. The mechanical properties of the glass fibre and other 

synthetic fibres can be seen in Table 2.1.  
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Table 2.1: Some mechanical properties of synthetic fibre (Andrews et al., 1997; Wonderly 
et al., 2005). 

 

2.2.1.2 Carbon Fibre 

Carbon fibre is a material consisting of extremely thin fibres about 0.005-0.010 

mm in diameter and composed mostly of carbon atoms. The carbons atoms are bonded 

together in microscopic crystals that are more or less aligned parallel to the long exist of 

the fibre. The crystal alignment makes the fibre very strong for its size. Several thousand 

carbon fibre are twisted together to form a yarn, which maybe used by itself or woven into 

a fabric. Carbon fibre has many different weave patterns and can be combined with plastic 

resins and wound or molded to form composite materials such as Carbon Fibre Reinforced 

Polymer (CFRP) to provide a high strength to weight ratio material. The density of carbon 

fibre is considerably lower that the density of steel, making it ideal for applications 

requiring low weight. The properties of carbon fibre such as high tensile strength, low 

weight and low thermal expansion make it popular in aerospace, civil engineering, military 

and motorsports along with other competition sports. However, it is relatively expansive 

when compared to similar materials such as fibreglass.  Carbon fibre is very strong when 

stretched or bend, but weak when compressed or exposed to a high impact.  

 Fibre Glass Carbon Aramid (Kevlar 149) 

Elastic Modulus, E (GPa) 79 230 160 

Tensile Stress, ζ (GPa) 2.4 4.9 1.7 

Tensile Strain, ε (%) 3.04 2.1 1.0 

Density, ρ (g/cm3) 2.5 1.8 1.47 

Fibre Diameter (µm)  15 7 12.4 
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2.2.1.3 Aramid Fibre 

 

Aramid fibre is an attractive organic fibre with the combination of stiffness, high 

strength, high fracture strength, and having a low density (Liu et al., 2008). Advanced 

composites made from aramid fibres have comparable axial properties like inorganic fibre-

reinforced composites as well as significant reduction in weight. Aramid fibres have poor 

interfacial bonding with most of the commercially available resins used in composite 

because of its inertia surface, high crystallization, and poor off-axis strength. The carbon 

fibres are used in aerospace and military applications, for ballistic rated body armor fabric 

and ballistic composites, in bicycle tires, and as an asbestos substitute. The name is a 

shortened form of "aromatic polyamide". They are fibres in which the chain molecules are 

highly oriented along the fibre axis, so the strength of the chemical bond can be exploited. 

 

2.2.2 Natural Fibre 

 

 
Natural fibre (NF) is a class of hair- like materials that is in continuous filaments 

or is in discrete elongated pieces, similar to pieces of thread. It can be spun into 

filaments, thread, or rope. It can be used as a component of a composite material. Natural 

fibres can be found from 3 sources like; animals, vegetables and minerals (Joshi et al., 

2004). Most common natural fibres used in composite applications are from vegetables 

like jute, kenaf, sisal, coir, kapok, flax, ramie, and many more (Bledzki and Gassan, 

1999). NF-reinforced polymers has started to be used in the application area as a 

construction material for the interior and exterior automotive parts and trenchless 

http://en.wikipedia.org/wiki/Bulletproof_vest
http://en.wikipedia.org/wiki/Cloth
http://en.wikipedia.org/wiki/Asbestos
http://en.wikipedia.org/wiki/Aromatic
http://en.wikipedia.org/wiki/Polyamide
http://en.wikipedia.org/wiki/Chemical_bond
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rehabilitation of underground pipes as reported by (Graupner et al., 2009) and (Yu et al., 

2008).  

