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 SINTESIS DAN PENCIRIAN STRUKTUR NANO ZINK OKSIDA (ZnO) 

UNTUK APLIKASI PENDERIA 

 

ABSTRAK 

 Projek ini memberi tumpuan kepada pembangunan pendekatan baru untuk  

menumbuh pelbagai struktur nano ZnO berkualiti tinggi tanpa pemangkin melalui 

kaedah kos rendah dengan penyejatan haba basah untuk aplikasi penderia. 

Pertumbuhan struktur nano dan mikro ZnO adalah dengan pengoksidaan basah 

serbuk Zn melalui mekanisme wap pepejal (VS). Dalam bahagian pertama kerja ini, 

kesan suhu yang berbeza bagi sintesis struktur nano ZnO yang berkualiti tinggi pada 

substrat Si/SiO2 telah dikaji. Suhu pertumbuhan boleh dibahagikan kepada tiga 

kawasan: rendah (550-650˚C), sederhana (700-800˚C), dan tinggi (850-900˚C). 

Fabrikasi struktur nano ZnO berkualiti tinggi untuk aplikasi penderia dihadkan dalam 

kawasan suhu sederhana ke suhu tinggi. Kesan tempoh yang berbeza ke atas 

pertumbuhan rod nano ZnO juga dibincangkan. Selain daripada itu, fabrikasi struktur 

mikro dan struktur nano 3-dimensi (3D) ZnO yang baru pada suhu yang berbeza 

dalam satu langkah tanpa pemangkin telah ditunjukkan. Ciri-ciri struktur dan optik 

serta mekanisme pertumbuhan pelbagai struktur nano ZnO telah disiasat dan 

dicadangkan. Prestasi terbaik peranti untuk rod nano ZnO berupa tetrapod yang 

tumbuh pada Si/SiO2 telah difabrikasikan untuk mengkaji kesan suhu 

penyepuhlindapan haba pada sifat elektrik Pd/ZnO rod nano berupa tetrapod. 

Peningkatan masa sambutan foto Pd/ZnO rod nano berupa tetrapod yang berkos 

rendah untuk pengesanan ultraungu (UV) telah diperolehi. Didapati bahawa 

sambutan  maksimum fotopengesan Pd/ZnO logam-semikonduktor-logam (MSM) 

adalah 0.106 A/W pada 300 nm yang bersepadanan dengan kecekapan kuantum 

sebanyak 43.8 % pada 5 V voltan pincang yang dikenakan.  
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 Dalam bahagian kedua, satu kajian perbandingan pengesan UV berdasarkan 

hasil tinggi struktur nano ZnO yang berbeza telah dijalankan iaitu dengan 

menggunakan rod nano yang berjajar dengan baik (atas Si (100)), dawai nano berupa 

rambut (atas silikon berliang (PS)), dan rod nano berupa tetrapod (atas kuarza). 

Kajian ini telah menunjukkan bahawa dawai nano ZnO/PS mempamerkan sambutan 

foto yang agak cepat, dengan masa naik sebanyak 0.089 s dan masa susut sebanyak 

0.085 s berbanding dengan struktur nano atas substrat lain. Dalam bahagian ketiga, 

kesan substrat iaitu PS dan Si ke atas penumbuhan struktur nano ZnO telah disiasat. 

Kajian menunjukkan bahawa bentuk baru struktur nano ZnO yang berupa terumbu 

karang telah diperolehi atas substrat PS, dan juga, rod nano ZnO seperti bunga yang 

berjajar telah dihasilkan atas substrat Si. Morfologi kasar permukaan PS adalah 

berfaedah untuk pertumbuhan struktur nano dimana saiz bijian boleh dikurangkan 

dan bilangan tapak penukleusan boleh ditingkatkan. Seterusnya, satu kajian 

perbandingan sifat-sifat pengesanan hidrogen berdasarkan  struktur nano Pd/ZnO 

atas substrat Si dan PS telah dilakukan. Kepekaan dan suhu operasi optimum bagi 

penderia tersebut adalah 350% (pada 100˚C) untuk ZnO/PS pada 150 sccm gas H2, 

adalah lebih daripada dua kali kepekaan maksimum untuk peranti ZnO/Si pada 

150˚C.  

 Dalam bahagian terakhir, peranti dengan rekabentuk baru 2-dalam-1 telah 

ditunjukkan; peranti ini terdiri daripada struktur MSM untuk pengesanan gas dan 

simpang p-n untuk pengesanan UV. Dalam kajian ini, penderia gas MSM Pd/ 

ZnO/Pd telah berjaya difabrikasikan berdasarkan struktur nano ZnO berupa tiub 

heksagon. Kepekaan yang tinggi pada suhu bilik penderia ZnO/p-GaN didapati 

sebanyak 1250% pada 150 sccm gas H2. Di samping itu, simpang hetero n-ZnO/p-

GaN telah berjaya ditunjukkan sebagai fotodiod UV. 
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SYNTHESIS AND CHARACTERIZATION OF NANOSTRUCTURED ZINC 

OXIDE (ZnO) FOR SENSOR APPLICATIONS 

 

 

 

ABSTRACT 

 

This project focuses on the development of new approach to grow a variety of 

high quality ZnO nanostructures without catalyst through a low cost method by wet 

thermal evaporation for sensor applications. The growth of ZnO nano- and 

microstructures is by wet oxidation of Zn powder via the vapour–solid (VS) 

mechanism. In the first part of this work, the effect of different temperatures on 

synthesizing high quality ZnO nanostructures on Si/SiO2 substrate was studied. The 

growth temperatures could be divided into three regions: low (550-650˚C), moderate 

(700-800˚C), and high (850-900˚C), respectively. The fabrication of high quality 

ZnO nanostructures for sensor applications was confined in the moderate to high 

temperature regions. The influence of different durations on the growth of ZnO 

nanorods was also discussed. Apart from that, a novel fabrication of 3D ZnO 

microstructures and nanostructures at different temperatures in one step without 

catalyst was presented. The structural and optical properties as well as the growth 

mechanisms of various ZnO nanostructures have been investigated and proposed. 

