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PENGADAPTASIAN DAN PENAMBAHBAIKAN
KAEDAH-KAEDAH PENGKOMPUTERAN HIBRID
UNTUK RAMALAN STRUKTUR SEKUNDER RNA

ABSTRAK

Struktur sekunder RNA berpseudoknot digunakan secara meluas bagi mengesan struktur

tertier RNA yang merupakan kunci untuk memahami fungsi-fungsi RNA dan pelbagai kegu-

naannya dalam penghasilan ubatan untuk penyakit viral. Kaedah-kaedah eksperimen untuk

menentukan struktur tertier RNA mengambil masa yang lama dan menjemukan. Oleh itu,

pendekatan pengkomputeran ramalan adalah diperlukan. Ramalan struktur sekunder RNA

berpseudoknot yang paling tepat dan stabil dari segi tenaga telah dibuktikan sebagai suatu

permasalahan NP-hard. Tesis ini membentangkan suatu kaedah hibrid untuk meramal struk-

tur sekunder RNA berpseudoknot dengan menggabungkan kaedah-kaedah pengesanan dengan

algoritma-algoritma pengaturcaraan dinamik. Kaedah hibrid ini ditambahbaik dengan meng-

gunakan teknik penaakulan berdasarkan kes. Tiga kaedah berbeza dicadangkan: (i) kaedah di-

inspirasi kecerdasan kawanan (HPRna); (ii) kaedah hibrid adaptif (MSeeker); dan (iii) kaedah

selari pantas (FGTSeeker), di mana setiap kaedah merupakan penambahbaikan kepada kaedah-

kaedah sebelumnya. Kaedah-kaedah ramalan yang dicadangkan telah dinilai terhadap kaedah-

kaedah ramalan sedia ada menggunakan struktur-struktur asli sebenar sebagai faktor utama

perbandingan. Keputusan menunjukkan bahawa ketiga-tiga kaedah yang dicadangkan mem-

peroleh struktur sekunder RNA berpseudoknot yang lebih tepat dengan prestasi yang lebih

baik, terutamanya dalam meramal turutan-turutan panjang.
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ADAPTING AND ENHANCING HYBRID
COMPUTATIONAL METHODS FOR RNA
SECONDARY STRUCTURE PREDICTION

ABSTRACT

The secondary structure of RNA with pseudoknots is widely utilized for tracing the RNA

tertiary structure, which is a key to understanding the functions of the RNAs and their use-

ful roles in developing drugs for viral diseases. Experimental methods for determining RNA

tertiary structure are time consuming and tedious. Therefore, predictive computational ap-

proaches are required. Predicting the most accurate and energy-stable pseudoknot RNA sec-

ondary structure has been proven to be an NP-hard problem. This thesis presents a hybrid

method to predict the RNA pseudoknot secondary structures by combining detection methods

with dynamic programming algorithms. This hybrid method is further enhanced by adopting

the case-based reasoning (CBR) technique. Three different methods are proposed, (i) Bio-

inspired swarm intelligence method (HPRna); (ii) Adaptive hybrid method (MSeeker); and (iii)

Fast parallel method (FGTSeeker), where each is an improvement to the previous method. The

proposed prediction methods were evaluated against other existing prediction methods using

the real native structures as the main factor of comparison. Results show that the three pro-

posed methods obtained more accurate pseudoknotted RNA secondary structures with better

performance, especially in predicting long sequences.
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CHAPTER 1

INTRODUCTION

1.1 Background

Bioinformatics is a new discipline resulting from the combination of two science fields: Com-

puter Science and Biology. This discipline was coined by Hogeweg (1978) and has been rapidly

growing in recent years. Nowadays, bioinformatics has become the foundation in ongoing

biomolecular research study (Counsell, 2003; Whitfield et al., 2006).

Basically, bioinformatics research assists biologists in expediting the biological processes

through the use of advanced computer algorithms to collect, accumulate, store, analyze and

integrate biological data and genetic macromolecules; such as deoxyribonucleic acid (DNA),

ribonucleic acid (RNA), or proteins (Nair, 2007). The DNA contains directions on how to build

other cell components, such as proteins and RNA molecules. The RNA on the other hand is a

type of nucleic acid that provides a mechanism to copy the genetic information from DNA for

protein synthesis (Brenner et al., 1961; Halfmann and Lindquist, 2010).

