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REKOMBINAN PROTEASE SERINA NS3 DARIPADA VIRUS DENGGI 2 

SEBAGAI PENYARING UNTUK MOLEKUL KECIL 

 

ABSTRAK 

 

Jangkitan denggi adalah muncul semula sebagai satu penyakit utama dunia 

dan diklasifikasikan sebagai patogen utama kategori A. Setiap tahun, dianggarkan 

50-100 juta manusia dijangkiti virus denggi dan dianggap sebagai penyebab kepada 

salah satu penyakit virus bawaan arthropoda paling penting dari segi kematian dan 

kemorbidan manusia. Penjangkitan virus berlaku melalui gigitan nyamuk Aedes 

aegypti dan separuh daripada populasi dunia berisiko kepada jangkitan. Sehingga 

sekarang masih tiada lagi drug antivirus atau vaksin diluluskan yang berkesan untuk 

menetang virus denggi. Fokus tesis ini adalah untuk menggabungkan diantara kuasa 

pengkomputeran berprestasi tinggi dengan eksperimen makmal dimana rekombinan 

protease serina NS3 daripada virus denggi 2 sebagai penyaring molekul kecil 

antivirus yang boleh digunakan untuk menghalang atau merawat jangkitan virus 

denggi. 

Kerjasama dengan Dr. Irene Newhouse, Advance Studies for Genomics, 

Proteomics and Bioinformatics (ASGPB), University of Hawaii, model molekul dan 

penyaringan secara in silico  telah dijalankan keatas perpustakaan sebatian molekul 

kecil daripada pangkalan data National Cancer Institute (NCI) dan ZINC untuk 

sebatian kecil yang mengedok ke dalam tapak ikatan protease DENV2 NS2B-NS3. 

Daripada himpunan calon-calon yang menunjukkan suaian terbaik (53 perencat-

perencat molekul kecil yang berpotensi), 4 sebatian larut air yang menunjukkan skor 

tertinggi, boleh didapati secara komersial telah dipilih untuk penilaian secara in vitro.  



xvii 

Gen protease serina NS2B-NS3 daripada virus denggi serotip 2 telah diklon 

dan diekspresi dalam E. coli sebagai protein rekombinan berpenanda heksahistidina. 

Protease NS2B-NS3 telah ditulen menggunakan kromatografi affinity dan penurasan 

gel. Asai in vitro menunjukkan aktiviti protease terhadap substrat peptida fluorogenik 

yang mengandungi dua residual berbes. Kesemua 4 sebatian larut air yang 

menunjukkan skor tertinggi diuji dan mempamerkan aktiviti perencatan secara in 

vitro terhadap rekombinan protease serina NS2B-NS3. Sebatian 4 didapati memberi 

kesan perencatan paling aktif dimana kadar perencatan sebanyak 64% pada 

kepekatan 100 µM.   

Sebagai kesimpulan, kajian tesis ini membuktikan bahawa rekombinan 

protease serina NS3 daripada virus denggi 2 boleh digunakan sebagai penyaring 

molekul kecil antivirus secara in silico dan in vitro. Sebatian 4 adalah penemuan 

berharapan dan  berpotensi untuk dibangunkan sebagai drug anti-denggi. 
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RECOMBINANT NS3 SERINE PROTEASE FROM DENGUE VIRUS 2 AS A 

SCREEN FOR SMALL MOLECULES 

 

ABSTRACT 

 

Dengue infection is re-emerging as a major global disease and is classified as 

a Category A priority pathogen. Dengue viruses are estimated to infect 50-100 

million people annually and are considered to cause one of the most important 

arthropod-borne viral diseases in terms of human morbidity and mortality. Virus 

transmission occurs through the bite of the Aedes aegypti mosquito and half the 

world’s population is at risk for infection. There is presently no approved vaccine or 

antiviral drug that is effective against dengue viruses. The focus of this thesis is to 

combine the power of high performance computing with wet lab experiments for the 

recombinant NS3 serine protease from dengue virus type 2 as a screen for antiviral 

small molecules that can be used either to prevent or treat dengue virus infections.  

In collaboration with Dr. Irene Newhouse, Advance Studies for Genomics, 

Proteomics and Bioinformatics (ASGPB), University of Hawaii,  molecular 

modelling and in silico screening of small molecule compound libraries from the 

National Cancer Institute (NCI) and ZINC databases that dock into the DENV2 

NS2B-NS3 protease binding site was carried out. From the pool of best-fit candidates 

(53 potential small molecule inhibitors), the 4 high-scoring water-soluble, 

commercially available compounds were selected for in vitro assessment.  

The NS2B-NS3 serine protease gene from dengue virus serotype 2 was 

cloned and expressed in E. coli as a recombinant hexahistidine tagged protein. The 

NS2B-NS3 protease was purified using affinity and gel filtration chromatography. In 
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vitro assay revealed protease activity toward a fluorogenic peptide substrate 

containing two basic amino acid residues. All 4 high-scoring water-soluble 

compounds were tested and exhibited in vitro inhibition activity on the recombinant 

NS2B-NS3 serine protease. Compound 4 was found to be most active inhibitor with 

64% inhibition at 100 M concentration. 

In summary, this thesis project has established that the purified recombinant 

NS3 serine protease from dengue virus type 2 can be used to screen antiviral small 

molecules in silico and in vitro. Compound 4 is a promising finding for further 

development as an anti-dengue drug. 
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CHAPTER 1 

Introduction 

 

1.1 Dengue virus infection 

 

Dengue virus (DENV) is the most important human viral disease transmitted 

by an arthropod vector, with an estimated annual infection rate in excess of 50 

million. The majority of infections are silent with no obvious clinical symptoms. 

