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“Imagination is more important than knowledge. For knowledge is limited,

whereas imagination embraces the entire world, stimulating progress, giving birth

to evolution.”

Albert Einstein
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KAJIAN TENTANG STRONTIUM TITANAT

DAN BARIUM ZIRCONAT DENGAN

MENGGUNAKAN SIMULASI DINAMIK

MOLEKUL

ABSTRAK

Simulasi dinamik molekul telah dijalankan ke atas bahan-bahan perovskit

strontium titanat dan barium zirkonat dalam usaha untuk mengkaji tingkahlaku

atom mikroskopik, dan termodinamik makroskopik serta sifat-sifat pengangku-

tan haba mereka. Keupayaan rumit atom boleh dipermudahkan kepada interaksi

berpasangan yang terdiri daripada interaksi ionik, tolakan jarak dekat, tarikan

Van der Waals dan ikatan kovalen Morse. Set parameter-parameter keupayaan

strontium titanat dan barium zirkonat yang baru telah diperolehi. Fungsi penabu-

ran jejarian telah diperolehi untuk mengkaji tingkahlaku atomik dan strukturnya.

Parameter-parameter struktur, pekali pengembangan terma, kebolehmampatan

sesuhu, kapasiti haba dan konduktiviti haba telah dinilai dalam lingkungan suhu

298 - 2000 K dan tekanan daripada 1 atm kepada 20.3 GPa. Pada suhu bilik,

nilai-nilai parameter kekisi strontium titanat and barium zirkonat adalah 3.9051

Å dan 4.1916 Å. Pengiraan pekali pengembangan haba strontium titanat and bar-

ium zirkonat memberi nilai 1.010 ×10−5K−1 dan 0.816 ×10−5K−1 pada 298 K,

manakala pengiraan kebolehmampatan sesuhu memberi nilai 5.800 ×10−12Pa−1

kepada strontium titanat dan 7.338 × 10−12 Pa−1 kepada barium zirkonat. Ka-

pasiti haba strontium titanat and barium zirkonat adalah 126.8 J mol−1 K−1
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dan 110.8 J mol−1 K−1 pada suhu bilik. Pengiraan kekonduksian terma telah di-

lakukan dengan menggunakan kaedah dinamik molekul tak-seimbang, dan pembe-

tulan kepada kesan saiz telah dilakukan. Peda suhu bilik, nilai-nilai konduktiviti

haba strontium titanat and barium zirkonat adalah 11.04 W m−1 K−1 dan 4.263

W m−1 K−1. Keputusan-keputusan simulasi memperlihatkan persetujuan yang

baik dengan penemuan-penemuan eksperimen.



STUDY OF STRONTIUM TITANATE AND

BARIUM ZIRCONATE PROPERTIES USING

MOLECULAR DYNAMICS SIMULATION

ABSTRACT

Molecular dynamics simulation has been carried out on strontium titanate

and barium zirconate in order to study the microscopic atomic behavior, and the

macroscopic thermodynamic and thermal transport properties of the perovskite

materials. The intricate interatomic potentials can be simplified into pairwise

interactions, which consist of ionic interaction, short-range repulsion, Van der

Waals attraction and Morse covalent bonding. New sets of potential parameters

of strontium titanate and barium zirconate have been presented. Radial distribu-

tion functions have been obtained to study the atomic and structural behavior.

Structural parameters, thermal expansion coefficient, isothermal compressibility,

heat capacity and thermal conductivity have been evaluated in the temperature

range of 298 - 2000 K and pressure ranging from 1 atm to 20.3 GPa. At room

temperature, the values of lattice parameters of strontium titanate and barium

zirconate are obtained to be 3.9051 Å and 4.1916 Å. While the calculation of

thermal expansion coefficients of strontium titanate and barium zirconate gives

1.010 ×10−5K−1 and 0.816 ×10−5K−1 at 298 K, the isothermal compressibility of

the materials yields 5.800 ×10−12Pa−1 for strontium titanate and 7.338 × 10−12

Pa−1 for barium zirconate. The heat capacity of strontium titanate and bar-

ium zirconate are calculated to be 126.8 J mol−1 K−1 and 110.8 J mol−1 K−1 at

xv
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room temperature. Thermal conductivity calculation was performed using non-

equilibrium molecular dynamics method, and correction for finite size effects has

been made. At room temperature, the values of thermal conductivities are ob-

tained to be 11.04 W m−1 K−1 for strontium titanate and 4.263 W m−1 K−1 for

barium zirconate. The simulation results show good agreement with the experi-

mental findings.