Numerous efforts have been undertaken by bioinformaticians to address the requirements

in many related problems such as biomolecule sequence alignment, gene therapy and finding,

gene expression control and drug design and development. Another crucial issue is the study

of inferring the various useful RNA functions, especially by predicting the structures of known

primary RNA sequences. It is worth stating that the RNA primary structures can easily be

determined by gene sequencing techniques in an experimental setting (Ellis et al., 1992). How-

ever, these primary structures cannot give sufficient information pertaining to the important
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RNA functions (Beebee and Rowe, 2008). According to (Blazewicz et al., 2005), the structure

with the most amount of information is the RNA tertiary structure. However, this structure can

be obtained and scrutinized by identifying the RNA secondary structure (Nebel, 2003; Tsang

and Wiese, 2010).

Consequently, determining the RNA secondary structure is deemed key towards building

the tertiary structure and to understand the various functions and roles of RNA molecules

(Tinoco et al., 1999). There are only small numbers of known RNA secondary structures

compared to the colossal amounts of discovered primary sequences. There is hence a great gap

in the research pertaining to the prediction of RNA structures from given primary sequences.

Furthermore, this opens the door for the use of computational methods as these methods can

potentially be faster compared to structure prediction via experimental methods (Tinoco et al.,

1999; Gee et al., 2006).

The field of RNA secondary structure prediction via computational methods has become

one of the most active research fields. Thus, this thesis will focus on computationally solv-

ing RNA secondary structure prediction, which has been proven to be an NP-hard problem

(Lyngso and Pedersen, 2000b; Akutsu, 2000). Recently, many predictive computational ap-

proaches have been suggested. Among them are dynamic programming (DP) algorithms such

as pknotsRG (Reeder and Giegerich, 2004). Heuristic-based methods were also proposed such

as HotKnots (Ren et al., 2005). Lately, heuristic-based methods have been successful in solv-

ing the RNA secondary structure prediction problems. Compared to DP methods, which suffer

from recursion and drawback that get more complexity when the input RNA is long, heuristic-

based methods are more advantageous since they perform prediction in many separate stages.

Each stage contains several steps where the input RNA sequence is divided into sub-elements

and parts. This results in a more efficient prediction process that executes more quickly with

less memory consumption (compared to the DP algorithms). Due to this, the work in this the-
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sis will focus on heuristic-based methods, which is further specified to deal with secondary

structure of RNA with pseudoknots class.

The proposed approach is basically a novel hybrid model, which combines a KnotSeeker

detection method with dynamic programming algorithm. This combination works on the basis

of global optimization, which is further enhanced by using the case-based reasoning (CBR)

technique as a local optimization method.

1.2 Motivations and Research Problems

The main motivation for building the RNA structure is to understand its various functions.

These functions are vital to know the RNA’s therapeutic applications such as designing an-

tiviral drugs for malignant diseases (cancer) and for AIDS (Anderson and Kedersha, 2009;

Karagiannis and El-Osta, 2005; Eguchi et al., 2009). The exponential growth rate of RNA pri-

mary sequence data has motivated bioinformatics researchers to propose efficient approaches

that predict the RNA secondary structure for the purpose of understanding their biological

functions (Mahen et al., 2010). However, there are many difficulties in determining the pseu-

doknotted RNA secondary structures. This is worsened by the fact that the prediction process

is proven to be an NP-hard problem (Lyngso and Pedersen, 2000b; Akutsu, 2000). As a result,

there is a big gap between the colossal number of known RNA sequences and the quantity of

the known RNA structures. Figure 1.11 illustrates the growth of the biological data in GenBank

(Benson et al., 2008), where the zoomed-in sub-illustration depicts the growth of experimental

structures showing the different growth rate between the huge number of primary sequences

and the limited number of known structures.

The two best known biological experimental methods for determining RNA tertiary struc-

1Statistical data from: htt p : //www.ddb j.nig.ac. jp/documents− e.html
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Figure 1.1: Exponential growth of biological data in GenBank and the growth of the known
structures (Benson et al., 2008; Golding et al., 2002).

ture are nuclear magnetic resonance (NMR) and X-ray crystallography (XRC), which are

shown in Figures 1.2a and b, (Wang et al., 2010; Al-Khatib et al., 2010; Kasprzak et al., 2010).

These purification methods however, require lengthy experimental time and special equipments

(Cheong et al., 2004; Al-Khatib et al., 2010). Specifically, biological researchers who use the

X-ray method (Figure 1.2a) face some serious constraints. For this method to be effective,

sufficient RNA pure crystal is required in the diffraction process. However, not all RNA or-

ganic molecules can be put in crystal easily. Furthermore, the X-ray beam diffracts when it

hits the electrons around the RNA nuclei. This gives the electrons map of the target RNA in-

stead of the real structure and causes the final RNA structure prediction to be less accurate. In

the NMR physical method, the resonation of the RNA nuclei is done by bombarding the fixed

RNA molecule with radio waves from thousands of different angles, which is an incredibly

time-consuming process (see Figure 1.2b).