Nevertheless, a significant minority of infected individuals develop a mild febrile 

illness, dengue fever (DF), or even life-threatening dengue hemorrhagic fever 

(DHF)/dengue shock syndrome (DSS) which has an increasing incidence in tropical 

and subtropical countries.  

The first reported epidemics of DF occurred in 1779-1780 in Asia, Africa, 

and North America. During that time, DF was considered a benign, nonfatal disease 

of visitors to the tropics. The disease was confined to relatively small geographic 

regions and the four different serotypes of DENV remained isolated. On the contrary, 

the global prevalence of DENV is now increasing dramatically and DENV epidemics 

caused by multiple serotypes (hyperendemicity) are more frequent (Gubler, 1998; 

Rigau-Perez et al., 1998; Gubler, 2002). 

 The disease is caused by four antigenically related but distinct serotypes of 

DENV: DENV1, DENV2, DENV3, and DENV4. Despite being an age-old disease, 

there is no effective treatment for DENV infection. Researchers have endeavored to 

develop a vaccine for many years with very little success. The reason is that an 

effective vaccine would have to protect against all four serotypes of DENV. 
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Considerable efforts are now contributed to the development of antiviral compounds 

(Sampath and Padmanabhan, 2009).  

 Efficient and accurate diagnosis of DENV is of primary importance for 

clinical care. It includes epidemiological consideration (season of the year, travel 

history), physical examination (high body temperature, blood pressure, evidence of 

bleeding in the skin or other sites, hydration status, evidence of increased vascular 

permeability, and tourniquet test), and clinical laboratory tests (virus isolation, 

nucleic acid detection, detection of antigens, serological tests, and haematological 

tests) (WHO, 2009). 

 

1.2 Transmission, prevalence, and consequences 

 

 Mosquitoes, humans, and lower primates such as chimpanzees, gibbons, and 

macaques are all considered to be the natural hosts for DENV infections. However, 

humans are the main amplifying host of the virus (Henchal and Putnak, 1990). 

DENV is transmitted to humans through the bite of infected female mosquitoes, 

either Aedes aegypti or Aedes albopitus, which can usually be found near or in 

human dwellings. The species is day-active, with most biting activity occurring in 

the early morning or late afternoon.  

The transmission cycle of DENV by the mosquito begins with a DENV-

infected person (Gubler, 1998). The person will have virus circulating in the blood 

for approximately 4 to 7 days. This beginning state is called viremia. During this 

period, if other uninfected female mosquitoes bite the ill person, those mosquitoes 

may become infected and becomes infective after an obligatory extrinsic incubation 

period of 10 to 12 days. After the mosquito becomes infective, it may transmit 



3 

DENV by taking a blood meal, or by simply probing the skin of a susceptible person 

(Rigau-Perez et al., 1998). Symptoms that are caused by DENV infection may last 3 

to 10 days after the onset of symptoms as illustrated in Figure 1.1. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.1 Transmission of DENV by Aedes aegypti and/or Aedes albopitus (WHO 2009. 
Dengue: guidelines for diagnosis, treatment, prevention and control -- New edition. Geneva, 
World Health Organization). 
 

Currently, 2.5 billion people are at risk for DENV infection. DENV is 

endemic in more than 100 countries in Africa, the Americas, Southeast Asia, and the 

Western Pacific as illustrated in Figure 1.2. The most seriously affected areas are 

Southeast Asia and the Western Pacific region. DENV epidemics occurred 

sporadically in the Americas from the 18th to the mid-20th century. DF has become an 

endemic disease since the 1970s. In Southeast Asia, DHF has been recognized for 

approximately 40 years. Most of the cases are reported from Thailand, Indonesia, and 

Vietnam.  
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Figure 1.2 Approximate distributions of dengue cases in 2008. Cases were largely 
confined to subtropical and tropical regions of the world (Tomlinson, S. M., Malmstrom, R. 
D. & Watowich, S. J. 2009b. New approaches to structure-based discovery of dengue 
protease inhibitors. Infect. Disord. Drug Targets, 9, 327-43. Figure 2, page 328). 

 

The global prevalence of DENV is increasing dramatically as a result of the 

rapid rise of urban populations, expansion of mosquito breeding, and migration of 

infected people. As a consequence, epidemics caused by multiple serotypes 

(hyperendemicity) are more frequent and DHF has become a leading cause of 

hospitalization and death among children in many countries throughout the world 

(WHO, 2009). As an infectious disease, DENV inflicts a significant health, 

economic, and social burden on the populations of endemic areas.  

In general, most of the DF cases are self-limited in their course and rarely 

progress to fatal DHF. There are many risk factors associated with the occurrence of 

DHF such as the virulence of different virus strains, host genetic factors, and age. 

However, immune response to DENV appears to be a major factor in the 

pathogenesis of DHF and DSS (Halstead and O'Rourke, 1977). A strong association 

Countries or 
area at risk
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of severe disease in humans undergoing a heterotypic secondary infection has been 

established (Halstead et al., 1970; Vaughn et al., 1997).  