The best performance device for ZnO tetrapod-like nanorods grown on Si/SiO2 was 

fabricated to study the effect of thermal annealing temperatures on the electrical 

properties of Pd/ZnO tetrapod-like nanorods. The enhancement of the photoresponse 

time of low cost Pd/ZnO tetrapod-like nanorods for ultraviolet (UV) detection was 

obtained. It was found that the maximum responsivity of the Pd/ZnO metal-

semiconductor-metal (MSM) photodetector was 0.106 A/W at 300 nm which 

corresponds to a quantum efficiency of 43.8% at 5 V applied bias voltage. 
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In the second part, a comparative study of UV detector based on a high yield 

of different ZnO nanostructures were carried out i.e. using well-aligned nanorods (on 

Si (100)), hair-like nanowires (on porous silicon (PS)), and tetrapod-like nanorods 

(on quartz). The study demonstrated that ZnO nanowires/PS exhibited a relatively 

fast photoresponse, with a rise time of 0.089 s and fall time of 0.085 s as compared to 

nanostructures on other substrates. In the third part, the effect of substrates i.e. PS 

and Si on the ZnO nanostructures was investigated. The study revealed that new 

shapes of coral reef-like ZnO nanostructures were obtained on PS substrate as well 

as, flower-like aligned ZnO nanorods were produced on Si substrate. The rough 

morphology of the PS surface was advantageous for the growth of nanostructures in 

which the grain size can be reduced and the number of nucleation sites can be 

increased. Subsequently, a comparative study of hydrogen-sensing properties based 

on Pd/ZnO nanostructures on Si and PS substrates was performed. The sensitivity 

and the optimal operating temperature of the sensors are 350% (at 100˚C) for 

ZnO/PS at 150 sccm of H2 gas, which is more than twice the maximum sensitivity 

for the ZnO/Si device at 150˚C.  

In the final part, a device with novel 2-in-1 design has been demonstrated; 

this device consists of MSM structures for gas sensing and p-n junction for UV 

detection. In this work, a Pd/ZnO/Pd MSM gas sensor has been successfully 

fabricated based on the nanostructured hexagonal tube-like ZnO. The high sensitivity 

at room temperature of the ZnO/p-GaN sensor was found to be 1250% at 150 sccm 

of H2 gas. In addition, n-ZnO/p-GaN heterojunction has been successfully 

demonstrated as a UV photodiode. 
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CHAPTER 1 

INTRODUCTION 

 

1.0 The history and current development of ZnO nanostructures 

Nanotechnology has been an exciting and rapidly expanding area of research 

for more than a decade (Morkoc et al., 1994; Krishnamoorthy & Goossen, 1998; 

Janata, 1992). Studies on the preparation, structure, and properties of nanostructures 

have been carried out with collective efforts that cross borders between many areas 

of physical sciences, engineering and biological sciences (Xia et al., 2003).   

Studying one dimensional (1D) materials has become a leading edge in 

nanoscience and nanotechnology. Nanowire-like structures are the ideal system for 

studying the transport process in one-dimensionally (1D) confined objects; this is 

important not only for understanding the fundamentals in low dimensional systems, 

but also for developing a new generation of nanodevices with high performance 

(Wang,  2004a). With these technological advances, it is possible to make artificial 

nanometer systems where the effects of the quantum confinement in two dimensions 

can be observed (2D as in quantum wells), in one (1D as in wires and tubes), and in 

zero dimension (0D) as in the case of a dot (Dresselhaus et al.,  2001; Yoffe,  2001; 

Yu et al.,  1996).  

The term “nanostructured material” commonly referred to those materials 

whose structural element-clusters, crystallites or molecules with one of their physical 

dimensions is within 1 to 100 nm range. However, there are other definitions of 

nanostructures in which the physical dimension could be more than 100 nm 

(Thomas, 2010). It should be noted that the definition of nanostructures with 

dimension within 100 nm is not strictly followed. According to many research 
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groups (Peter & Peidong, 2006; Feng et al., 2010; Cho et al., 2008; Thomas, 2010), a 

wire with diameter from 10 to 200 nm and length around 1-50 μm, a rod with 

diameter range of 100–600 nm and the length of the nanorods is about several 

micrometers, a hexagonal tube or disk with diameter about 600 nm and thickness of 

200 nm, and a ring with a diameter of 5 μm and a thickness of 300 nm have been 

studied and they are termed as “nanostructure”.  

  Nanostructured optoelectronic and electronic devices have attracted much 

interest due to improved device performance in comparison with their non- 

nanostructures counterparts. For instance, low temperature sensitivity, high 

differential gain and high modulation bandwidth can be obtained with infrared 

semiconductor laser when quantum dot layer is used as an active layer (Liu et al., 

2001). A Si photoconductive photodetector with nanostructured grating in the active 

region has shown high responsivity, higher internal quantum efficiency and faster 

photoresponse (Sharma et al., 2001). In addition, miniaturized single nanowire 

devices are building blocks for the integrated electronics and photonics of the next 

generation.  