According to the above explanation, many factors need to be considered when running

biological experimental methods. In order to decrease the difficulty in performing such ex-

perimental methods, the tertiary structure of RNA molecules can also be scrutinized and ob-
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Figure 1.2: Experimental methods for RNA tertiary structures determination.

tained much faster by predicting their secondary structures (Bindewald et al., 2008). Therefore,

bioinformatics-based computational methods for predicting RNA secondary structure are pre-

ferred (Gee et al., 2006).

Predicting the RNA structure by computational methods is faster than determining its struc-

ture by experimental methods (Tinoco et al., 1999; Tsang and Wiese, 2010). Generally, the

RNA secondary structure is formed quickly. Figure 1.3 shows an example of the computa-

tional methods and their tangible contributions to predicting the secondary structure, which

assists biologists in scrutinizing the RNA tertiary structure. The most accurate method for

predicting the RNA secondary structure is based on the minimum free energy (MFE) model,

which is the DP algorithm Mfold (Zuker and Stiegler, 1981; Zuker, 2003).

Although, the pseudoknot RNA secondary structure is difficult to predict and has been

proven to be an NP-hard problem (Lyngso and Pedersen, 2000b), it is still important to be
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Figure 1.3: RNA structures (primary sequence, secondary structure with pseudoknots, and
tertiary structure) of the human telomerase RNA with pseudoknots (Reipa et al., 2007), which
includes a wild-type and DKC-mutated pseudoknot structure. The first structure was predicted
by HotKnots (Ren et al., 2005) and its image was generated using jViz.Rna (Wiese et al., 2005).
The second image is adapted from (Yingling and Shapiro, 2007).

solved computationally. Many DP methods have been proposed to solve the secondary struc-

ture of RNA with pseudoknots type such as pknotsRG, which requires O(n4) for run-time

and O(n2) for space complexity (Reeder and Giegerich, 2004). The DP algorithms give more

accurate RNA structural results globally optimizing the predictions of the secondary struc-

ture of small RNA input sequences. Particularly, the DP algorithms for pseudoknotted RNA

prediction have some drawbacks including recursive difficulties when the length of the input

RNA sequences become long. This recursive nature of the DP functional algorithm raises

its complexity exponentially. Therefore, the final results of the DP algorithms in predicting

the secondary structure of RNA with pseudoknots are less accurate for long RNA sequences.

Thus, the DP algorithms are not considered an entirely accurate solution for long RNA primary

sequences (Sperschneider and Datta, 2008).

The most prominent methods for solving the difficult problem of secondary structure pre-

diction of RNA with pseudoknots have been based on heuristics or meta-heuristics approaches,
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such as HotKnots (Ren et al., 2005), FlexStem (Chen et al., 2008) and DotKnot (Sperschneider

and Datta, 2010). The hybrid computational methods, which can be considered as subcategory

of the metaheuristic-based methods, provide opportunity to tackle the prediction problem of

pseudoknotted RNA secondary structure. These hybrid approaches present balance between

the global optimization that combines the strength of detection methods with thermodynamic

algorithms, and is further hybridized with CBR as a local optimization method utilizing the

power of the similarity-based technique.

CBR is an Artificial Intelligence (AI) methodology that has shown to be successful in

problem solving as a local search-based function by using the Nearest Neighbour algorithm

(Aamodt and Plaza, 1994; Watson, 1999). Existing state-of-the-art methods have not yet inves-

tigated the CBR model for predicting the pseudoknotted RNA secondary structure. The focus

of this thesis is to explore and adapt the CBR method towards the development of a new RNA

prediction method. The main advantage of the proposed method is to enhance efficiency, per-

formance and accuracy of the final RNA structural results. This research provides a new means

for predicting the secondary structure of RNA with pseudoknots in bioinformatics domain.

1.3 Research Questions

This research aims to address and answer the following questions:

1. How can a hybrid algorithm that combines detection and dynamic programming meth-

ods be used as a new approach to tackle the secondary structure problem of RNA with

pseudoknots?

2. How can the CBR search-based methodology be utilized to enhance the final RNA sec-

ondary structural outputs?
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3. Can the time to predict accurate secondary structure for long RNA molecules with pseu-

doknots be reduced by using the parallel methods?