 Theoretically, the natural fibre is a single fibre of all plant based natural fibres 

consists of several cells. These cells are formed out of crystalline microfibrils based on 

cellulose, which are connected to a complete layer, by amorphous lignin and 

hemicellulose. Multiple of such cellulose-lignin/ hemicellulose layers in one primary and 

three secondary cell walls stick together to a multiple layer composites (Bledzki and 

Gassan, 1999). Unlike the traditional engineering fibres,  e.g. glass and carbon fibres, 

these lignocellulosic fibres are able to impart the composite  certain benefits such as: low 

density; less machine wear than that produced by mineral reinforcements; no health 

hazards; and a high degree of flexibility. The later is especially true because these fibres 

unlike glass fibres will bend rather than fracture during processing. Whole natural fibres 

undergo  some breakage while being intensively mixed with the  polymeric matrix, but this 

is not as notorious as with brittle or mineral fibres - -

, 2004). 

 
2.2.2.1 Animal  Fibre 

 
 Wool Fibre 

 
 

Wool fibre is usually restricted to describing the fibrous protein derived from the 

specialized skin cells called follicles in sheep. It has several qualities that distinguish it 

from hair or fur; it is crimped. It has a different texture or handle, it is elastic, and it is 

grown in staples. It consists of elongated cortical cells surrounded by overlapping cuticle 

cells. The outer layer of the cuticle cells is a surface membrane 5-7 nm thick, commonly 
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referred to as the epicuticle (Bradbury, 1973). The wool fibre surfaces remain 

hydrophobic even after repeated solvent extraction. The hydrophobic surface can be 

modified using alcoholic alkali conditions (Lindberg, 1953). The dramatic reduction of 

the hydrophilicity of wool fibre can be observed after the surface treatment, which is 

attributed to the removal of the postulated lipid layer from the fibre surface.  Global wool 

production is about 1.3 million tons per year, of which 60% is going into apparel. 

Australia is the leader of producing the wool in the world. New Zealand becomes the 

second largest wool producer, and become the largest producer of crossbred wool in the 

world. A nano structure of the wool fibre is shown in Figure 2.4. 

                                  

Figure 2.4: Nano-structure of wool fibre  (Crossley et al., 2000). 

 

Spider Silk Fibre                                           

 

Spider silk also known as gossamer, is a protein spun by spiders. Spiders use their 

silk to make webs or other structures, which function as nets to catch other animals. It 

combined good tensile strength and high extensibility (S.A. Fossey, 1999). Contrarily, 

most manmade fibre exhibit high tensile strength and stiffness or low strength and high 
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extensibility. (Glisovic et al., 2007) reported that the relationship between structure and 

mechanical properties is still not well understood, in particular, since the structural 

organization of the fibres is still somewhat controversial. From the previous report by 

(Zhengzhong et al., 1999),  the major ampullate (MA) dragline silk of spiders is thought 

to be in semi-crystalline, non- linear and viscoelastic biopolymers. Under a normal work 

load, this high performance fibre demonstrates good toughness, a relatively high ult imate 

tensile strain and high strength. The mechanical properties of silk are, however greatly 

influenced by water (Vollrath and Edmonds, 1989). It consists of complex protein 

molecules. Spider silk is remarkably strong material. Its tensile strength is superior to that 

of high grade-steel, and as strong as aramid filaments such as twaron and Kevlar. Most 

importantly, the silk fibre is very lightweight. It is also very ductile and is be able to 

stretch up to 140% of its length without breaking. It can hold its strength below - 40°C. 

This will exhibit a very high toughness, which equal to the commercial filaments, which 

themselves are the benchmarks of modern polymer fibre technology. Micro-

Morphological study on spider dragline silk already shows that it differs significantly 

from the silk of moth (Kaplan et al., 1994);(Vollrath et al., 1996). (Beckwitt et al., 1998), 

reported that spider silk are also interesting as members of a class of unusual prote in; 

highly repetitive in sequence, and composed of a limited range of amino acid.  

 

2.2.2.2 Plant Fibre 

 
Kenaf Fibre 
 

 
Kenaf (Hibiscus Kannabinus L) is being increasingly cultivated in Greece, where 

yield of fresh biomass range from 52.3 to 88.9 tha-1, corresponding to the dry mass of 



 17 

13.3 to 24.0 tha-1 (Alexopoulou et al., 2000). The shoot constitutes 51-79% of the fresh 

weight of the plant (McMillin et al., 1998), and about 25-40% from the total fibres is 

derived from the bark and 60-75% is from the cortex (Sellers et al., 1993). (Kaldor et al., 

1990) and (Webber III, 1993) reported that kenaf is used for the production of high 

quality papers, animal feeds and many industrial applications. (Pill et al., 1995) also 

reported that kenaf core is proposed as a constituent of growth media for tomato plant. 