The emergence of nanoscience and nanotechnology, semiconductor 

nanomaterials have been of great interest due to their unique and novel properties 

compared with bulk materials (Tang & Kotov, 2005; Comini et al., 2009). Much 

attention was paid on wide band gap semiconductors in the past decade; and the 

growth material characteristics of semiconductors with wide band gaps have also 

been studied with the aim of developing short-wavelength electronic devices based 

on ZnO, GaN, GaAs, TiO2, ZnSe  and other compounds due to the increasing need 

for several applications (Wang, 2008).  
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Zinc oxide, with the formula ZnO, is an inorganic compound which is present 

in the earth’s crust as the mineral zincite (Klingshirn, 2007). It is not a novel material 

for scientific study, and has been widely used in industry. ZnO can be found in 

numerous materials and products as an additive including plastics, ceramics, glass, 

cement, rubber, paint, adhesives, sealants and pigments (Lide, 2001).  

As a semiconductor material, ZnO was first studied as early as the 1930s 

(Bunn, 1935), and the research has focused on bulk ZnO growth, characterizations 

and applications had rapidly grown since then. By the end of the twentieth century, 

ZnO had been widely used in the semiconductor industry as varistors operated at 

elevated temperatures or high voltages (Clarke, 1999), and as ultrasonic transducers 

in high-frequency regions (Wasa et al., 2004). 

From the mid-1990s, ZnO was again under the scientific spotlight. At that 

time, the initial reason that researchers started to pay attention to this material, was to 

develop high quality, closely lattice matched substrate materials for GaN which had 

been viewed as a promising wide band-gap material for short wavelength photonic 

applications, such as UV and blue light emitting diode (LED) and lasers (Strite & 

Morkoc, 1992). However, along with the deeper research, it was found that ZnO 

itself is an excellent wide band-gap material, and can produce bright blue to UV light 

and laser, which opened a new era for ZnO material (Look et al., 1998; Reynolds et 

al., 1996; Look et al., 1999). Since then numerous efforts have been devoted 

worldwide in the research for the realization of ZnO based photonic and 

optoelectronic devices. 

Among the group of II-VI compound semiconductors nanomaterials, ZnO has 

so far received intense attention due to its remarkable combination of physical and 

optical properties. ZnO has several important advantages. Firstly, ZnO exhibits both 
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semiconducting and piezoelectric properties which can be applied in nanogenerators 

and nanopiezotronics for converting mechanical energy into electrical energy and 

also for fabricating piezoelectric semiconducting coupled devices (Khan, & 

Kordesch, 2008). Secondly, ZnO is a direct wide band gap (3.37 eV) semiconductor 

material with excitation binding energy (60meV) larger than other semiconductor 

materials such as GaN (25meV) and ZnSe (22meV) (Hsueh, et al., 2006). Therefore, 

ZnO has attracted much attention as a promising material for solar cells, gas sensor, 

field emission blue and ultraviolet (UV) light-emitting diodes, and ultraviolet laser 

devices (Law et al., 2005; Lee et al., 2002; Ryu et al., 2006). Thirdly, ZnO is a 

biocompatible material that can be used in biochemical and biomedical applications 

(Nie et al., 2006). Finally, ZnO exhibits the richest range of morphologies among the 

wide band gap semiconductors owing to its hexagonal wurtzite structure and polar 

crystal surfaces (Wang, 2004a). A high saturation velocity has been predicted to be ~ 

3×10
7 

cm/s, potentially leading to fast electronic devices. ZnO has a large 

photoconductivity, making it suitable for UV photodetectors (Liu et al., 2000; Liang 

et al., 2001).  

The high exciton binding energy in ZnO crystal ensures efficient excitonic 

emission at room temperature. Ultraviolet (UV) luminescence has been reported in 

disordered nanoparticles and thin films (Hughes & Wang, 2005). ZnO is transparent 

to visible light and can be made highly conductive by doping. As a consequence, 

ZnO is recognized as a promising photonic material in the blue–UV region. As the 

research on ZnO went deep, increasingly interesting properties and potential 

applications have been discovered for this material. One of the most attractive 

aspects is that it is relatively simple for ZnO to form various nanostructures including 

highly ordered nanowire arrays, tower-like structures, nanorods, nanobelts, 
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nanosprings and nanorings (Wang, 2006a). Due to the special physical and chemical 

properties derived from the nanostructures, ZnO has been found to be promising in 

many other applications, such as for sensing, catalysis, photovoltaics, and nano-

generators (Heo et al., 2004a; Schmidt-Mende, & MacManus-Driscoll, 2007; Zou et 

al., 2009; Law et al., 2005; Wang et al., 2007). The number of articles published on 

ZnO is on the rise. For example, in 2007 ZnO became the second most popular 

semiconductor material after Si and that its popularity is still increasing over time 

(Klason et al., 2008).  

The high performance of the nanostructures has kept researchers interested in 

the synthesis, characterization, and fabrication of nanodevices. As a consequence, 

many techniques such as molecular beam epitaxy (MBE), chemical vapour 

deposition (CVD), thermal evaporation, electrodeposition, and sol-gel synthesis have 

been developed to synthesize nano-structures; sometimes with well controlled size, 

shape and spatial distribution on the substrates (Heo et al., 2002; Li et al., 2007; 

Wang, 2004a). On the other hand, rare studies on the synthesis of ZnO 

nanostructures by wet thermal evaporation method without catalyst have been 

reported (Han, & Gao, 2009; Chen, et al., 2011).  