1.4 Research Objectives

The main objective of this dissertation is not merely to propose efficient prediction algorithms

for solving pseudoknotted RNA secondary structure prediction problem, but to show that these

algorithms can outperform other RNA prediction methods that have already been proposed.

Consequently, the new proposed RNA prediction methods are suitably customized to handle

the structural problem of long RNA sequences in minimal execution time and with improved

accuracy. The objectives of this dissertation are therefore, as follows:

1. To predict the pseudoknotted RNA secondary structure sequences by adapting a bio-

inspired swarm intelligence prediction algorithm;

2. To improve and enhance the accuracy of prediction results for RNA secondary structures

through the development of a hybrid prediction method; and

3. To reduce the execution time via utilizing parallel-distributed programming models,

while also improving the accuracy of the final predicted RNA structure.

1.5 Research Scope

The scope of this research covers the RNA structure prediction problem. RNA structure has

four structural levels: primary, secondary, tertiary and quaternary structure. This work focuses

on the secondary structure of RNA with pseudoknots. However, there are several groups of

computational methods to predict the pseudoknotted RNA secondary structure. Accordingly,

this thesis considers the ab initio RNA method to predict the secondary structure of RNA with
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Figure 1.4: Scope and general methodology of the research overview.

pseudoknots from a given single sequence. Figure 1.4a, represents the scope of this research

that focuses on predicting secondary structure of RNA with pseudoknots. Meanwhile, the

ab initio RNA structure prediction methods comprise dynamic programming methods, meta-

heuristic methods and heuristic-based methods. As illustrated in Figure 1.4b, the research

scope of this work concentrates on proposing a new hybrid method that belongs to the group of

heuristic-based methods. Particularly, it combines the detection method, CBR technique and

thermodynamic algorithm together in this hybrid method, to obtain the final RNA prediction

structure.

1.6 Overview of Research Methodology

As explained in previous sections, the main objective of this research is to investigate a hy-

brid method to predict the secondary structure of RNA with pseudoknots type from a given

primary sequence. This section provides an overview of the research methodology used for

predicting the secondary structure of RNA with pseudoknots. While the details of this method-

ology are fully described in Chapter 4. This methodology is presented in order to answer the

aforementioned research questions and justifying the research objectives, respectively:
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1. For the first objective, the KnotSeeker RNA detection method and UNAFold DP al-

gorithm, are hybridized into HPRna method. This new hybrid method is inspired by

swarm-intelligence social behavioral model of honey-bees during nectar collection and

honey production (Lu and Zhou, 2008). This research adapts a new bee-inspired algo-

rithm, which is HPRna algorithm, to work as a global optimization model. The advan-

tage of this new bee-inspired algorithm is the adaptation of CBR, which is a prominent

AI technique with a history of success in problem solving. The CBR adaptation is meant

to enhance the quality of RNA structural results, and to work as a local optimization

technique to achieve the final results.

2. For the second objective, two algorithms KnotSeeker and Mfold are combined. This

combination is further integrated with CBR to a new predictor termed MSeeker. The

MSeeker uses the initial results of RNA pseudoknot elements from the detection algo-

rithm KnotSeeker (Sperschneider and Datta, 2008). Furthermore, a new filtering function

is presented to remove the undesirable components that are discovered in KnotSeekers’

initial results. Then, the adapted CBR system is used as a local optimization technique

for reducing the false positive cases that are discovered in detecting some of the pseu-

doknot elements. After that, Mfold, which is a more efficient algorithm, predicts the

structure of pseudoknot-free parts. Finally, a re-joining function produces the entire pre-

dicted target, which is the pseudoknots secondary structure of the input RNA primary

sequence.

3. For the final objective, a new version of the parallel-distributed processing framework

is proposed to enhance the speed of the hybrid algorithm, which is termed as FGT-

Seeker. This parallel version improves the performance by reducing the time of pre-

dicting secondary structures for long RNA input sequences. Particularly, this method

combines KnotSeeker and GTFold for fast prediction, which works as a global opti-
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mization method. This combination is further hybridized with a parallel version of the

CBR search-based technique, which works as a local optimization model to enhance the

prediction accuracy. Then, this combined parallel method reduce the execution time of

prediction process. Its accuracy is further enhanced by adapting more efficient MFE

model for pseudoknot-free parts.

In order to evaluate the performance and efficiency of the proposed RNA prediction meth-

ods, a series of comprehensive experiments were carried out against other state-of-the-art RNA

prediction methods. Figure 1.5 shows the main stages of the research methodology of this the-

sis, which can be summarized as follows:

Stage 1: Initially, a broad evaluation study for the prominent RNA secondary structural perdi-

tion methods was carried out, whose details are covered in Chapters 2 and 3 (i.e. Background

and Related Work).

