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PENGHASILAN BIODIESEL DARI MINYAK JARAK MENGGUNAKAN 

PROSES METIL ASETAT DAN METANOL GENTING LAMPAU 

 

ABSTRAK 
 

 
 
 Biodiesel yang disintesis dari minyak tidak boleh makan iaitu minyak 

Jatropha curcas L. (Jatropha) menawarkan beberapa beberapa faedah berbanding 

minyak boleh makan seperti tidak bersaing dengan sumber makanan. Namun, 

minyak Jatropha mengandungi kandungan asid lemak bebas yang tinggi, maka 

penghasilan biodiesel melalui mangkin alkali konvesional boleh menyebabkan 

masalah saponifikasi. Selain itu, penggunaan methanol dalam proses transesterifikasi 

mungkin akan menimbulkan penghasilan gliserol yang berlebihan sebagai produk 

sampingan. Oleh itu, dalam kajian ini, kaedah genting lampau tanpa pemangkinan 

menggunakan metil asetat sebagai pelarut telah digunakan dalam transesterifikasi 

minyak Jatropha untuk menghasilkan biodiesel. Namun demikian, kaedah metanol 

genting lampau (SCM) juga telah diselidiki untuk tujuan perbandingan. Pengaruh 

jangka masa, suhu tindakbalas dan nisbah molar pelarut terhadap minyak Jatropha 

telah dikaji dan dioptimumkan menggunakan “Design of Experiment”. Tekanan bagi 

tindakbalas dijalankan secara konsisten pada tekanan kritikal metal asetat dan 

methanol iaitu 40 dan 80 bar. Keputusan kajian menunjukkan bahawa untuk proses 

genting lampau menggunakan metil asetat (SCMA), keadaan optimum untuk 

menghasilkan biodiesel, berada pada waktu tindakbalas 32 minit, suhu tindakbalas 

399 °C dan nisbah molar metil asetat terhadap minyak pada 50. Keputusan hasil 

optimum biodiesel adalah 71.8 wt%. Sementara itu, untuk proses SCM, hasil 

optimum FAME yang sebenar diperolehi adalah lebih tinggi iaitu 89.4 wt% dan 

xiv 
 



boleh dicapai pada keadaan optimum seperti berikut: masa tindakbalas 27 minit, 

suhu tindakbalas 358 °C dan nisbah molar metanol terhadap minyak pada 44. 

Didapati bahawa metil asetat mempunyai kelarutan yang tinggi dalam trigeliserida, 

menyebabkan kereaktifan yang lebih rendah dalam tindakbalas SCMA, sehingga 

hasil biodiesel yang diperolehi lebih rendah daripada yang diperolehi dalam proses 

SCM. Namun demikian, reaksi SCMA telah menunjukkan bahawa triasetin dapat 

dihasilkan dalam tindakbalas dan bukan gliserol. Semua pembolehubah individu 

dipelajari dalam proses SCMA dan SCM menunjukkan kesan positif terhadap hasil 

FAME. Sementara hanya beberapa interaksi pembolehubah mempengaruhi hasil 

FAME. Selain itu, dalam kajian kestabilan terma, metil linoleat dan triasetin didapati 

menjadi tidak stabil dalam tindakbalas SCMA apabila bertindakbalas pada suhu yang 

tinggi kerana fenomena penguraian. Kedua-dua kaedah didapati mempunyai kesan 

yang boleh diabaikan terhadap kewujudan air dan kandungan asid lemak bebas 

dalam tindakbalas. Pengaruh penambahan asid asetik dalam proses SCMA 

menunjukkan kesan positif terhadap hasil FAME kerana ia menyediakan kesan 

pemangkin dalam tindakbalas. Pencirian biodiesel Jatropha menunjukkan bahawa 

biodiesel Jatropha dapat memenuhi spesifikasi ASTM D6751.  
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BIODIESEL PRODUCTION FROM JATROPHA CURCAS L. OIL USING 

SUPERCRITICAL METHYL ACETATE AND METHANOL PROCESS 

 