The synthesis of ZnO nano and microstructures using wet thermal 

evaporation method without catalyst at different conditions and substrates are 

required. The simplicity, lower cost, faster growth and suitability of this method to 

produce variety of nanostructures are very promising for sensor applications. The 

renewed interest in this material has arisen out of the development of growth 

technologies for the fabrication of high quality single crystals and epitaxial layers for 

ZnO-based electronic and optoelectronic devices. 
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1.1 Statement of the problem 

 ZnO nanostructures are usually grown by using three zone furnace under 

vacuum at high temperature under vapour liquid solid (VLS) mechanism (950-

1400˚C) with catalyst such as Au, Ni, Pd, and C by thermal evaporation technique 

(Wang, 2004a).  Also, in the VLS mechanism, the catalysts play an essential role in 

forming liquid alloy; however, this technique needs very high growth temperatures, 

so that Zn vapor can be dissolved into a metal catalyst to form an alloy droplet. After 

saturation, Zn precipitates out from the droplet and is oxidized as ZnO 

nanostructures. Another drawback of the VLS method is that, at the tips of the ZnO 

nanorods or nanowires, there are always impure metal particles that will lead to 

contamination, and so these nanostructures are not useful for device fabrication 

(Sekar et al., 2005). 

 Apart from that, different solution-based synthesis methods for ZnO 

nanostructures have been reported (Djurisic, et al, 2010). Solution-based deposition 

methods can be classified as hydrothermal, solvothermal, and electrodeposition. 

Hydrothermal method has been widely used to grow ZnO nanostructures on a variety 

of substrates, and their properties, similar to vapor deposition, have been strongly 

affected by the seed layer, as well as the substrate orientation and substrate treatment 

(Djurisic, et al, 2010).  

 For optical properties, nanostructures prepared by solution methods typically 

exhibit yellow–orange luminescence, and a large number of structural defects. UV-

to-visible emission ratio was dependent on the deposition temperature, and the 

quality of the seed layer. Significant improvements in the UV-to-visible emission 

ratios have been observed by both H2O2 treatments of as-grown rods, as well as 

treatment of the catalyst layer (Djurisic, et al, 2010). Regardless of the role and 



7 

 

position of the metal particle during the nanowire growth, it will obviously affect the 

performance of the optoelectronic devices made using such nanowire arrays, 

especially if the metal particle is located at the interface of ZnO nanowire and 

semiconducting substrate. Thus, there is an obvious interest in the fabrication of ZnO 

nanorod and nanowire without the use of a metal catalyst (Djurisic, et al, 2010).  

 In this work, growth of ZnO nanostructures were accomplished by using the 

simplest technique via one stage zone furnace without vacuum at wide range of 

temperatures from 550˚C to 900
˚
C and without catalyst. Up to now, few studies have 

been reported on the subject of catalyst-free fabrication of ZnO such nanowire, 

tetrapods and nanorod arrays for sensor application. Therefore, growth method 

without catalyst becomes an important research subject in nanotechnology. 

  

1.2 Objectives of the Study  

The aim goal of this research is development on the growth and 

characterization of a wide range of nanostructured ZnO by using wet thermal 

evaporation method without catalyst. Simplicity, lower cost, and suitability of this 

method to produce high structural and optical quality of ZnO nanostructures are very 

promising for efficient sensor applications such as UV detectors, gas sensors, and p-n 

heterojunction devices. The objectives of this work can be summarized below:  

1. To study the influences of different temperatures in synthesizing ZnO    

nanostructures in three regions: low (550-650˚C), moderate (700-800˚C), and 

high (850-900˚C) temperatures. The effects of various experimental 

parameters on the synthesized ZnO nano- and micro-structures are 

investigated. The best device for ZnO/Si tetrapod-like nanorods will be 
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fabricated to study the effect of thermal annealing temperatures on the 

electrical properties of this device.  

2. To study and compare the characterization of UV detectors based on ZnO 

nanostructures grown on different substrates. The nanostructures will be 

synthesized on Si (100), porous silicon (PS/Si), and quartz substrates for 

comparison. 

3. To study the effect of the surface roughness of the substrate i.e. PS and Si on 

the morphological, structural, and optical properties of ZnO nanostructures.  

4. To investigate the properties and novel device application of nanostructured 

hexagonal tube-like ZnO on p-GaN heterojunction. 

1.3  Originality of the study 

  In this work, an alternative method to synthesise of new shapes of high 

quality ZnO nano and microstructures on Si/SiO2 such as nanowires, nanorods, 

nanotetrapods, nanoflowers, pyramid (with nanowires), and micro-sphere (with 

nanowire) using wet thermal evaporation method without catalyst at different 

conditions have been accomplished. Currently, the growth of wide range of ZnO 

nanostructures by thermal evaporation method is an uncontrollable technique (Chen 

et al., 2011). In this study, the controlled growths of ZnO nanowires at low 

temperatures as well as aligned ZnO nanorods at different durations have been 

obtained. The controlled growth was obtained by fixing the growth temperature. 

 Porous silicon (PS) technology has been utilized to grow new shape of coral 

reef-like ZnO nanostructures on the surface of Si substrates with rough morphology. 

Flower-like aligned ZnO nanorods are also fabricated directly onto the silicon 

substrates through zinc powder evaporation using a simple thermal evaporation 

method without catalyst for first comparison study between ZnO/PS and ZnO/Si. 
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This non-catalyst growth technique on the rough surface of substrates may have good 

potential applications in the fabrication for UV detector and H2 gas sensor devices. 

 The first comparative studies of UV detectors based on ZnO nanostructures 

grown on different substrates are obtained. Pd/ZnO/Pd metal-semiconductor-metal 

photodetectors have been successfully fabricated using a variety of high-quality ZnO 

nanostructures. The nanostructures used included well-aligned nanorods, tetrapod-

like nanorods, and hair-like nanowires and were synthesized on Si (100), porous 

silicon (PS/Si), and quartz substrates, respectively, using a catalyst-free vapour–solid 

mechanism for comparison.  