Three versions of hybrid method.

Evaluation of the RNA Secondary 

Structural Prediction Methods

Hybrid Method for Solving Secondary Structure Prediction 

Problem of RNA with Pseudoknots

MSeeker MethodHPRna Method
Parallel FGTSeeker 

Method

Comparative Evaluation 
&

Results Analysis

Stage 1:
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ag

e
 2

:
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Figure 1.5: Main stages of the research methodology.
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Stage 2: In this stage, CBR was adapted from AI and combined with hybrid algorithms to form

a new method for predicting secondary structure of RNA with pseudoknots. However, the ob-

tained results from this stage show potential for improvement in order to enhance the accuracy

and quality of the algorithm. This improvement is fully explained in the next stage. There-

after, three different hybrid methods HPRna, MSeeker and FGTSeeker have been sequentially

proposed, as depicted at Figure 1.5-Points (a), (b) and (c), respectively. All these methods had

a similar objective in mind, which is to solve the secondary structure prediction problem of

RNA with pseudoknots. Each new method is an enhancement of the previous one, which is

supposed to report improved prediction accuracy. The dotted arrows in Figure 1.5 between

the three hybrid methods, denote that the methods were sequentially proposed and each new

method is an improvement of the previous one. Furthermore, each new method overcomes

the weaknesses of the previous one and produces more accurate RNA structural results. This

means that the proposed hybrid methods are developed sequentially, leading to the fulfillment

of the all research objectives of this thesis.

Stage 3: The final stage provides a comparative performance evaluation of the three proposed

methods in terms of accuracy and efficiency. Improved performances have been obtained where

speed up of the computational time for predicting the structure of long RNA sequences was re-

duced by using fast parallel implementations. Simultaneously, the quality of the final RNA

structural results was still impressive.

1.7 Main Contributions

The research in this thesis is inspired by an idea to adapt the CBR search-based methodology

for more accurate predictions of the secondary structure of RNA with pseudoknots. The pri-

mary topic of this thesis is thus, to present a prediction method for solving the pseudoknotted
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RNA secondary structure prediction problem. The research offers contributions in the domain

of RNA secondary structure prediction; which can be explained as follows:

1. An adapted CBR method with a new hybrid algorithm to predict the secondary structure

of RNA with pseudoknots. This adaptation produces an efficient method by adapting

CBR to enhance the secondary structure prediction of RNA with pseudoknots;

2. Three different hybrid RNA prediction methods have been proposed. These three vari-

ants were sequentially proposed, to overcome the weaknesses in each previous version.

Note that these methods are the three major contributions of this thesis. Each of the

contributions can be summarized as follows:

(a) A novel algorithm based on the bio-inspired swarm intelligence (SI) algorithm with

CBR technique, termed as the HPRna predictor. This method can predict the sec-

ondary structure of RNA with pseudoknots.

(b) A new hybrid algorithm with CBR technique called MSeeker is proposed. This

method combines KnotSeeker with Mfold, which predict more accurate pseudo-

knotted RNA structures.

(c) A fast parallel-distributed algorithm termed FGTSeeker. This method has acceler-

ated the prediction capabilities through the utilization of a new parallel thermody-

namic GTFold algorithm. Furthermore, the adapted CBR search-based technique is

presented in a new parallel model. FGTSeeker enhances the accuracy of the RNA

structures with better performance.

1.8 Organization of Thesis

This thesis is divided into eight chapters and organized as follows. Chapter 2 explains the back-

ground of RNA molecules, RNA structures and RNA secondary structure prediction methods.
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The background of the CBR method and bee algorithms are also presented in this chapter.

Chapter 3 is divided into two main parts, where part-1 includes a comprehensive review of

the current and related works in the domain of RNA secondary structure prediction. It provides

a comprehensive discussion of the various methods that have been presented for predicting

the secondary structure of RNA with pseudoknots. Part-2 discusses the different methods that

have been proposed by imitating the bee colony algorithms. In addition, this part discusses the

application of CBR as a search-based method in problem solving.

Chapter 4 describes the main methodology of this research. It also presents a theoreti-

cal analysis of the procedures that were adapted. Chapters 5, 6 and 7 introduce the HPRna,

MSeeker and FGTSeeker, respectively, which are the three methods proposed in this thesis.