Chapter 1

Introduction

For development of technology and to meet new demands of tomorrow’s soci-

ety, there is a constant need for new materials with new or improved properties.

Compounds with perovskite structure have shown many intriguing properties,

such as ferroelectricity, high temperature superconductivity, high dielectric con-

stant, piezoelectricity, thermoelectricity, etc. These properties make the per-

ovskite compounds a suitable functional materials for applications in many areas.

For example, barium titanate BaTiO3 can be used to produce ferroelectric mem-

ories in constrast to the conventional dielectric memories, and lead zirconate

titanate Pb(ZrxTi1−x)O3 (0 ≤ x ≤ 1) or simply PZT can be used to manufacture

piezoelectric transducers. Therefore these materials will continue to attract great

interest. Despite the fact that there are tons of perovskite materials that show

interesting properties and useful applications, particular interest has been given

to strontium titanate SrTiO3 and barium zirconate BaZrO3 ceramic materials in

this study.

SrTiO3, which is one of the most common ceramic materials, possesses an ideal

cubic perovskite structure with lattice constant of 3.9051 Å [2] and space group of

1
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Pm3̄m at room temperature. Below 105 K, it is in a ferroelectric phase [3]. This

perovskite material finds useful applications, among other things, in electronics

and electrical insulations. Furthermore, it has been shown by some researchers

that its electrical, thermal and thermoelectric properties can be greatly modified

by introducing oxide defects or doped with alkaline earth metals or transition

metals. For instance, niobium-doped strontium titanate can be electrically con-

ductive [4], lanthanum-doped strontium titanate is a promising thermoelectric

material [5, 6] and cerium-doped strontium titanate can be used in fuel cells

applications [7].

On the other hand, BaZrO3, which has a cubic perovskite structure with

lattice constant of 4.192 Å [8] and space group of Pm3̄m at room temperature, is

one of the most useful ceramic materials. Since it is stable with the paraelectric

cubic structure, it does not show phase transition with temperature [9]. This

perovskite material has a wide range of applications, including thermal barrier

coating [10], nuclear fuel [11], refractory [12] and protonic ceramic fuel cell [13].

Since some of the devices made from these materials operate at high tempera-

ture and high pressure, it is important to understand the physical properties and

stabilities of the materials at these extreme conditions. However, performing ex-

periments at these extreme conditions can be costly or difficult or even impossible

due to practical limitations. Conversely, computer simulations provide an alter-

native route to evaluate the materials’ physical properties at these extreme cases.

Computer simulations are not only useful to investigate the materials’ macro-

scopic behavior, they are also powerful to study materials from the microscopic

point of view, such as obtaining the atomic structure, which is usually done by

using x-ray diffraction method.
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Molecular dynamics simulation, which belongs to one of the two main fam-

ilies of computer simulations (the other one is Monte Carlo simulation), has

been a promising tool for study of various kind of materials, from simple crys-

talline structures, such as solid argon [14], to complex bio-molecular structures,

such as proteins [15] and DNA [16]. Just to mention some, molecular dynamics

method has been used to study thermal-physical properties of alkali nitrate salts

[17], rare-earth zirconates [18], magnesium silicate MgSiO3 perovskite [19, 20],

Bi2.5Na1.5Nb3O12 compounds [21], neptunium dioxide NpO2 [22], uranium diox-

ide UO2 [23] and carbon nanotubes [24, 25]. The potentials used in molecular

dynamics simulations have also been formulated from a simple Lennard-Jones

pairwise potential into much involved potentials, such as embedded-atom method

(EAM) potentials for metals and metal alloys [26, 27], reactive force-field for hy-

drocarbons [28], three-body potential [29, 30], etc. Furthermore, the techniques

have also been improved to couple with genetic algorithm [31, 32] and ab-initio

method [33].