 A 2-in-1 device fabricated based on nanostructured hexagonal tube-like ZnO 

grown on p-GaN heterojunctions works as a gas sensor and UV detector has been 

achieved. 

 

1. 4 Outlines of the thesis 

This thesis consists of eight chapters and is organized as in the following 

sequence:  

Chapter one is the introduction chapter which provides the history, 

background, and future development of ZnO nanostructures and its applications for 

some optoelectronic devices. 

Chapter two reviews the relevant literature and the basic properties of the 

ZnO nanostructures, including the crystal structure, electronic and optical characters. 

The typical synthesis methods of ZnO nanostructures and the advantages of those 

methods are briefly discussed. A description of the basic principles of the wet 

thermal evaporation technique is also introduced. The most common substrates that 
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are used for synthesis of ZnO nanostructures are presented. Finally, some potential 

applications of ZnO are discussed. 

Chapter three describes the relevant theories in this study. A brief explanation 

of the quantum confinement in semiconductors and the effect of quantum 

confinement in the nanostructures are explained. The fundamental theory of growth 

of ZnO nanostructures in wet thermal oxidation process, and the fundamental 

theories for metal-semiconductor contacts and the basic principles of some devices, 

which have been fabricated in this project such as metal semiconductor-metal 

(MSM) photodetector, p-n heterostructures photodiode, and gas sensor are briefly 

described in this chapter. 

Chapter four briefly explains the samples preparation of the ZnO 

nanostructures with various conditions. Also, the general instruments that were used 

in this study for characterizations are described. The fabrication and characterization 

of various types of devices based on ZnO nanostructures are also presented in this 

chapter. 

Chapter five includes the results of synthesis and characterizations of ZnO 

nanostructures by wet thermal oxidation method are discussed. The growth 

mechanisms of ZnO nanostructures are also studied based on the experimental 

results.  

Chapter six discusses the results obtained from the synthesis and 

characterization of ZnO nanostructures grown on different substrates by the wet 

thermal oxidation method. 

 Chapter seven is focusing on the study of the performance of the various 

types of devices fabricated based on ZnO nanostructures.  

Chapter eight deals with the conclusions and future works. 
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CHAPTER2 

LITERATURE REVIEW 

2.0 Introduction              

In this chapter, relevant literature review such as wide-bandgap II-IV 

semiconductor’s properties and growth techniques, semiconductor nanotechnology, 

and an overview of ZnO nanostructures technology are presented. Apart from that, 

an overview of the fundamental properties of ZnO nanostructures, growth techniques 

for ZnO nanostructures and the common substrates used to synthesise ZnO 

nanostructures are also presented. In addition, the principal applications of ZnO 

nanostructures will be discussed in detail. 

 

2.1 Wide-bandgap semiconductors and growth techniques 

Power semiconductor devices made from materials with bandgap energy 

larger than in Si (1.12 eV) have been touted for many decades. The potential 

advantages of these wide-bandgap devices include higher achievable junction 

temperatures and thinner drift regions because of the associated higher critical 

electric field values that result in much lower on-resistance than is possible in Si 

(Chow et al., 1994; Bhatnagar & Baliga, 1993).   

Wide-bandgap II–VI compounds are expected to be one of the most vital 

materials for high-performance optoelectronics devices such as light-emitting diodes 

(LEDs) and laser diodes (LDs) operating in the blue or ultraviolet spectral range. 

Additionally, the high ionicity of these compounds makes them good candidates for 

high electro-optical and electromechanical coupling (Jifeng, & Minoru, 2007). 

 More research efforts have been invested to study nanostructures-based on 

wide band gap semiconductors, such as silicon carbide (SiC), gallium nitride (GaN) 
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and zinc oxide (ZnO) which have been evidenced by a number of publications in this 

field (Li et al., 2002a; Chiou, 2008; Sun et al., 2008a). Wide-bandgap semiconductor 

nanostructures have attracted enormous attention due to their unique properties 

resulted from their low dimensionality. Furthermore, many advantages are provided 

by the intrinsic nature of wide band gap semiconductors (Hudgins, 2003). Functional 

oxides of wide band gap semiconductors can be fabricated to form several types of 

novel nanostructures. These nanostructures are the fundamental building blocks of 

smart devices. Many metal oxide materials such as ZnO, SnO2, In2O3, Ga2O3 and 

PbO2 have been investigated and synthesised.  

Wide-bandgap II–VI compounds have been applied to optoelectronic devices, 

because of their direct gap and suitable bandgap energy. Many methods have been 

extensively applied to grow high-quality thin films and bulk single crystals. Thin 

films were commonly grown using the conventional vapour-phase epitaxy (VPE) 

method. As a result of the advancement in science and technology, novel epitaxial 

growth techniques were developed, including liquid phase epitaxy (LPE), solid-phase 

epitaxy (SPE), hot-wall epitaxy (HWE), metalorganic chemical vapour deposition 

(MOCVD), molecular-beam epitaxy (MBE), metalorganic molecular-beam epitaxy 

(MOMBE) and atomic layer epitaxy (ALE) (Lopez et al., 1978; Manasevit et al., 

1971; Chang et al., 1975; Veuhoff et al., 1981; Suntola, 1989). By using these growth 

methods, film thickness can be controlled, and quality can be improved.   