Several hypotheses have been proposed and one of these is ‘antibody-

dependent enhancement’. According to this hypothesis, the enhanced disease severity 

that is observed after secondary infection by a different DENV serotype is believed 

to be mediated primarily by pre-existing, non-neutralizing heterotypic antibodies that 

enhance access of DENV to FcγR-bearing cells. The antibody-dependent 

enhancement hypothesis as illustrated in Figure 1.3 resulted in an increase in both the 

total number of FcγR-bearing cells infected and the total amount of virus produced. 

The infected cells then release vasoactive mediators resulting in the increased 

vascular permeability and hemorrhagic manifestations (Whitehead et al., 2007). In 

addition, the target tissue for viral infection could be both mononuclear cells and 

megakaryocytes in the bone marrow (Halstead, 1989).  

 

 
 
 
 
Figure 1.3 Model for antibody-dependent enhancement of DENV replication. Antibody 
(Ab)-dependent enhancement of virus replication occurs when heterotypic, non-neutralizing 
Ab present in the host from a primary DENV infection binds to an infecting DENV particle 
during a subsequent heterotypic infection but cannot neutralize the virus. Instead, the Ab-
virus complex attaches to the Fcγ receptors (FcγR) on circulating monocytes, thereby 
facilitating the infection of FcγR cell types in the body not readily infected in the absence of 
antibody. The overall outcome is an increase in the overall replication of virus, leading to the 
potential for more severe disease (Whitehead, S. S., Blaney, J. E., Durbin, A. P. & Murphy, 
B. R. 2007. Prospects for a dengue virus vaccine. Nat. Rev. Microbiol., 5, 518-28. Figure 3, 
page 524). 
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There are 3 criteria that must be fulfilled in order to meet the case definition 

for severe dengue (WHO, 2009). The criteria are severe plasma leakage leading to 

shock, accumulation of fluid and respiratory distress, severe hemorrhagic 

manifestations, and severe organ impairment which mainly involve the liver, heart, 

and central nervous system. 

 

1.3 Status of dengue therapy 

 

There is no specific treatment for DENV infection. The only treatment 

available is symptomatic treatment with careful clinical management by experienced 

physicians and nurses. This can often save the lives of DHF patients (WHO, 2009).  

Despite considerable work over the years, a licensed vaccine against DENV 

is still elusive and even today there are only candidate DENV vaccines. A successful 

vaccine must be tetravalent, capable of simultaneously inducing a high level of long-

lasting immunity to all four DENV serotypes (Ray and Shi, 2006). The immune 

enhancement phenomenon underlying disease pathogenesis and the lack of suitable 

animal models to evaluate candidate DENV vaccines are the major challenges to 

vaccine development (Johnson and Roehrig, 1999; Lei et al., 2001).  

Various strategies have been used to develop DENV vaccines: live attenuated 

viruses, chimeric live attenuated viruses, inactivated or sub-unit vaccines, and 

nucleic acid-based vaccines (Halstead and Deen, 2002). However, efforts to develop 

a DENV vaccine have focused mainly on live attenuated virus vaccines, inactivated 

virus vaccine, and subunit virus vaccines (Table 1.1).  
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Table 1.1 Status of DENV vaccine developments 
 
 
Vaccine  

 
Developer 

 
Phase
  

   
Live attenuated tetravalent vaccine (LAVa) WRAIR, GSK* 1/II 

 
Intertypic chimeric vaccine (Δ30a) NIAID, NIH* II 

 
Chimeric vaccine (ChimeriVaxa) Acambis, Sanofi-Aventis 

 
II 
 

Chimeric vaccine CDC* I 
 

Flavivirus-based recombinant DNA 
vaccine 
 

Navy Medical Research 
Center 
 

I 

Non-flavivirus based recombinant DNA 
vaccine (E (ecto) proteinb) 
 

Hawaii Biotech 1 

(Whitehead, S. S., Blaney, J. E., Durbin, A. P. & Murphy, B. R. 2007. Prospects for 
a dengue virus vaccine. Nat. Rev. Microbiol., 5, 518-28. Table 1, page 525) 

 

 
* Walter Reed Army Institute of Research (WRAIR); GlaxoSmithKline Biologicals (GSK); 
National Institute of Allergy and Infectious Diseases (NIAID); National Institutes of Health 
(NIH); Centers for Disease control and Prevention (CDC)  
a LAV, Δ30 and ChimeriVax are being tested as tetravalent vaccines (targeting all four 
DENV serotypes simultaneously) 
b Recombinant DENV1 E protein ectodomain (N-terminal 80%) formulated in alum  

 

In all these instances, the vaccine viruses are monovalent in that each one is 

specific to one DENV serotypes. A tetravalent DENV vaccine is based on producing 

vaccine formulations by mixing all four monovalent vaccine viruses. Studies show 

that both the live attenuated and the ChimeriVax tetravalent DENV vaccine 

formulations elicit unbalanced immune response due to viral interference 

(Swaminathan and Khanna, 2010). The occurrence of this phenomenon, which tends 

to skew the immune response predominantly towards one serotype, emphasizes the 

limitations and the risks associated with mixing four monovalent vaccine viruses to 

create a tetravalent vaccine. However, tetravalent formulations and immunization 
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schedules are being optimized, so as to confer similar levels of protection against all 

four DENV serotypes (Ray and Shi, 2006). 