Note that each chapter provides a full description of the proposed method and discusses the

achieved results to the other state-of-the-art methods. Finally, Chapter 8 provides concluding

remarks as well as potential future directions of this work.
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CHAPTER 2

BACKGROUND

2.1 Introduction

Bioinformatics is a discipline arising from the combination of computer science and biology

(Hogeweg, 1978). Research in this area is rapidly gaining ground, especially with the utiliza-

tion of advanced computer algorithms, databases, statistical tools and computational theorem,

to solve problems relating to management, analysis and retrieval of biological data. Results

from Bioinformatics research can be used for crucial practical applications such as the devel-

opment of therapeutic drugs. Understanding intrinsic biological processes is very important in

Bioinformatics research. Computer scientists in particular, need to know important biological

terms and concepts. This is important so that proper theoretical computing applications are

consequently utilized to perform the proper biological research. In this chapter, the author’s

intention is to provide the fundamental background and understanding pertaining to biological

terms and concepts. Based on the thesis scope mentioned in Section 1.5, the topics being cov-

ered will focus on explaining the RNA (Ribonucleic Acid), RNA structure and RNA structure

prediction.

This chapter is divided into three parts. The first part begins with defining various bio-

logical terms such as RNA, DNA and protein. Also included are explanations regarding the

RNA primary sequence and the various levels of RNA structures. The second part discusses

RNA secondary structure prediction and details the major types of prediction methods. The

experimental and computational prediction methods are also covered, which are fundamentals
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for building the RNA structures. This part also explains the prediction methods for pseudo-

knotted RNAs. Finally, the third part presents a background of bio-inspired swarm intelligence

(SI), which will be employed in this thesis for solving RNA secondary structure prediction. In

addition, an overview of adapting the case-based reasoning (CBR) method to enhance obtained

structural results of pseudoknotted RNAs is provided.

2.2 Basic Biological Data Types

GenBank is a public database housing a myriad of biological data, including nucleotide se-

quences. This database is constructed mainly via submissions from large-scale projects, where

to date, contains data for more than 260,000 known organisms (Benson et al., 2008). The pri-

mary sequence (or primary structure) is the main fundamental type of biological data. It is also

the easiest to be determined through laboratory experimental methods such as gene sequencing

(Ellis et al., 1992; Gray et al., 2005; Bishop et al., 2001). Such primary structures however,

do not contain sufficient information about the various roles and the different functions of the

biomolecules (i.e RNA, DNA & protein) (Beebee and Rowe, 2008). The secondary and ter-

tiary structures on the other hand contain more information which, can be used to understand

the important functions of the RNA biomolecules.

Protein, RNA and DNA are the three main categories of the biological data, which are

mostly available in the primary sequences. Protein is an essential component for the living

organisms, and is basically a large molecular polymer consisting of amino acid chains linked

together by peptide bonds, forming the primary protein sequence. RNA is a single-stranded

nucleic acid that carries genetic information for the process of proteins synthesis. DNA on

the other hand is a double-stranded nucleic acid that includes genetic instructions for the con-

struction of other components. This section provides detailed discussions of the RNA and

RNA structural levels since these are the primary focus of this research. These discussions will
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small interference RNA (siRNA)-1.ppt

(a) An efficient delivery of siRNA into primary cells
to treat cancer.

http://pubs.acs.org/doi/full/10.1021/mp060039w

small interference RNA (siRNA)-1.ppt

(b) Targeted delivery of siRNA into Lung cancer
cells.

Figure 2.1: A small interference RNA (siRNA) molecule is used to treat and manage cancer
disease, adapted from Li and Huang (2006) and Eguchi et al. (2009).

mainly concentrate on the prediction of RNA structures from a given primary sequence.

2.2.1 RNA

Ribonucleic acid (RNA) is one of two nucleic acids that plays a variety of roles in living cells.

One type of RNA is the messenger RNA (mRNA), which acts as an intermediary to carry

genetic information from DNA for the purpose of protein synthesis (Wang and Shi, 2009).

Another type is the small interference RNA (siRNA). The siRNA is delivered into the primary

cells by an efficient RNA interference (RNAi) system (Figure 2.1) to combat against terminal

malignant diseases such as cancer (Li and Huang, 2006; Eguchi et al., 2009).

Recent biological studies have shown that, besides just carrying genetic information for

protein synthesis, RNA molecules are also responsible for other useful tasks. These are such

as catalyzing biological activities, controlling gene expression, and ribosomal frameshifting

(Brierley et al., 2007; Bindewald et al., 2010).