On the other hand, basic research work on growing bulk crystals of wide-

bandgap II–VI compounds have been carried out. The focus was on high-quality, and 

large single crystals (Wang et al., 2001; Song et al., 2003). Since the electrical and 

optical properties of semiconductor compounds are profoundly affected by impurities 

and native defects, purity and quality are very important for fundamental research 
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and engineering application where they are used as substrates. Bulk single crystals of 

these wide-bandgap II–VI compounds have been grown by the vapour, liquid and 

solid phases. Vapour-phase growth includes chemical vapour transport (CVT) and 

physical vapour transport (PVT) methods. Growth methods for films and bulk 

crystals of wide-bandgap II–VI compounds are summarized in Figure 2.1. This 

figure is outlined through the literature in this respect with some modifications 

(Jifeng, & Minoru, 2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Film and bulk-crystal growth techniques for II–VI wide-bandgap 

compounds [adopted and modified from Jifeng, & Minoru, 2007].  

 

 

 

2.2 Overview of semiconductor nanotechnology 

Semiconductors are deemed the cornerstone of the modern electronics 

industry. They have been used extensively in communication, information and 

computer industries since the invention of semiconductor transistors. During the 2nd 

half of the twentieth century, miniaturization of semiconductor devices has been 

adopted so as to increase integration, enhance functionality, and reduce energy 

consumption. As a result, semiconductor devices have evolved from millimeter-sized 
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devices capable of manipulating electric currents into micrometer-sized devices that 

can handle both electricity and light. Another challenge started in the twenty-first 

century by creating nanometer-sized semiconductor devices that can directly interact 

with individual atoms and molecules at the nanometer level (Steiner, 2004; 

Manasreh, 2005; Zurauskiene et al., 2003). 

Esaki and Tsu proposed the use of superlattices to observe negative 

differential resistance (Esaki & Tsu, 1970). They added that advanced epitaxial 

growth techniques, such as molecular beam epitaxy and metalorganic chemical vapor 

deposition have been especially developed to enable the growth of high-quality 

semiconductor alloys under precisely controlled conditions. Impressive progress in 

the fabrication of low-dimensional semiconductor structures made it possible to 

reduce the effective dimension from three dimensional bulk materials to quasi-two 

dimensional quantum well systems, to quasi-one dimensional quantum wires, and 

even to quasi-zero dimensional quantum dots. 

Introduction of quantum wells in the early 1970s was a turning point in the 

direction of research on electronic structures (Dingle et al., 1974). A quantum well is 

a very thin layer of a semiconductor sandwiched between two layers of another 

semiconductor with wider energy gaps.  

In the 1980s, the interest of researchers shifted toward structures with further 

reduced dimensionality such as quantum wires with one-dimensional confinement 

and quantum dots (QDs) with zero-dimensional confinement (Petroff et al.,1982). 

The localization of carriers in all three dimensions breaks down the classical band 

structure of the continuous dispersion of energy as a function of momentum. Unlike 

quantum wells and quantum wires, the energy level structure of quantum dots is 

rather discrete. The study of nanostructures has opened a new chapter both in 
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fundamental physics as artificial atoms and in potential applications as devices 

(Trojanek et al., 2006; Van & Hannaford, 2005).  

 

2.3 Overview of ZnO nanotechnology 

As particles approach the nanoscale, they possess two important properties, the 

quantum confinement effect and a large ratio of surface area to volume relative to bulk 

materials (Triboulet & Perriere, 2003). In a bulk crystal, the properties of the material are 

independent of the size and are only chemical composition-dependent. As the size of a 

crystal decreases to the nanometer regime, the size of the particle begins to modify the 

properties of the crystal. In other words, due to the quantum confinement effect, the 

energy bandgap of nanostructured materials increases with decreasing size of the 

quantum structures.The large surface area provides numerous atomic sites for the 

adsorption of molecules, making the nanoparticles attractive materials for gas and 

chemical sensing. Because nanoparticles are tiny compared to IR and visible 

wavelengths, they exhibit characteristic absorption and scattering properties (Saraf et al., 

2007). This feature has been utilized for materials such as stained glass for many 

centuries.  

The advent of one-dimensional (1D) wide band-gap metal-oxide 

semiconductors has caused a large billowy effect not only on electronics, but also on 

photophysics and photochemistry. Research interest in ZnO, one of the wide band 

gap semiconductors, has waxed and waned over the years. ZnO is one of the few 

dominant nanomaterials for nanotechnology. ZnO has an effective electron mass of 

0.24me, and a large exciton binding energy of 60 meV. Thus bulk ZnO has a small 

exciton Bohr radius in a range of 1.8-2.3 nm (Wong & Searson, 1999; Gil & 

Kavokin, 2002; Senger & Bajaj, 2003). Therefore, the quantum confinement effect in 

ZnO nanowires should be observable at the scale of an exciton Bohr radius. An 
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example is the well-width dependent PL blue shift which has been observed in 

ZnO/MgZnO (MQW) epitaxial nanorods with the ZnO well-widths ranging from 1 to 

5 nm. Quantum size effect also causes a blue shift in free excitonic emission in ZnO 

nanorods with diameters smaller than 10nm, (Ohtomo et al., 1999; Park et al., 2003).  

Recently, researchers have been focusing on the preparation of diverse 

morphologies of ZnO nanostructures such as nanowires, nanorods, nanoneedles, 

nanobows, nanowalls, nanobridges, nano-tetrapods,  nano-multipod, nano-flowers, 

and nanostars (Umar  et al., 2006a; Liu, 2002; Park et al., 2002a; Wu et al., 2002a; 

Hughes et al., 2005; Lao et al., 2004; Lao et al., 2003; Gao et al., 2004;  Wang et al., 

2006; Umar et al., 2005; Umar et al., 2006b). Figure 2.2 shows a collection of ZnO 

nanostructures synthesised by thermal evaporation of solid powders (Wang, 2004a).  