In the absence of vaccines, drugs for specific therapy are needed, but no 

antiviral medications are approved for use against DENV. The proteins required for 

the fitness of the virus provide several potential targets against which to develop 

antiviral drugs. Strategies for DENV antiviral drug discovery include structure-based 

approaches, modulating the host immune response, high-throughput screening (HTS) 

using virus replication cell-based assays, or HTS specifically targeting viral 

morphogenesis, the 3’ UTR, viral absorption, or assembly and maturation 

(Tomlinson et al., 2009b).  

A challenge for inhibitors discovered with virus replication cell-based HTS is 

determining the mechanism of inhibition. Testing natural products identified several 

lead compounds that inhibit DENV replication in cell-culture (Parida et al., 2002; 

Kiat et al., 2006; Jain et al., 2008), with the components of fingerroot (Boesenbergia 

rotunda) reported to inhibit the DENV protease with a µM inhibition constant (Kiat 

et al., 2006). A very general strategy utilizes compounds identified from other viral 

studies and tests them for inhibitory activity against DENV replication. There have 

been a few discoveries utilizing these various strategies, however, no leads have 

progressed to clinical trials.  

In recent years, health authorities have emphasized disease prevention and 

mosquito control through community-based programs. Such programs are proper 

solid waste disposal, improved water storage practices, covering containers to 

prevent access by egg laying female mosquitoes, and the use of chemical and 

biological insecticides (WHO, 2009). These programs are very demanding in terms 



9 

of time, expertise, and financial resources. Therefore, there are only of limited 

usefulness for the control of DENV diseases. 

 

1.4 Molecular biology of dengue virus 

 

 DENV is a vector borne member of the genus Flavivirus and the family 

Flaviviridae (Westaway et al., 1985). The genus Flavivirus contains more than 70 

members, including yellow fever virus (YFV), Japanese encephalitis virus (JEV), 

tick-borne encephalitis virus (TBEV), and West Nile virus (WNV). The complete 

nucleotide sequences of several flaviviruses have been reported and sequence 

comparison among the flavivirus polyproteins suggested that despite divergences in 

amino acid sequence, their hydrophobicity profiles are highly conserved, especially 

within the NS1, NS3, and NS5 proteins (Chambers et al., 1990a).  

DENV displays four antigenically related but distinct serotypes: DENV1, 

DENV2, DENV3, and DENV4. The four serotypes are almost indistinguishable in 

terms of clinical and pathological symptoms they cause, but they can be identified by 

neutralization tests, monoclonal antibodies, and polymerase chain reaction (PCR) 

(Morita et al., 1991). These serotypes also vary in their degree of virulence and 

infection with one DENV serotype provides lifelong immunity to that virus, but there 

is no cross-protective immunity to the other serotypes. Each of the four serotypes can 

cause severe and fatal disease (Rigau-Perez et al., 1998). 

 DENV is a smooth and spherical enveloped virus with a diameter of 500 Å. 

The virus contains a single-stranded positive-sense RNA genome of 10,723 

nucleotides. The genome is enclosed in the viral capsid which is surrounded by a 
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host-derived lipid bilayer envelope (Kuhn et al., 2002). The RNA genome has a type 

1 cap at the 5’ end, but is lacking a poly(A) tract at the 3’ end.  

The genome is organized into a single open reading frame (ORF) encoding a 

single polyprotein of 3,391 amino acids. The polyprotein precursor is processed into 

three structural proteins (C, prM, and E) and seven nonstructural proteins (NS1 to 

NS5) as illustrated in Figure 1.4. They are arranged in the order NH2-C-prM-E-NS1-

NS2A-NS2B-NS3-NS4A-NS4B-NS5-COOH, where C is nucleocapsid, prM is 

precursor to membrane protein, E is envelope protein, and NS are the non-structural 

proteins (Westaway et al., 1985; Chambers et al., 1990a; Henchal and Putnak, 1990). 

These proteins are required for replication and assembly of new virions.  

 

 
 

 
 
 
Figure 1.4 Schematic representations of DENV genome organization and polyprotein 
processing. The 11 kb positive-sense, single-stranded RNA genome contains a single open 
reading frame which encodes 3 structural proteins (capsid (C), precursor membrane (prM), 
and envelope (E)) and 7 non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, 
NS5). The open reading frame is flanked by untranslated regions. Sites of polyprotein 
cleavage mediated by the viral NS2B-NS3 and by host signalase and furin are shown, and 
the enzymatic activities of NS3 and NS5 are also indicated (Sampath, A. & Padmanabhan, 
R. 2009. Molecular targets for flavivirus drug discovery. Antiviral Res., 81, 6-15. Figure 1, 
page 20). 
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The C protein consists of ~120 amino acids and is involved with packaging of 

the viral genome and forming the nucleocapsid (NC) core. This protein is the first 

viral polyprotein synthesized during translation, has a molecular weight of about 13.5 

kDa, and is rich in lysine and arginine residues. This highly basic character probably 

enables it to interact with the virion RNA (Henchal and Putnak, 1990).  

prM (~165 amino acids) and E (~495 amino acids) are glycoproteins, each of 

which contains two transmembrane helices. Before it is cleaved during particle 

maturation to yield the pr peptide and the M protein (~75 amino acids), the prM 

protein might function as a chaperone for folding and assembly of the E protein.  

The E protein contains a cellular receptor-binding site(s) and a fusion peptide 

(Mukhopadhyay et al., 2005). E is associated with viral hemagglutination and 

neutralization activity, and interacts with cellular receptors to mediate viral 

attachment and entry (Crill and Roehrig, 2001). 