In this study, molecular dynamics simulations have been carried out to un-

derstand the thermodynamic and thermal transport properties of SrTiO3 and

BaZrO3 perovskite materials in the temperature range of 298− 2000 K and pres-

sure range from 1 atm to 20.3 GPa. Due to the fact that some of the potential

parameters found in the literature cannot reproduce some of the properties, new

and more accurate sets of potential parameters of SrTiO3 and BaZrO3 have been

derived. Using our own derived potential parameters, we would like to explore

the possibility of obtaining the structural parameters, thermal expansion coeffi-

cient, isothermal compressibility, heat capacity and thermal conductivity of the

compounds. Furthermore, using molecular dynamics simulations, we hope to



Chapter 1. Introduction 4

enhance our understanding on the perovskite materials not only from the macro-

scopic point of view, but also the physics behind the macroscopic properties. In

addition, we would like to obtain the relation between the atomic behavior and

the observed macroscopic properties. In order to obtain good predictions of the

macroscopic physical properties, one of the criteria is that the interatomic inter-

actions must be described correctly. Correctness of the simulation results can

be gauged by comparing against the experimental data. Moreover, it is hoped

that this study could serve as a reference to researchers using molecular dynamics

simulation to perform similar calculations on other materials.

In summary, the aim of this research is to:

• Derive more accurate sets of potential parameters of strontium titanate and

barium zirconate.

• Obtain the variations of structural parameters, thermal expansion coeffi-

cient, isothermal compressibility, heat capacity and thermal conductivity of

the perovskites with temperature and pressure.

• Study the radial distribution functions of the materials.

• Compare the simulation results against the experimental findings.

The thesis is organized is such a way that after theories of solid state physics

and molecular dynamics are introduced, methodology of the research is described

and follow by results and discussions. Lastly, conclusions are made and some

recommendations for futher study are proposed.



Chapter 2

Background Theory I - Solid

State Physics

Solid state physics, which is the largest branch of condensed matter physics, is

one of the fundamental studies in physics. It is a study that covers every aspects

related to crystalline materials, or rather, it is a study of macroscopic properties

of crystalline materials which results from their constituent microscopic bahavior.

Since the invention of the transistor, where smaller and lighter electronic devices

are made possible, solid state physics has become a very important field of study.

For example, the computers in the past were as huge as a room, but nowadays, the

computers are much smaller that they are able to be fit into a workspace, or even

carry along, at the same time, their performances have been improved tremen-

dously. These innovations have to be attributed to the intensive progresses made

on both theoretical and experimental studies in solid state physics. Furthermore,

due to the advent of the economical high speed computers, the theoretical studies

on crystalline materials have made the research even more progressive.

5
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A2+

B4+ X2-

Figure 2.1: Conventional unit cell of a perovskite crystal.

2.1 Perovskite Structure

Perovskites are important in material science due to their interesting proper-

ties and useful applications in many areas.The physical properties of interest

among perovskites include superconductivity, ferroelectricity, magnetic proper-

ties, electric conductivity, dielectric properties, etc. A lot of materials with per-

ovskite structure have been discovered. Some of the compounds that possess

perovskite structure are CaTiO3, BaTiO3, SrTiO3, CdTiO3, PbTiO3, SrZrO3,

BaZrO3, KNbO3, LiNbO3, LiTaO3, BaPrO3, CsCaF3, LiBaF3, and many more.

Perovskite structure, which has a very high symmetry, is a crystal structure

with simple cubic lattice, as shown in Figure 2.1. The general chemical formula

for perovskite compounds are ABX3, where A and B are cations and X is an

anion. A2+ and B4+ cations have different sizes, in which A2+ is larger than

B4+. A2+ ions are located at the corners of the cube, B4+ ions are located at

the centers, and X2− ions are located at the faces of the cube. Thus, there

are five atoms in a conventional cell, and hence, five atoms per lattice point or

five atoms in a primitive cell. X2− anions are bonded to both A2+ and B4+
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cations. Each B4+ cation has six nearest neighbours, whereas each A2+ cation

has twelve. Thus, B4+ and X2− ions form octahedrons, while A2+ and X2− ions

form cuboctahedrons in the perovskite. The requirement of relative ionic sizes

for stability of the perovskite is rigorous, so a slight distortion might cause the

structure to reduce to a lower symmetry, in which the coordination numbers will

be reduced.

2.2 Thermal Properties

One of our main interests in this work is to study thermal properties of materi-

als. Therefore, it is important to understand how the expressions of the thermal

properties are obtained. Hence, the derivations of heat capacity and thermal

conductivity are shown here.