A major advantage of ZnO nanostructures, such as nanowires and nanorods, 

is that they can easily be grown on various substrates. Furthermore, these ZnO 

nanostructures are easily formed even on cheap substrates such as glass and hence 

they have a promising potential in the nanotechnology future. Particularly, ZnO 

nanorods can be advantageous with low density of defects. The growth of defect-free 

structures are more likely for nanorods in comparison with epilayers because the 

strain in the nanorods can efficiently be relieved by elastic relaxation at the free 

lateral surfaces rather than by plastic relaxation. Such nanorods are potentially used 

for gas sensing applications. 
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Figure 2.2: A collection of nanostructures of ZnO synthesised under controlled 

conditions by thermal evaporation of solid powders [adopted from 

Wang, 2004a]. 

 

2.4 Fundamental properties of ZnO  

  ZnO is grouped under II–VI semiconductors because Zn belongs to group II, 

and O belongs to group VI in the periodic table. ZnO exhibits the most splendid and 

abundant configurations of nanostructures that one material can form.  Zinc oxide is 

an inorganic compound which usually appears as a white powder. The chemical 

bonds that form ZnO are borderline between ionic and covalent bonds though they 

lean towards being ionic. ZnO has relatively low solubility in water (1.6×10
-6

 g/cm
3
 

or 2×10
-6

 moles/liter) and even less solubility in ethanol. It decomposes at 1975
o
C 

(Florescu et al., 2002).  

 

2.4.1 Crystal structure of ZnO 

 ZnO crystallizes in three forms: hexagonal wurtzite, cubic zincblende, and 

the rarely observed cubic rocksalt. The wurtzite structure is the most stable under 

ambient conditions and thus the most common as shown in Figure 2.3 (a). The 

zincblende form can be stabilised by growing ZnO on substrates with cubic lattice 
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structure (Ashrafi et al., 2000; Kim et al., 2003). In both cases, the zinc and oxide 

centers are tetrahedral. As for the rocksalt (NaCl-type) structure, it is only observed 

at relatively high pressures about 10 GPa, and cannot be epitaxially stabilised as 

shown in figure 2.3 (c) (Bates et al., 1962).  

 

 

 

 

 

Figure 2.3: (a) The wurtzite structure model of ZnO, (b) the zinc blende, and (c) the 

rocksalt phases of ZnO [adopted from Bates et al., 1962]. 

  

 Structurally, ZnO which has a hexagonal crystal structure lattice (space group 

C6mc) which is energetically favorable compared to the rocksalt and zinc blend 

structures with lattice parameters a = b = 0.3296 nm and c = 0.5206 nm. The lattice 

parameters of the unit cell have a c/a ratio of 1.602 which is 1.8% of the ideal 

hexagonal-close-packed structure of 1.633.  

 The wurtzite structure of ZnO can simply be described as a number of 

alternating planes composed of tetrahedrally coordinated Zn
+2

 and O
−2

 ions where 

each oxygen ion is surrounded tetrahedrally by four zinc ions and vice versa stacked 

alternately along the c-axis. Another important characteristic of ZnO is polar 

surfaces. The most common polar surface is the basal plane. The oppositely charged 

ions produce positively charged (0001)Zn  and negatively charged (0001)O  

surface, resulting in a normal dipole moment and spontaneous polarization along the 

c-axis as well as a divergence in surface energy.  
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 The polar surfaces generally have facets or exhibit massive surface 

reconstructions, but ZnO± (0001) are exceptions; they are atomically flat, stable, and 

without reconstruction (Meyer & Marx, 2003). The other two most commonly 

observed facets for ZnO are (2110) and (0110) , which are non-polar surfaces and 

have lower energy than the (0001) facets (Wander et al., 2001; Dulub et al., 2003). 

The interaction among the polar charges at the surface depends on their distribution; 

therefore the structure is arranged in such a way to minimise the electrostatic energy 

which is the main driving force for growing polar surface dominated nanostructures.  

 Together with the polar surfaces due to atomic terminations, ZnO exhibits a 

large scale of novel structures that can be grown by varying the growth rates along 

these directions. One of the most important factors determining the morphology 

involves the relative surface activities of various growth facets under given 

conditions. Macroscopically, a crystal has different kinetic parameters for different 

crystal planes which are emphasised under controlled growth conditions. Thus, after 

an initial period of nucleation and incubation, a crystallite commonly develops to a 

3D object with well-defined, low index crystallographic faces. Figure 2.4 (a-d) 

shows a few typical growth morphologies of one dimensional nanostructures for ZnO 

(Wang, 2004a). The morphology as shown in Figure 2.4 (d) is dominated by the 

polar surfaces which can be grown by introducing planar defects parallel to the polar 

surfaces. Planar defects and twins are observed occasionally parallel to the (0001) 

plane, but dislocations are rarely seen (Wang, 2004a; Subramanyam et al. 2000). It is 

observed that when the dimensions of a semiconductor material keep decreasing i.e. 

from macro to micro to nano scale, some of the physical properties of that material 

undergo changes. This phenomenon is known as “quantum size effect” (Baruah & 

Dutta, 2009). 
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Figure 2.4: (A) Growth morphology of one dimensional ZnO nanostructures 

[adopted from Wang, 2004a]. (B) The schematic diagrams of the 1D 

nanostructures [adopted from Ding & Wang, 2004].  

 

 

 In scientific literature, a few terms are being used for the 1D nanostructures,  

such as nanowires, nanorods, nanotubes, nanobelts, and nanoribbon. A linear 

structure with a specific growth direction are usually called nanowires. The side 
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surfaces and shape of cross-section of a nanowires may not be well defined or 

uniform shown in Figure 2.4B (a). A nanorod is similar to a nanowire with a shorter 

length as shown in Figure 4.2B (b). A nanotube is a 1D with a hollow interior chanal 

(Figure 4.2B (c)). 1D nanostructures with well defined side facets 

nanobelts/nanoribbons are shown in Figure 4.2B(d), and they have restrictive shape 

and uniformity than the nanowires. 