 NS1 (46 kDa) is required for flavivirus replication and is presumably 

involved in negative-strand synthesis by an unknown mechanism. A large deletion in 

YFV NS1 abolished viral replication but can be complemented in trans by functional 

expression from Sindbis virus vector (Lindenbach and Rice, 1997).  

NS2A (22 kDa) is a small hydrophobic transmembrane protein that is 

involved in production of virus particles and in generation of virus-induced 

membranes during virus assembly (Leung et al., 2008) 

NS3 (70 kDa) and NS5 (104 kDa) are the best characterized nonstructural 

proteins, with multiple enzyme activities that are required for viral replication. NS3 

has three distinct activities: serine protease together with the cofactor NS2B, required 

for polyprotein processing; helicase/NTPase activity, required for unwinding the 

double-stranded replicative form of RNA; and RNA triphosphatase, required for 
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capping nascent viral RNA (Falgout et al., 1991; Zhang et al., 1992; Li et al., 1999). 

Mutations that affect each activity impair viral replication (Matusan et al., 2001).  

NS5 is the largest and most highly conserved flaviviral protein, with greater 

than 75% sequence identity across all DENV serotypes. It contains two distinct 

enzymatic activities, separated by an inter domain region: an S-adenosyl 

methyltransferase (SAM) (Egloff et al., 2002) and an RNA-dependent RNA 

polymerase (RdRp) (Guyatt et al., 2001). NS4A (16 kDa) is an integral membrane 

nprotein which may induce membrane rearrangements to form the viral replication 

complex. NS4B (27 kDa) inhibits the type I interferon response of host cells, and 

may modulate viral replication via its interaction with NS3 (Sampath and 

Padmanabhan, 2009). 

DENV replicates in the cytoplasm of susceptible host cells, including 

monocytes, macrophages, and dendritic cells. A specific receptor for internalization 

of DENV into the host cell has not yet been identified. Several cellular molecules 

capable of mediating virus attachment are known, but none have been conclusively 

shown to function as virus receptors (Tassaneetrithep et al., 2003; Lozach et al., 

2005; Krishnan et al., 2007; Miller et al., 2008).  

As illustrated in Figure 1.5, during virus entry, E proteins forming the 

glycoprotein shell bind to cell surface receptors that assist in the internalization of the 

virus through clathrin-mediated endocytosis. Following internalization, the acidic 

environment of the endosome triggers an irreversible trimerization of the E protein 

that results in fusion of the viral and cell membrane. This leads to the release of the 

viral RNA into the cytoplasm (Mukhopadhyay et al., 2005; Krishnan et al., 2007; 

van der Schaar et al., 2007). 
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Figure 1.5 The DENV replication cycle. Virions bind to cell-surface attachment molecules/ 
receptors and are internalized through endocytosis. In the low pH of the endosome, viral 
glycoproteins mediate fusion of the viral and cellular membranes, allowing disassembly of 
the virion and release of its RNA into the cytoplasm. The viral RNA is translated into a 
polyprotein that is processed by viral and cellular proteases. Viral non-structural proteins 
then replicate the genomic RNA. Virion assembly occurs at the ER membrane. Capsid 
protein and viral RNA are enveloped by the membrane and its embedded glycoproteins to 
form immature virus particles, which are then transported through the secretory pathway. In 
the low pH of the trans-Golgi network (TGN), prM is cleaved by furin. Mature virions are 
then released into the cytoplasm (Sampath, A. & Padmanabhan, R. 2009. Molecular targets 
for flavivirus drug discovery. Antiviral Res., 81, 6-15. Figure 2, page 21). 
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The viral RNA is directly translated into a single polyprotein by the host’s 

translational machinery. The processing of the polyprotein precursor occurs both 

cotranslationally and post-translationally by host cell and virus-encoded proteases.  

Host cell signalase located in the luminal side of the endoplasmic reticulum 

(ER) is responsible for the cleavages at the C-prM, prM-E, E-NS1, and NS4A-NS4B 

junctions (Chambers et al., 1990a; Henchal and Putnak, 1990). Previous work 

suggest that NS1-NS2A cleavage occurs in the ER and NS2A is required to permit a 

host ER-resident protease, possibly signalase to effect cleavage (Falgout and 

Markoff, 1995).  

The virus-encoded trypsin-like serine protease, a complex of NS2B and NS3, 

cleaves at a number of sites including the NS2A-NS2B, NS2B-NS3, NS3-NS4A, and 

NA4B-NS5 junctions (Preugschat et al., 1990) (Figure 1.4). In addition, it is also 

responsible for the cleavage within the viral protein C, NS4A, and within NS3 itself 

(Teo and Wright, 1997). The viral RNA replication is catalyzed by a replication 

complex which is composed of NS5, the RNA-dependent RNA polymerase, and 

other viral and host factors in the rough ER and in Golgi-derived membranes called 

vesicle packets (VP) (Mackenzie, 2005).  

Newly synthesized RNA encapsulated by C protein is then enveloped by 

glycoproteins prM and E to assemble immature virus particles that bud into the ER. 