2.2.1 Derivations of Heat Capacities of Solids

Heat capacity is a measurable physical quantity that characterizes the amount of

heat required to change the temperature of a substance of 1 kg by 1 K. In this

section, the derivation of the specific heat from classical treatment is discussed.

Consider a solid system of N atoms held in their respective positions and

are free to vibrate independently. In classical theory, the atoms are assumed to

vibrate like classical harmonic oscillators. Thus, the atomic vibrations can be

regarded as spring vibrations, which execute small vibrations about their equi-

librium positions. The energies due to the motion of each atom along the three
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directions are

Ex =
p2
x

2m
+

1

2
kx2 (2.1)

Ey =
p2
y

2m
+

1

2
ky2 (2.2)

Ez =
p2
z

2m
+

1

2
kz2 (2.3)

where the spring constants k are taken to be the same along the three directions.

If the temperature is sufficiently high, the atomic oscillators can be treated using

classical statistical mechanics. At this point, it is useful to state the equipartition

theorem (further discussion can be found in Section 3.4.3):

Equipartition Theorem

For a system in thermal equilibrium at temperature T , a generalized position

or momentum that occurs in the Hamiltonian only as a quadratic term

contributes an energy of 1
2
kBT to the mean energy of the system, where kB

is the Boltzmann constant.

Thus, according to equipartition theorem, the mean energy of the solid of N

atoms is

Ē = N(Ex + Ey + Ez)

= 3N(
1

2
kBT +

1

2
kBT )

= 3NkBT = 3RT (2.4)

where R = 8.314 J/Kmol is the gas constant. The specific heat of the solid is

CV =

(
∂E

∂T

)
V

= 3R = 24.94 J/Kmol (2.5)
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Some solids such as aluminium, copper and germanium, have specific heat

values close to 24.94 J/Kmol. However, some substances such as diamond and

silicon has a much lower specific heat value. This can be understood that the

classical treatment is valid only when the temperature T is high enough so that

kBT � ~ω, where ~ is the Planck constant and ω is the vibrational frequency.

CV = 24.94 J/Kmol is called the Dulong-Petit limit. Furthermore, note that

Equation 2.5 does not depend on temperature. This is also incorrect as when the

temperature goes to zero, the specific heat approaches zero as well. Thus, it can be

concluded that the classical treatment only works fine at very high temperature.

In order to obtain agreement at all temperatures, quantum mechanical treatment

is required.

2.2.2 Derivation of Thermal Conductivity

If thermal conduction is viewed from a microscopic angle, the heat energy is

transferred by the diffusion and collisions of particles, such as electrons, atoms,

molecules and phonons within a body due to a temperature gradient. From a

macroscopic point of view, a temperature gradient causes heat to flow from a

region with higher temperature to a region with lower temperature. The heat

flux, which is the heat energy crossing per unit area per unit time is expressed

according to the Fourier’s law of heat conduction:

Jx = −κdT
dx

(2.6)

where dT/dx is the temperature gradient along the x direction and the coefficient

κ is known as the thermal conductivity.



Chapter 2. Solid State Physics 10

Imagine a slab in which the temperatures are varied. If only the x direction is

considered, 1/6 of the particles will move toward the +x direction, and similarly

1/6 of the particles will diffuse toward the −x direction. Assume that the particles

collisions happened at the middle of the slab along the x direction. If the mean

free path of the particle collisions is let to be l, the last collisions of the particles

which diffuse toward the +x direction happen to be at position of x− l, whereas

the last collisions of the counterparts take place at x+ l. Therefore, the energies

of the particles can be evaluated at these positions. Hence, the mean energy

transported per unit area per unit time towards the +x direction is

J+x =
1

6
nv̄Ē(x− l) (2.7)

and similarly, the mean energy transported per unit area per unit time towards

the −x direction is

J−x =
1

6
nv̄Ē(x+ l) (2.8)

where n is the concentration of the particles, v̄ is the mean velocity of the particles,

and Ē(x + l) and Ē(x − l) are the mean energies of the particles at x + l and

x− l respectively. Thus, the net energy flows per unit area per unit time or the

net energy flux is

Jnet = J+x − J−x

=
1

6
nv̄[Ē(x− l)− Ē(x+ l)]