It is important to understand that RNA can mainly be classified into two structural shapes:

pseudoknot- f ree and pseudoknots. The pseudoknot-free RNA (Figure 2.2a) has the shape of

a non-crossing RNA structure motif, which is also known as a stem-loop. Pseudoknots RNA
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(a) RNA with pseudoknot-free structural shape. (b) RNA with pseudoknots structural shape.

Figure 2.2: RNA molecules with two main structural shapes (pseudoknot- f ree and
pseudoknots), adapted from Rivas and Eddy (1999).

(Figure 2.2b) on the other hand has a crossing RNA shape structure, which was discovered by

Pleij et al. (1985). The latter RNA has many useful functions where the study of these functions

can help in the development and design of antiviral drugs (Andronescu et al., 2010).

RNA is a single-stranded sequence comprising of nucleotides with one of four nucleobases:

adenine (A), cytosine (C), guanine (G) and uracil (U). Both DNA and RNA are nucleic acids

located in living cells, however with minor differences. For example, RNA is a single-stranded

sequence of nucleotide units, whereas DNA is a double-stranded helix of nucleotides that has

a thymine (T) nucleobase instead of uracil (U) in RNA. These variations lead to different be-

havioral roles of RNA and DNA inside living organisms. For instance, DNA builds and stores

genetic information, whereas RNA carries this genetic information for protein synthesis. The

major differences between RNA and DNA are listed in Table 2.1. The Figure 2.31 further

demonstrates the basic structures of RNA and DNA, which also illustrates their shapes based

on chemical components.

2.2.2 Levels of RNA Structures

Recall that RNA is a single-stranded sequence, which comprises four nucleobases {A, C, G and

U}. The RNA structure molecules are classified into the following four hierarchical structural

1adapted from htt p : //www.genome.gov/Pages/Hyperion/DIR/Glossary/Illustration/rna.shtml
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Table 2.1: Basic different variations between the nucleic acids (RNA and DNA) (Osuri, 2003)

RNA DNA
Single-stranded sequence Double-stranded sequence as a helix
Uracil base instead of thymine Thymine base instead of uracil
Ribose as a sugar group Deoxyribose as a sugar group
Uses protein-encoding information Maintains protein-encoding information
Carries genetic information Builds and stores genetic information

 

Figure 2.3: RNA and DNA chemical structures.

levels: primary, secondary, tertiary and quaternary (Boehringer et al., 2005). These are

illustrated in Figure 2.4 and can be described as follows:

1. RNA primary structure: This level denotes a linear sequence of RNA bases or nu-

cleobases. It is the basic structural level and they can be easily obtained through the

laboratory gene sequencing (Azad and Deacon, 1980). However, the primary structure

does not contain much information needed to understand the important roles of the RNA

molecule (Kochanek et al., 1996; Beebee and Rowe, 2008).
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(a) Escherichia coli SRP RNA molecule.
 

(b) Hepatitis C virus (HCV) RNA molecule.

Figure 2.4: Illustrative examples representing the four different levels of RNA structures
(primary, secondary, tertiary and quaternary). Some parts are adapted from Schmitz et al.
(1999) and Boehringer et al. (2005).

2. RNA secondary structure: This level refers to the two-dimensional (2D) folding struc-

ture of the RNA molecule, which occurs when two non-neighboring nucleotides connect

through the base pairing of hydrogen bonds (Bauer and Runte, 2000; Al-Khatib et al.,

2009). The folding structure shapes the secondary structure of the RNA motif. The

bonding is possible based on the following rules: (i) the two Watson-Crick pairs, {C-G}

and {A-U}, are the canonical and most stable base pairs (Parisien and Major, 2008); and

(ii) the Wobble pair {G-U}, which is a canonical, non-Watson-Crick base pair. Base

pairs other than the three canonical pairs {C-G},{A-U} and {G-U}, and their mirrors,

are conventionally not allowed (Leontis et al., 2002). An accurate RNA secondary struc-

ture is useful as it allows the scrutiny of the RNA’s biological functions (Bindewald and

Shapiro, 2006). Furthermore, reliable secondary structures can lead to more accurate
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tracings of the RNA molecule tertiary structure (Capriotti and Marti-Renom, 2010).

3. RNA tertiary structure: This presents the precise three-dimensional (3D) structure,

within which, elucidation of the 3D space location of the RNA atoms can be made pos-

sible. The RNA tertiary structure describes the global folding of RNA and considers the

geometrical and steric limitations to the arrangement of atoms in the RNA molecules.

The tertiary structure is important for understanding the functions of RNA molecules,

which in turn can be used for the development of therapeutic drugs.