The suitability of kenaf core for the growth media is depending on the size and 

percentage of kenaf in relation to the other components of the media (WebberIII et al., 

1999). Another study from (Pill and Bischoff, 1998) reported that enrichment with 

nitrogen may also be required to avoid growth suppression, possibly due to microbial 

immobilization within the kenaf. The failure of bulk production of kenaf for paper 

application stimulated research into other industrial applications such as fibre boards, 

composites, insulation mats and absorption particles. Figure 2.5 to Figure 2.7 and Table 

2.2 represent the micrograph and optical kenaf fibre charac teristics.   

 

                                     

Figure 2.5: Transverse section of kenaf core with small hollow fibres and large water 

transport vessel (Lips et al., 2009). 
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                                Figure 2.6: Different size of kenaf core and kenaf pith 

                           

                                 Figure 2.7: Kenaf single fibre under microscope observation 

 

 

 

 

 



 19 

Table 2.2: Properties of Kenaf bast and core fibres (Villar et al., 2009). 

 

Property 

Fibre 

Bast Core 

Fibre length (mm) 2.55 0.74 

Fibre diameter (µm) 20.5 37 

Wall thickness (µm) 6.3 1.7 

Holocellulose (%) 73.6 71.8 

Lignin (%) 8.6 17.6 

Pentosans (%) 15.6 20.6 

Ash (%) 6.4 3.6 

 
 
Hemp Fibre 

 
 

 Flax (Linum usitatissinum L.) and hemp (Cannabis Sativa L.) are annual bast 

fibre plants, the stems of which consists of surface layers, a bark layer with 20-50 bast 

fibre bundles, and a woody core with a central lumen. (Kymaelaeinen and Sjöberg, 2008) 

reported that the bast fibres are used as a raw material for the thermal insulation. They 

also reported that the sawdust like-shive that is produced from the core of the stems has 

been used as a thermal insulation especially in old buildings. Flax and hemp (Figure 2.8) 

are traditionally used in insulation tapes between timbers, but during the past decades, 

several types of mats have been developed into commercial products. 

 

It has been reported that in 2001, France and German is the largest hemp product 

manufacturer in Europe especially for the insulation applications (Kymaelaeinen and 

Sjöberg, 2008). According to (Bledzki and Gassan, 1999), the properties of flax fibre are 

noticeably affected at temperature of about 170°C. (Xue et al., 2009) claims that the high 
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temperatures (170°C-180°C) , to which fibre bundle are probably subjected during fibre 

processing and composite manufacturing do not induce significant effect to the tensile 

properties if the temperature are maintained less then 1h. (Mieck and Nechwatal, 1995) 

reported that the major damage will occurs to the flax fibre after exposure time more than 

4 minutes at temperature above 240°C. The mechanical properties of some natural fibres 

are shown in Table 2.3. 

      

                       Figure 2.8: A bundle of hemp fibre (Vincent Placet, 2009) 
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Table 2.3: Mechanical properties of certain natural and synthetic fibres (Bismack et al., 

2005) 
 

 Density 
(g/cm3) 

Diameter 
(μm) 

Tensile 
Strength 
(MPa) 

Young‟s 
Modulus 

(GPa) 

Elongation 
at Break (%) 

Flax 1.5 40-600 345-1500 27.6 2.7-3.2 
Hemp 1.47 25-500 690 70 1.6 

Jute 1.3-1.49 25-200 393-800 13-26.5 1.16-1.5 
Kenaf    930 53 1.6 
Ramie 1.55 - 400-938 61.4 1.2-3.8 