=
1

6
nv̄

{[
Ē(x)− l ∂Ē

∂x
]− [Ē(x) + l

∂Ē

∂x

]}
= −1

3
nv̄l

∂Ē

∂x
(2.9)
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In terms of derivative of T , Equation 2.9 becomes

Jnet = −1

3
nv̄l

∂Ē

∂T

∂T

∂x
(2.10)

Since the heat capacity per unit volume of the particles is

CV = n
∂Ē

∂T
(2.11)

Equation 2.10 becomes

Jnet = −1

3
CV v̄l

∂T

∂x
(2.12)

Comparing between Equation 2.6 and Equation 2.12 yields

κ =
1

3
CV v̄l (2.13)

Equation 2.13 has been used to calculate the thermal conductivity by phonons,

where CV is treated as the specific heat of phonons, v̄ is taken to be the speed

of sound and l is the phonon mean free path. Note that at high temperatures,

where the temperatures are much higher than the Debye temperature (T � ΘD),

CV obeys the Dulong-Petit law and is temperature-independent. Therefore, the

thermal conductivity should be expected to decline with increasing temperature

in the high-temperature regime, and the rate of decline is generally given by

κ ∝ 1

T η
(2.14)

where η is somewhere between 1 and 2.
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Background Theory II -

Molecular Dynamics

Molecular dynamics (MD) simulation is one of the powerful computer simulation

techniques in the sense that it not only allows prediction of material’s properties

at macroscopic level, it also helps to understand the basic physics behind the

macroscopic bahavior.

In MD simulation, we provide a ‘guess’ for the interatomic interactions and

obtain ‘exact’ predictions of bulk properties. The predictions are exact in the

sense that they can be made as accurate as we like, subject to the limitation of

computer budget.

Besides, MD simulations also act as a bridge between theory and experiment,

i.e. a theory may be tested by performing simulation using the same model,

on the other hand, simulations may be carried out on the computers which are

difficult or impossible to be performed in the laboratories, for example, working at

extremes of temperature and pressure. Ultimately, we would like to make direct

12
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comparisons with the experimental measurements made on specific materials, in

which a good model of molecular interactions is essential.

The basic idea of MD simulation is to simulate the motions and assemblies

of the atoms and molecules1. In other words, MD simulation provides means to

solve the equation of motions of the interacting particles. Once the information

of the system at the atomic level is known, macroscopic physical quantities are

revealed via statistical mechanics.

3.1 Equations of Motion

Consider a system of N interacting particles, such as atoms and molecules, the

Lagrange equations of motion are:

dL

dxk
− d

dt

(
dL

dẋk

)
= 0 (3.1)

where k = 1, 2, 3, and xi and ẋi are the generalized coordinates and velocities

respectively. L is the Lagrangian of the particle:

L(x, ẋ) = K(ẋ)− U(x) (3.2)

where K and U are the kinetic and potential energies of the particle.

If a system of atoms in Cartesian coordinates r is considered, the quantitative

account of the Newton’s second law of motion gives:

Fi = mir̈i (3.3)

1We shall called them particles for simplicity.
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where mi is the mass of the ith particle, and

Fi = −∇U(ri) (3.4)

is the force experienced by the ith particle.2 Thus, solving Equation 3.3, which

required the knowledge of the potential energy (Equation 3.4), gives the positions

and velocities of the particles.

3.2 Non-bonded Molecular Interactions

In order to solve the equations of motion, a preliminary step is to determine the

potential energy of the atomic system. The molecular interactions can be de-

composed into non-bonded interactions and bonding interactions. In this section,

non-bonded interactions are focused and the discussion on molecular bonding can

be found elsewhere [34]. The non-bonded potential energy of the system of N

interacting particles is formulated as a sum over the interactions between the

particles in the system:

U(r) =
∑
i

u(ri) +
∑
i

∑
j>i

v(ri, rj) +
∑
i

∑
j>i

∑
k>j>i

w(ri, rj, rk) + . . . (3.5)

where the summations sum over all distinct pairs without counting any pair twice.

The first term u(ri) characterizes an externally applied potential field or the effect

of the container walls. However, when periodic boundaries are concerned, this

term is usually ignored. The second term v(ri, rj) represents a two-body potential

and the third term w(ri, rj, rk) typifies a three-body potential. In most cases, the

potential energy of the system is usually simplified into two-body potential or

2These equations also apply to molecules, where Fi is the total force experienced by ith

molecule at its center of mass.
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pairwise potential, v(ri, rj) = v(rij), where rij is the distance between the ith and

jth particles. Some of the most commonly used pairwise potential functions3 will

be discussed.