 

2.4.2 Physical properties of ZnO 

  The basic physical properties of ZnO are summarised in Appendix (A) based 

on the reported data on bulk ZnO at room temperature (Jagadish & Pearton,  2006). 

There is still uncertainty in the values of the thermal conductivity due to the 

influence of defects in the material (Florescu 2002). In addition, a stable and 

reproducible p-type doping in ZnO is still a challenge and cannot be achieved. The 

findings regarding the values related to the mobility of hole and its effective mass are 

still arguable. The values of the carrier mobility can surely be enhanced after 

achieving good control on the defects in the material (Florescu 2002). 

 

2.4.3 Electronic energy bandgap of ZnO 

  ZnO has a relatively large direct band gap of ~3.37 eV and a relatively large 

excitation binding energy (60 meV) compared to thermal energy (26meV) at room 

temperature. Advantages associated with a large band gap include higher breakdown 

voltages, ability to sustain large electric fields, lower electronic noise, and high-

temperature and high-power operation. The electronic band structure of a 

semiconductor is very important to be understood for its utility in devices and for 
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further improvement in the performance of these devices (Ozgur et al., 2005). The 

electronic band structure gives understanding of the electron/hole states.   

Several theoretical approaches such as the local density approximation 

(LDA), the Green’s functional method and the first principles were used to calculate 

the energy band diagram of wurtzite as well as zincblende and rocksalt polytypes of 

ZnO (Jaffe et al., 2000; Schleife et al., 2006). In parallel to the theoretical efforts, a 

number of experimental techniques such as X-ray induced photo absorption, 

photoemission spectroscopy, angle resolved photoelectron spectroscopy, and low 

energy electron diffraction have commonly been employed to understand the 

electronic states of wurtzite ZnO (Dong et al., 2004). 

The electronic band structure of ZnO has been studied by using local density 

approximation (LDA) (Vogel et al., 1995) which incorporates atomic self-interaction 

corrected pseudopotentials (SIC-PP) to accurately estimate the Zn 3d electron. Figure 

2.5 shows the band structure diagram reported by Vogel et al., (1995).  

 

 

 

 

 

 

 

 

 

  

 Figure 2.5: LDA band structure of bulk wurtzite ZnO calculated using dominant 

atomic self-interaction-corrected pseudopotentials (SIC-PP) [adopted 

from Vogel et al., 1995]. 
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The band structure of ZnO possesses high symmetry lines in the hexagonal 

Brillouin zone. The direct interband transition takes place between the lowest 

conduction band and the top of the valence band at the Г point k=0 in the Brillouin 

zone. The lowest conduction band of zinc oxide is s-like state having Γ7 (C) 

symmetry; whereas the valence band is a six-fold that degenerates p-type and is split 

into three subbands due to spin-orbit interaction and crystal-field effect (Mang et al., 

1995).  The near band gap intrinsic absorption and emission spectrum is dominated 

by transitions involving these three valence bands and the conduction band. From the 

band diagram in Figure 2.5, the bottom 10 bands, which are located at -9eV, 

correspond to Zn 3d levels. The next 6 bands between -5eV to 0eV correspond to O 

2p bonding states. The first two conduction bands are strongly localised and 

correspond to empty Zn 3s levels. Experimentally, the ZnO valence band is splitted 

into three band states. The splitting of the valence band as shown in Figure 2.6 where 

A (heavy hole), B (light hole), and C (crystal-field split band) indicates spin-orbit 

and crystal-field splitting. A and C subbands are known to possess Γ7 symmetry; 

while the middle band, B, has Γ9 symmetry. 

 

 

 

 

 

 

 

  

 

Figure 2.6: Schematic diagram representing the crystal-field and spin-orbit 

splitting of the valence band of ZnO into 3 subband states A, B, 

and C at 4.2K [adopted from Jagadish & Pearton, 2006]. 
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2.4.4 Optical properties of ZnO 

 The optical properties of a semiconductor are dependent on both the intrinsic     

and the extrinsic defects in the crystal structure. The investigations of the optical 

properties of ZnO have a long history which started in the 1960s (Thomas, 1960) and 

recently it has become very attractive among wide band gap materials. The efficient 

radiative recombinations have made ZnO promising for applications in 

optoelectronics.  

The optical properties of ZnO, bulk and nanostructures, have been 

investigated extensively by luminescence techniques at low and room temperatures. 

It is well-known that at room temperature, the PL spectrum of ZnO typically consists 

of a UV emission band and a broad visible emission band (Vanheusden et al., 1996). 

The UV emission band is dominated by the free exciton (FE) emission. The broad 

emission band literally between 420 and 700 nm observed nearly in all the samples 

regardless of growth conditions is called deep level emission (DLE) band. The UV 

emission band is related to a near band-edge transition of ZnO, namely, the 

recombination of the free excitons. The deep level emission band has previously 

been attributed to several defects in the crystal structure such as O-vacancy (VO), Zn-

vacancy (VZn), O-interstitial (Oi), Zn-interstitial (Zni), and extrinsic impurities  

(Yamauchi et al., 2004; Yang et al., 2003). Figure 2.7 shows the schematic band 

diagram of some deep level emissions (DLE) in ZnO. 

According to Baruah & Dutta, (2009) and Chen et al., (2004) excitonic 

emissions have been observed through the PL spectra of ZnO nanorods. It was 

proved that if we confine the quantum size, then it can greatly enhance the exciton 

binding energy; furthermore an interesting observation is that the green emission 

intensity increases with a decrease in the diameter of the nanowires. This is because 