These immature particles are transported through the secretory pathway to the Golgi 

apparatus. In the low pH environment of the trans-Golgi, furin-mediated cleavage of 

prM to M drives maturation of the virus. prM processing destabilizes the prM-E 

interaction and promotes the formation of E homodimers present in mature infectious 

virions. Finally, progeny virus particles are released from the cell by exocytosis 

(Henchal and Putnak, 1990; Perera et al., 2008; Sampath and Padmanabhan, 2009). 
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1.5 NS2B-NS3: The two-component protease of dengue virus 

 

 The NS2B-NS3 protease is a two-component protease. This heterodimeric 

complex of NS2B and NS3 is responsible for cleavage of the newly translated DENV 

polyprotein at the NS2A-NS2B, NS2B-NS3, NS3-NS4A, and NS4B-NS5 sites as 

well as internal sites within the viral protein C, NS2A, NS3, and NS4A (Chambers et 

al., 1990a; Chambers et al., 1990b; Preugschat et al., 1990; Falgout et al., 1991; 

Zhang et al., 1992; Clum et al., 1997; Yusof et al., 2000; Bera et al., 2007).  

NS3 is a multifunctional protein as illustrated in Figure 1.6. The virus 

encoded protease lies within the N-terminal 180 amino acid residues of the 618 

residue protein. The C-terminal region comprises the RNA-stimulated nucleoside 

triphosphatase (NTPase) and RNA helicase activities. The functional domains of the 

protease and NTPase overlap within a region of 20 amino acid residues (residues 160 

to 180) (Li et al., 1999). 

 
 
 
 
 
 
 
 
 
 
 
Figure 1.6 Structure and organization of the DENV NS2B-NS3 protease. (A) Scheme for 
viral enzymes, showing the cofactor domain of NS2B in black and the NS3pro in gray with 
the catalytic triad: His51, Asp75, andSer135. (Nall, T. A., Chappell, K. J., Stoermer, M. J., 
Fang, N. X., Tyndall, J. D., Young, P. R. & Fairlie, D. P. 2004. Enzymatic characterization 
and homology model of a catalytically active recombinant West Nile virus NS3 protease. J. 
Biol. Chem., 279, 48535-42. Figure 1, page 48536). 
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The serine protease domain of NS3 was identified based on sequence 

homology to known serine proteases (Bazan and Fletterick, 1989). Four separate 

regions of significant conservation were identified (boxes 1, 2, 3, and 4). Boxes 1, 2, 

and 3 encompass the catalytic triad (His51, Asp75, and Ser135) and boxes 3 and 4 

contain residues that are involved in substrate binding and recognition (Figure 1.7).  

Subsequent biochemical studies confirmed the protease activity within the N-

terminal 180 amino acid residues of NS3 (Chambers et al., 1990b; Preugschat et al., 

1990). Site-directed mutagenesis experiments performed with YFV showed that 

replacement of the putative catalytic triad residues abolished protease activity in 

vitro, and when the changes were incorporated into the infectious full-length cDNA 

clone, virus was not recovered (Chambers et al., 1990b).  

 

 
 
 

Figure 1.7 Sequences of DENV NS3 serine protease domain. Multiple sequence 
alignment of DENV protease domain from 4 serotypes. The catalytic triad residues: His51, 
Asp75, and Ser135, are labeled with the symbol # are found in boxes labeled A, B, and C. 
The boxes labeled A, B, C, and D identifies regions of significant similarity surrounding the 
catalytic triad residues and residues that might form the substrate-binding pocket. (Aleshin, 
A. E., Shiryaev, S. A., Strongin, A. Y. & Liddington, R. C. 2007. Structural evidence for 
regulation and specificity of flaviviral proteases and evolution of the Flaviviridae fold. 
Protein Sci., 16, 795-806. Figure 1, page 796). 
 
 

 

 



17 

NS2B is an ER-resident integral membrane protein. The protein contains 130 

amino acid residues with the molecular mass of 14 kDa. The hydrophobicity plot of 

NS2B shows that NS2B contains a central hydrophilic domain flanked by two 

hydrophobic domains at the N-terminus (I and II) and C-terminus (III and IV) 

(Figure 1.8) (Clum et al., 1997). The hydrophobic sequences are essential for co-

translational insertion of the protease cofactor into ER membranes for efficient 

cleavage of the NS2B/NS3 junction (Clum et al., 1997) but they are dispensable for 

protease activity. The central hydrophilic region contains 40 amino acids which are 

conserved among flaviviruses. The individual NS3pro domain, lacking the NS2B 

part, is catalytically inert (Murthy et al., 1999; Murthy et al., 2000).  

 

 
 
 
Figure 1.8 Sequences of DENV NS2B. The box indicates the minimal cofactor segment 
required for activation of the NS3 protease in vitro. TM1-TM4 are predicted transmembrane 
regions (Aleshin, A. E., Shiryaev, S. A., Strongin, A. Y. & Liddington, R. C. 2007. 
Structural evidence for regulation and specificity of flaviviral proteases and evolution of the 
Flaviviridae fold. Protein Sci., 16, 795-806. Figure 1, page 796). 

 

Results from co-expression studies showed that the proteolytic activity of the 

NS3 protease was critically dependent upon the presence of its cofactor, NS2B 

protein (Falgout et al., 1991). Truncation studies in DENV2 showed that the central 

40 amino acid hydrophilic domain is sufficient for protease activity (Chambers et al., 
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1993; Falgout et al., 1993; Clum et al., 1997; Niyomrattanakit et al., 2004). The 

presence of NS2B resulted in a several thousand-fold activation of the NS3 protease 

towards dibasic peptide substrates (Yusof et al., 2000). The flanking hydrophobic 

domains within NS2B are likely to function in promoting membrane association of 

NS2B-NS3 (Clum et al., 1997).  