3.2.1 Lennard-Jones Potential

Lennard-Jones potential, which is also known as 6− 12 potential, is one of the

earliest and most commonly used potentials. It is associated with Van der Waals

(weak) interaction or dipole− dipole dispersion. The functional form is

ULJ(rij) = 4φ[(
χ

rij
)12 − (

χ

rij
)6] (3.6)

where φ and χ are constant parameters that set the energy and distance scales

associated with the interactions. The first term or the term to the power of 12

contributes repulsive force and the second term or the term to the power of 6

contributes attractive force. This potential has been used in the early studies

of liquid Argon. For Argon, the optimised parameters are φ/kB = 119.8 and

χ = 3.405Å.

3.2.2 Born-Mayer-Huggins Potential

Another type of potential which also describes Van der Waals interaction is the

Born-Mayer-Huggins potential or exponential− 6 potential:

UBorn(rij) = f0(ρij) exp

(
σij − rij
ρij

)
− Cij
r6
ij

+
ζij
r8
ij

(3.7)

3For connections among the pairwise potential functions, see [35, 36].
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where σij represents the sum of ionic radii of ith and jth ions, ρij symbolies

the sum of ionic softness of ith and jth ions, and Cij and ζij correspond to

dipole− dipole dispersion and dipole− quadrupole dispersion parameters respec-

tively. The first term represents the exponential repulsion at short-range, the sec-

ond term corresponds to Van der Waals attraction and the third term represents

dipole− quadrupole dispersion.

3.2.3 Coulombic Potential

If electrostatic charges are presents in the system, there will be ionic or Coulombic

forces interacting the ions in such a way that like charges repel each other, whereas

opposite charges attract. The magnitudes of the forces depend on the electrostatic

charges, thus, we have Coulombic potential:

UCoulomb(rij) = ke
qiqj
rij

(3.8)

where qi and qj are the electrostatic charges of ith and jth ions, and ke is the

Coulomb constant.

3.2.4 Morse Potential

When dealing with ‘hard’ bonds, such as covalent bonds, it is useful to employ

Morse potential. Morse potential is an empircal potential that describe an asym-

metric covalent bonding between two ions, and it also accounts for bond breaking.

The functional form of Morse potential is

UMorse(rij) = Dij{exp[−2Ωij(rij − r0ij)]− 2 exp[−Ωij(rij − r0ij)]} (3.9)
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where Dij is the depth of the potential well, Ωij is the steepness of the potential

and r0ij is the equilibrium distance between the ions. Unlike harmonic bonding,

Morse potential caters the anharmonicity of real bond, which is more harder to

compress than pull it apart, and this anharmonicity also contributes to material’s

thermal expansion.

3.3 Molecular Dynamics Algorithms

The basic idea in MD simulation is to solve the equations of motion, i.e. Equation

3.3. For each particle, the equations of motion according to Euler method are

dri
dt

= vi (3.10)

and

dvi
dt

=
Fi
mi

= ai (3.11)

where vi and ai are the resultant velocity and acceleration of ith particle. If we

choose a value δt to be the size of every time step, the one step of the equations

of motion are

ri(t+ δt) = ri(t) + vi(t+ δt/2)δt (3.12)

and

vi(t+ δt) = vi(t) + ai(t+ δt/2)δt (3.13)

With the knowledge of the potential energies of the particles, the forces or ac-

celerations can be derived, and thus, the atomic positions and velocities can be

obtained. However, in MD simulation, we are interested in computing the mo-

tion over a very large number of time steps, and it turns out that the numerical
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errors associated with Euler method are too big to tolerate. When accuracy is

concerned, it is necessary to employ other scheme for solving the equations of

motion.