4. RNA quaternary structure: This structure refers to the interactions among sub-elements

of RNA that consists of the separate units of the molecule. However, this quaternary

structure is only used for establishing structural communication between several sepa-

rate units of sub-elements of RNA like ribosome or spliceosome (Ban et al., 2000).

2.3 RNA Structure Prediction

Determining biomolecular structures is important in order to know biomolecules’ crucial func-

tions and myriad roles (Crick, 1970; Anderson and Kedersha, 2009). These structures can be

further utilized by biologists and biomedical researchers to develop drugs for diseases (Dass

et al., 2008). In general, determining RNA structures can be done in two ways: (i) Biological

experimental purification methods, to determine the RNA tertiary structure, or (ii) Computa-

tional methods to predict the RNA secondary structure from a given primary sequence (which

in turn can be used to find the tertiary structure).

2.3.1 Experimental Methods for Determining RNA Structure

X-ray crystallography and NMR are the two well known experimental methods used by bi-

ologists to determine the 3D structures of RNA molecules. From a biological context, these
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experimental or biophysical methods are the prominent methods to determine the RNA tertiary

structure. However, these methods pose some disadvantages where they consume a consider-

able amount of time and require special equipments and instrumentations. Due to potentially

huge amounts of biological data that need to be processed (i.e. in GenBank), these experimen-

tation methods are inefficient. The following provides comprehensive descriptions of these

experimental methods.

2.3.1(a) X-ray Crystallography

X-ray crystallography (XRC) is a diffraction method used to determine the tertiary structures of

RNA molecules. During the process, a pure crystal from a single RNA molecule is bombarded

with X-ray beams, where the beams are then diffracted to specific locations on a collecting

film, as shown in Figure 2.5. The crystallographer then uses the angles and intensities of the

diffracted beams to build the 3D depiction as an electron map. Several variables are considered

to determine the finalized 3D structure such as the electron density, atom positions and the

chemical bonds.

 

Figure 2.5: Layout of X-ray crystallography workflow as a diffraction method for determining
the RNA tertiary structure. Some parts are adapted from Jiang et al. (2008) and Al-Khatib et al.
(2010).
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The XRC method is the most popular method to determine the RNA tertiary structure

(Westhof and Auffinger, 2000). Figure 2.6a2 shows approximately 62,750 tertiary structures of

molecules determined by XRC from the actual 72,104 structures (as indicated in Figure 2.6b 3)

(Edwards et al., 2009). But the crystallization process of XRC has many limitations that make

it a time-consuming, tedious and sometimes practically difficult process. The main constraints

are: (i) It is difficult to obtain a pure RNA crystal, and (ii) Large RNA molecules cannot be

easily crystallized.

There are many variants of the XRC method. The single-crystal X-ray diffraction method is

the most accurate, as shown in Figure 2.5 (Jiang et al., 2008). The success of using the XRC is

undeniable where approximately 62,750 tertiary structures from the GenBank were able to be

identified (Figure 2.6a). However, there are more than 130-million primary sequence molecules

(entries) in the GenBank database (Figure 2.74), from which the tertiary structures still needs to

be determined. It is unfeasible for the XRC to cover this gap due to their mentioned limitations.

This therefore necessitates the need for alternative methods.

2.3.1(b) NMR Spectroscopy Experimental Method

The nuclear magnetic resonance (NMR) is an alternative method to potentially circumvent

the issues faced by XRC. NMR is a powerful experimental method used for determining the

tertiary structure of RNA and other biomolecules (Fuertig et al., 2003). This method works

on the basic principle that each nucleus in the RNA atoms naturally re-emits absorbed energy

from when the RNA sample is fixed and immersed by a magnetic field in nuclear spin process

(Figure 2.8). Radio waves from different angles are used to cause resonation of the RNA nuclei.

This response is then exploited to identify and build the tertiary structure of RNA molecules

by recording the resonation of the nuclei (Kolk et al., 1998).
2adapted from htt p : //www.rcsb.org/pdb/statistics/contentGrowthChart.explMethod− xray&seqid = 100
3adapted from htt p : //www.rcsb.org/pdb/statistics/contentGrowthChart.do?content = total&seqid = 100
4adapted from htt p : //www.ddb j.nig.ac. jp/images/breakdownstats/DBGrowth− e.gi f
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(a) Structures determined by X-ray crystallography method.

(b) Structures determined by all experimental methods.

Figure 2.6: Total number of tertiary structures determined by (a) X-ray crystallography method,
(b) All experimental methods. (PDB, March 2011 release).
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