The kinetic parameters and substrate specificity of DENV protease were 

reported (Yusof et al., 2000; Leung et al., 2001; Khumthong et al., 2002; 

Chanprapaph et al., 2005; Shiryaev et al., 2007a; Iempridee et al., 2008). The 

precursor devoid of the hydrophobic regions but containing the conserved NS2B 

hydrophilic domain linked to the NS3 protease domain through a carboxy terminal 

region of NS2B containing the NS2B-NS3 cleavage site was expressed in E.coli 

(Yusof et al., 2000). The precursor, expressed as insoluble inclusion bodies, was 

purified by denaturation and refolding.  

The expression of soluble and active protease was achieved when the 

hydrophilic portion of the NS2B viral cofactor spanning residues 49-95 (hereafter 

named CF40) of either WNV or DENV2 was fused to residues 1-169 of the NS3 

protein via a flexible (Gly4-Ser-Gly4) linker, thus obviating the denaturation and 

refolding steps in the purification of the protease (Leung et al., 2001).  

A number of in vitro assays for the viral proteases have been described in 

several studies (Clum et al., 1997; Yusof et al., 2000; Leung et al., 2001; Walker and 

Lynas, 2001; Khumthong et al., 2002; Tong, 2002). Either virus-encoded polyprotein 

or synthetic peptides have been utilized as the substrates. Important information on 

the regulation and requirements for the viral polyprotein processing were obtained 

from the assay with virus-encoded polyprotein. The assay with the synthetic peptides 
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would provide the information on the substrate specificity of the enzymes and were 

used in the inhibitor screening.  

The viral protease has a preference for two basic amino acid residues (Arg-

Arg, Arg-Lys, Lys-Arg, or occasionally Gln-Arg) at the P2 and P1 positions 

preceding the cleavage sites, followed by Gly, Ala, or Ser at the P1’ position. The 

earliest report for the DENV protease in vitro assay had used commercially available 

fluorogenic peptides as the substrates.  

All of these peptides contain two basic amino acid residues (Arg-Arg, Arg-

Lys, Lys-Arg) at the P1 and P2 positions preceding the cleavage site. None of the 

peptides contain an amino acid residue at the P1’ position, but rather the P1’ residue 

is replaced by a fluorogenic moiety. Their result revealed that the substrate Gly-Arg-

Arg-MCA, which contains a Gly residue at the P3 position, is the most active of the 

four substrates tested (Yusof et al., 2000). 

Li et al. (2005) cloned and expressed the protease from all four DENV 

serotypes (DENV1-4 CF40-Gly4-Ser-Gly4-NS3pro) and adapted the in vitro assay 

described by Yusof et al. (2000) to screen tetrapeptide and octapeptide libraries 

comprising ~13,000 substrates.  

The tetrapeptide benzoyl-norleucine (P4)-lysine (P3)-arginine (P2)-arginine 

(P1)-ACMC (Bz-Nle-Lys-Arg-Arg-ACMC) was identified as the optimal substrate 

with the steady state kinetics parameter kcat/Km of 51,800 M-1s-1 which is >150-fold 

more sensitive than other published peptides. The sensitivity enabled miniaturization 

of the assay for high-throughput screening (Keller et al., 2006). Moreover, this ideal 

tetrapeptide sequence formed the basis for the peptidomimetic approach for finding 

potent substrate-based inhibitors (Yin et al., 2006a; Yin et al., 2006b).   
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1.6 Structure of DENV NS3 serine protease 

  

The high-quality crystal structure of active DENV NS2B-NS3 protease (1.5 

Å; PDB identifier 2FOM) and WNV NS2B-NS3 protease in the complex with the 

substrate-based inhibitor Bz-Nle-Lys-Arg-Arg-H (1.68 Å; PDB identifier 2FP7) were 

resolved (D'Arcy et al., 2006; Erbel et al., 2006). The NS3 protease domains in both 

structures adopt chymotrypsin-like serine protease folds with two β-barrels, each 

formed by six β-strands, and the catalytic triad (His51, Asp75, and Ser135) located at 

the cleft between the two β-barrels (Figure 1.9). Sharing 50% sequence identity, the 

two NS2B-NS3 protease structures have close structural similarity.  

 

 

 

Figure 1.9 Schematic representation of the structures NS2B-NS3 protease. (Left) The 
apo-enzyme from DENV2 with the NS2B cofactor in yellow and the catalytic triad 
represented as sticks. (Right) Complex of WNV NS2B-NS3 protease with the KKRR 
tetrapeptide. The N-terminal part of the NS2B cofactor is sufficient to stabilize the enzyme 
(Erbel, P., Schiering, N., D'arcy, A., Renatus, M., Kroemer, M., Lim, S. P., Yin, Z., Keller, 
T. H., Vasudevan, S. G. & Hommel, U. 2006. Structural basis for the activation of flaviviral 
NS3 proteases from dengue and West Nile virus. Nat. Struct. Mol. Biol., 13, 372-3. Figure 1, 
page 372). 
 

DENV2 NS2B-NS3pro  WNV NS2B-NS3pro  
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The structures of WNV and DENV NS2B-NS3 proteases reveal residues of 

NS2B that are important for the stabilization of the NS3 protease fold. Similarly to 

the HCV NS4A-NS3 protease, the N-terminal part of the cofactor contributes one β-

strand (β-strand 1, NS2B residues 51-57 in DENV) to the N-terminal β-barrel of the 

protease, which conceals hydrophobic residues from the solvent and provides 

stabilization to this domain.  