3.3.1 Verlet Algorithm

Verlet algorithm [37] has smaller numerical errors associated if compared with

Euler method. In order to derived the Verlet algorithm, we take Taylor expansion

about ri(t), which yields:

ri(t+ δt) = ri(t) + δt vi(t) + (1/2)δt2ai(t) + . . . (3.14)

ri(t− δt) = ri(t)− δt vi(t) + (1/2)δt2ai(t)− . . . (3.15)

Summing up Equations 3.14 and 3.15 gives

ri(t+ δt) = 2ri(t)− ri(t− δt) + δt2ai(t) (3.16)

Equation 3.16 is the ordinary Verlet algorithm for trajectories. It is remarkable

to note that knowing the advanced positions only required the positions at both

present and previous step, and also the accelerations at present step. Further-

more, it does not require the knowledge of the velocities. Although velocities are

not needed to compute the trajectories, they are useful for estimating the kinetic

energy (and hence the total energy). Taking the difference between Equations

3.14 and 3.15 produces the formula for velocities

vi(t) =
ri(t+ δt)− ri(t− δt)

2δt
(3.17)
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Note that the errors per integration step associated with Verlet algorithm are of

the order of δt4 for Equation 3.16 and δt2 for Equation 3.17.

3.3.2 Timesteps

It is important to choose a proper time step δt in MD simulation. The time step

should be large enough so that the time averages can be close to the averages

in a macroscopic experimental system, and conversely, it should be small enough

so that the computational resource is enough to ensure that time averages can

be evaluated over a sufficient number of times. A typical time step used to

integrate the equations of motion numerically is about 10−15 s or 1 fs. Since

∼ 106 integration steps are normally adopted for a reasonable computing time,

the simulation is restricted to about 10−9 s or 1 ns.

3.3.3 Periodic Boundary Condition

In a real system, where the number of particles is significantly large (∼ 1023),

the collisions between the particles and the walls of the container are negligible,

since the system behavior would be dominated by collisions between particles.

However, in computer simulation, the number of particles is not significantly large

due to the limitation of computational resouces. In other words, we are limited

to a small system, which contains a relatively small number of particles (∼ 103).

Hence, the collisions between the particles and the walls can be significant and

non-negligible. For example, consider 1000 atoms arranged in a 10 × 10 × 10

cube, nearly half the atoms are on the outer faces, and the collisions between

these particles and the walls will have a large effect on the measured properties.

Therefore, it is useful to implement a periodic boundary condition.
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Figure 3.1: Schematic diagram of periodic boundary condition.

To understand periodic boundary condition, imagine that a particle is ap-

proaching a wall, and when the particle hits the wall, it is instantaneously trans-

ported to the opposite side of the wall and is like coming from that wall, as shown

in Figure 3.1. By doing this, the collisions between the particles and the walls

will be absolutely zero. It is important to bear in mind that even though the

particle is transported to the opposite side, it can still affect the particle near the

wall side because the particle can also be imagined to locate beyond the bound-

ary. Thus, in order to calculate the particle interactions with periodic boundary

condition imposed, the minimum image convention is adopted, in which the par-

ticles interact with the nearest particle or image in the periodic array. Therefore,

this solve the boundary problem. However, special attention must be paid when

considering properties which are influenced by long-range correlations, such as

the imposed artificial heat flow in NEMD method.

3.3.4 Cut-off radius

In order to compute the particles’ trajectories using Verlet algorithm, i.e. Equa-

tion 3.16, we have to, first of all, calculate the interatomic forces, which can be



Chapter 3. Molecular Dynamics 21

obtained by computing the potential energies according to Equation 3.4. How-

ever, computing the non-bonded interatomic forces involved a great number of

pairwise calculations if the potential energy has an infinite range, i.e. when con-

sidering each particle i, the force calculations are loop over all other particles j

in order to obtain the atomic seperation rij. Since the potential energy becomes

zero when the atomic seperation rij is very large, it is useful to implement a

cut-off radius rc and truncate the interatomic interactions when the interatomic

seperation is greater than rc. In other words, the force calculations are skipped

if rij > rc and move on to consider other j particle. By this way, expensive cal-

culations can be avoided and enormous computational resouces can be saved4. A

typical cut-off radius rc has a value of about 12 Å.

If cut-off radius is implemented, there will be a truncation in interatomic

interactions. For example, when a particle crosses the cut-off radius, there will

be a little ‘jump’ in the energy, and this creates a new problem as it will destroy

the conservation of the energy. In order to correct for the energy, a tail correction

is usually implemented. See [38] for more details.