Nettle   650 38 1.7 
Sisal 1.45  468-700 9.4-22 3-7 

EFB 0.7-1.55 150-500 248 3.2 25 
Cotton 1.5-1.6 12-38 287-800 0.5 7-8 
Coir 1.15-1.46 100-460 131-220 4-6 15-40 

E-glass 2.55 <17 3400 73 2.5 
Kevlar 1.44  3000 60 2.5-3.7 

Carbon 1.78 5-7 3400-4800 240-425 1.4-1.8 

 
 

Sisal Fibre 
 

  

Sisal fibre is one of the most widely used plant fibres. It can be obtained from the 

leave of Agave Sisalana plant, which is largely available in tropical zone country 

(Sangthong et al., 2009). From the fact, nearly 4.5 million tons of sisal fibres are 

produced every year throughout the world. Brazil and Tanzania are the largest Sisal 

producer in the world (Li et al., 2000). Similar to the other plant fibre, sisal is becoming a 

great importance and raised a great interest to be used as an economical and 

environmentally friendly reinforcement for the polymeric material. A sketch of sisal plant 

is shown in Figure 2.9 and the sisal fibre was extracted from the sisal plant.  
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                                  Figure 2.9: Sisal fibre from sisal plant.  
 
 

 
Table 2.4: Some of the chemical properties of sisal fibre (Li et al., 2000) 

Properties Quantity (%) 

Cellulose 78 

Lignin 8 

Hemi Cellulose 10 

Wax 2 

Ash 1 
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Sisal-based composite materials are strong enough to be used as load bearing structural 

members in application such as structural panels, impact and blast resistance, repair and 

retrofit , earthquake remediation, strengthening of unreinforced masonry walls, and beam 

column connections (Flávio de Andrade Silva, 2009). Some of the chemical properties of 

Sisal fibre are shown in Table 2.4. 

 

2.3 Martix Resins 

2.3.1 Thermoplastic Resins 

 

Thermoplastic matrix materials are generally tougher than most thermosets resins 

and offer the potential of improved hot/ wet resistance. Thermoplastic polymer can be 

remelt and remold when heated (Lubin and Peters, 1998). They are also the only matrices 

material currently available that allow thermoforming and other forms of rapid 

manufacturer because of their high strains to failure. The thermoplastics resin materials 

included polyether ether ketone (PEEK), polypropylene (PP), polyethylene (PE), 

polyether ketone ketone (PEKK) and others. Most thermoplastic matrices do not absorb 

any significant amount of water, but organic solvent resistance is an area of concern for 

the non-crystalline thermoplastics. Thermoplastic matrix fabrication offers a lower cost 

production because of the potential of being remolded by applying heat and pressure. 

Thermoplastic composites are deemed to be a mature technology and will compete with 

other plastic composite on the properties and cost basis.  
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2.3.2 Thermosetting Resins 

 

Thermosetting is an irreversible cures polymeric materials. The cure could be 

done by heat, chemical reaction and irradiation such electron beams bombardment 

(Goodman, 1998). Thermosetting resins are usually liquid or malleable prior to curing 

and designed to be molded into their final form, or used as adhesive. Engineering 

thermosets have higher mechanical properties, lower resistance to temperature, higher 

coefficients of expansion, and low cost commodity like production and sales. Specialty 

thermosets are useful because of one or more highly specific and unusual property which 

offsets any lack of other properties. The individual family of plastics can be loosely 

classed as shown in Table 2.5.   

Table 2.5  Classification of thermoplastic for several uses (Goodman, 1998). 

Use Thermoset 

General Purpose Phenolic, animos, polyester 

Engineering Epoxy, polyurethane 

Specialty Silicones, allyls, high temperature 
thermosets, cross linked thermoplastics 

 

2.4 Composites Application 

 

The discipline of composite technology application, whether through manufacture 

or product acceptance for example, has extended virtually at every corner of the world. 

The total 1998 output of that world-wide industry has been estimated as 5.5 x 106 tonnes, 

valued at US$143x109, rising respectively to 7.0 x 106 tonnes and US$205 x 109 by 

2005 (Starr, 2000). There are some reasons for the wide acceptance composites by the 
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