This explains the observed strong tendency for NS3 protease and full-length 

NS3 to aggregate when the strand contributed by NS2B is absent in synthetic 

constructs. In this respect the N-terminal of NS2B has a chaperone-like role in 

stabilizing NS3.  

On the other hand, the fold adopted by the C-terminal part of the NS2B 

cofactor shows marked differences between the unliganded DENV NS2B-NS3pro 

and inhibitor-bound WNV NS2B-NS3pro complexes. In the inhibitor-bound protease 

complex, a large rearrangement brings residues 67-88 of NS2B in close proximity to 

the substrate-like inhibitor, forming a belt around the NS3 protease. Residues Arg78-

Leu87 of the NS2B cofactor forms a β-loop which interacts with the N-terminal 

barrel of the NS3 protease, affecting the formation of the active site and substrate 

recognition.  

The contribution of the NS2B cofactor to stabilize both the N- and C-terminal 

barrels and complete the substrate-binding site is indeed unique to flaviviruses. It 

differs substantially from those observed with other cofactor-activated viral proteases 

such as HCV NS4A-NS3pro which requires a short fragment of NS4A to form the 

active enzyme (Erbel et al., 2006; Lescar et al., 2008).  

The unprecedented way in which the NS2B cofactor region forms a belt 

around the protease domain was confirmed in a second structure that was reported 
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for the WNV enzyme as a complex with the aprotinin/BPTI inhibitor (Aleshin et al., 

2007). The aprotinin occupied all the specificity pockets of the protease and induced 

a fully formed oxyanion hole, which allowed Aleshin et al. (2007) to provide a 

complete view of the enzyme substrate Michaelis complex for a flavivirus protease. 

These structures open up new opportunities for discovering flavivirus-specific drugs 

that could function by interfering with protein-protein interactions that are needed for 

the activation of the protease in addition to active site directed competitive inhibitors. 

The DENV NS3 protease structure in the absence of the NS2B cofactor 

deviates substantially from DENV NS2B-NS3 protease structures. These differences 

are observed throughout the entire enzyme and affect the length and location of 

secondary structure elements (Erbel et al., 2006). Although the protease catalytic site 

residues (His51, Asp75, and Ser135) were arranged similarly in the NS3 and NS2B-

NS3 protease crystal structures, numerous large conformational differences were 

evident.  

For instance, overlaying the catalytic regions of the two structures resulted in 

position differences of 14Å and 35 Å for Leu31 and Asn119, respectively (Figure 

1.10). Of relevance to DENV protease inhibitor design are the large differences in 

the substrate-binding region between the two structures. The S1 site within the NS3 

substrate-binding region formed a deep pocket that could accommodate long 

positively charged P1 side chains of the substrate. However, in the NS2B-NS3 

protease structure, the S1 site forms only a shallow depression. Structure-based drug 

discovery approaches must consider the differences between the NS3 and NS2B-NS3 

structures since small molecules may interact differently with the active sites of NS3 

and NS2B-NS3 (Tomlinson et al., 2009b). 
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Figure 1.10 Comparison of the DENV NS3 protease (PDB identifier 1BEF) and the 
DENV NS2B-NS3 protease (PDB identifier 2FOM). Ribbon diagram representation of (A) 
NS3 and (B) NS2B-NS3 proteins. The conformational changes between the two structures 
shifts leucine 31 (L31) and asparagine 119 (N119) by 14 Å and 35 Å, respectively. 
Molecular surface diagrams for (C) NS3 and (D) NS2B-NS3. Arrows point to the substrate 
binding pocket in the two structures (Tomlinson, S. M., Malmstrom, R. D. & Watowich, S. J. 
2009b. New approaches to structure-based discovery of dengue protease inhibitors. Infect. 
Disord. Drug Targets, 9, 327-43. Figure 6, page 335). 
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1.7 Serine protease 

 

 Proteases have long been recognized as attractive targets in the drug 

discovery processes. Serine proteases are the most widely studied group of proteins 

in biology (Walker and Lynas, 2001). The important role of serine proteases has been 

elucidated in the pathology of viral infections (Tong, 2002). Many crystal structures 

and their complexes with either substrates or inhibitors have been resolved (Kim et 

al., 1996; Erbel et al., 2006; Aleshin et al., 2007).  

In humans, serine proteases are involved in many important physiological 

processes such as inflammation, fibrinolysis, immune response, digestion, blood 

coagulation, and fertilization. Hence, it is critical that whenever an inhibitor of viral 

serine proteases is utilized for the treatment of disease in humans, such inhibitor 

must have a high selectively for the viral protease to minimize the risk of any adverse 

effects. 

 Proteases are enzymes that selectively catalyze the hydrolysis of peptide 

bonds. Proteases are classified into five major classes based on their mechanism of 

action. These classes are serine proteases, cysteine proteases, aspartic proteases, 

threonine proteases, and metallo proteases. The classification is made owing to the 

critical residues used in catalysis.  

Serine proteases are characterized chiefly by the presence of an active site 

serine (Ser) residue, the γ hydroxyl group of which acts as a nucleophile during the 

hydrolytic process. Two other amino acid residues that are directly involved in the 

catalytic mechanism are histidine (His) and aspartate (Asp) that together form the 

catalytic triad (Walker and Lynas, 2001; Hedstrom, 2002). In addition, the enzyme 

possesses an oxyanion binding site that is made from the backbone amide NH groups 
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