3.3.5 Neighbour Lists

Although the force calculations can be skipped when the atomic seperation is

greater than the cut-off radius, when examining the condition of rij > rc for

all other particles j, this still consumes plenty of time. Verlet [37] suggested

4In order to understand this better, imagine that you have a mess of marbles on the floor but
dispersed uniformly and you draw two circles with the their center overlapped and the radius of
the second circle r2 greater than that of the first one r1, for instance r1 = 5cm and r2 = 10cm.
If you count the number of marbles in the circles, you will find that the number of marbles in
the circle with larger radius is not twice but is multiple times (about 4 times) of the number of
marbles in the smaller circle, even though the radius of the second radius is twice as big as that
of the fircle circle. In other words, calculation twice as big takes four times as long to complete.
Thus, by skipping the calculations over the particles which are confined in the larger radius,
great computing time can be saved.
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Figure 3.2: Schematic diagram of neighbour lists. Only pairs appearing in
the list are checked in the force routine.

that construction of lists of nearby pairs of particles can be used to improve the

speed of the program. To construct the so-called neighbour lists, each particle is

surrounded by a ‘skin’, which has a radius slightly larger than the cut-off radius,

and only particles that fall within the skin are listed as ‘neighbours’, as shown

in Figure 3.2. Hence, each particle has a unique neighbour list. When the force

calculations are carried out, only particles within the list are checked, and thus,

this save a large amount of computing time, even though the lists need to be

reconstructed from time to time. The choice of the skin radius, which is the

distance between the skin and the cut-off radius, is a compromise, i.e. larger lists

require less frequent update, but consume more computer time compared with

smaller lists. So, the choice of skin radius need to be made by experimentation.

A typical skin radius is about 2 Å.
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3.4 Statistical Mechanics

In molecular dynamics simulation, we are not dealing with one or two particles,

but we are dealing with a bunch of them. So, in order to understand the macro-

scopic behavior of a system with numerous particles, probabilities and statistics

of the microscopic system have to be used to predict the macroscopic properties,

which can be measured in the laboratory (like temperature, pressure, etc.). That’s

why statistical mechanics is important as it act as a bridge between atomic simu-

lation and macroscopic properties, in which the properties of macroscopic bodies

are predicted by the statistical behavior of their constituent microscopic parts.

Therefore, with molecular dynamics simulation, which generate information at

microscopic level, thermodynamic properties of the atomic system can be studied

via statistical mechanics.

3.4.1 Ensembles

An ensemble is a collection of all possible systems which have an identical ther-

modynamic state but have different microscopic states.

In classical molecular dynamics, simulations are easily done in the micro-

canonical ensemble (NVE-constant), in which the number of particles, volume

and energy are controlled. However, in real life, the temperature and/or pressure

are controlled instead of the energy. In other words, the real-life physical prop-

erties are observed in canonical ensemble (NVT-constant) or isothermal-isobaric

ensemble (NPT-constant). Thus, it is more useful to carry out the simulation

in canonical ensemble or isothermal-isobaric ensemble, so that the simulated re-

sults are comparable to the experimental properties. Several popular methods

that used to control the temperature in MD simulation are the velocity rescaling
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method, Andersen thermostat, Nose-Hoover thermostat [39], Langevin thermo-

stat [40], etc.

3.4.2 Time Average

In MD simulation, various physical quantities are monitored and their expectation

values are determined by taking averages over the total configurations generated

in the simulation or over the total time steps τ . Such averages are denoted as

‘time average’, although the word time does not necessarily mean physical time.

For a physical quantity Q, the time average is

Q̄ =
1

τ

τ∑
n=1

Qn (3.18)

If the size of the system is large enough and the simulation is long enough,

these averages will be very close to the averages in a macroscopic experimen-

tal system, i.e. the ensemble averages, as according to the Ergodic hypothesis.

Ensemble average is an average taken over many replicas of the system consid-

ered simultaneously. However, the system size and simulation time that can be

achieved are limited, and hence, it might be useful to estimate the errors asso-

ciated with the averaged quantities. The standard deviation ς associated with

Equation 3.18 is

ς =

√
Q̄2 − Q̄2 (3.19)

Note that equation 3.19 is a crude way to estimate the errors associated with

the measured averaged quantities, because the data points generated from the

simulation are usually not independent, conversely they are highly correlated

since the configurations are usually stored sufficiently and frequently. Therefore,
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