ABSTRACT 
 
 
 

 Biodiesel synthesized from non-edible oil of Jatropha curcas L. (Jatropha) 

oil offers several advantages compared with edible oil such as it does not compete 

with food resources. However, Jatropha oil consists of high free fatty acids content, 

hence, the production of biodiesel through conventional alkaline catalyst may lead to 

problems with saponification. Furthermore, the application of methanol in 

transesterification process may result to oversupply of glycerol production as by-

product. Therefore, in this study non-catalytic supercritical method using methyl 

acetate as the solvent was employed in transesterification of Jatropha oil to produce 

biodiesel. Nevertheless supercritical methanol (SCM) method was also been 

investigated for comparison purposes. The effects of reaction time, reaction 

temperature and molar ratio of solvent to oil were studied and optimized using 

Design of Experiment. The reaction pressure was consistently operated at critical 

pressure of methyl acetate and methanol which were 40 and 80 bar, respectively. The 

results revealed that for supercritical methyl acetate (SCMA) process the optimum 

conditions to produce biodiesel, were at reaction time of 32 minutes, reaction 

temperature of 399 °C and molar ratio of methyl acetate to oil at 50. The actual 

optimum yield of BDF was 71.8 wt%. Meanwhile, for SCM process, the actual 

optimum yield of FAME obtained was higher which was 89.4 wt% and can be 

achieved at the following optimum conditions: reaction time of 27 minutes, reaction 

temperature of 358 °C and molar ratio of methanol to oil at 44. It was found that 
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methyl acetate has high solubility in triglyceride, leading to lower reactivity in the 

SCMA reaction, thus the yield of biodiesel obtained was lower than the one obtained 

in SCM process. Nevertheless, the SCMA reaction has shown that triacetin can be 

produced from the reaction instead of glycerol. All individual variables studied in 

SCMA and SCM process shows positive influence towards the yield of FAME, while 

only some interaction between variables affects the yield of FAME. Apart from that, 

in thermal stability study, methyl linoleate and triacetin were found to be not stable 

in SCMA reaction when reacting at high temperature due to decomposition 

phenomenon. Both methods were found to have negligible effect on presence of 

water and free fatty acids content in the reaction. The effect of acetic acid addition in 

SCMA process showed a positive influence on the yield of FAME as it provides 

catalytic effect in the reaction. The characterization of Jatropha biodiesel indicated 

that Jatropha biodiesel met the specification for biodiesel according to ASTM 

D6751.   

 
 

 
 
 
 
 
 
 
 
 
 
 
 



CHAPTER ONE 
 
 

INTRODUCTION 
 
 
 
 
1.0 Biodiesel from Vegetable Oil 

 

The current energy scenario is undergoing a period of transition as many 

energy consumers have realized and understand the problems resulted from fossil 

fuels. Declining oil reserves and the enormous impact of transportation’s demand for 

oil on the economy and global climate change suggest that the most critical need for 

a sustainable energy future is a new way to fuel our vehicles. Examples of alternative 

fuel options that can be utilized to replace fossil fuels are mainly biogas, producer 

gas, biomethanol, bioethanol and vegetable oils (Dorado, 2008). However, biogas 

and producer gas have low energy contents per unit mass and can substitute for 

diesel only up to 80%. Meanwhile, methanol and ethanol can only substitute up to 

20-40% apart from having very poor calorific value and a low cetane number, which 

is unsuitable for high-compression diesel engines.  Therefore, the use of vegetable 

oils as a new source for alternative fuel has attracted a lot of attention lately. 

 

Processing of vegetable oils and animal fats as biodiesel can reduce exhaust 

emissions from compression ignition engines such as nitrogen and carbon monoxide 

(Nag, 2008). However, vegetable oil or animal fats cannot be used directly in diesel 

engine due to many problems. These include carbon deposits, oil ring sticking, 

lubricating problems, and thickening and gelling of the lubricating oil as a result of 

contamination by vegetable oils (Ma & Hanna, 1999). Other disadvantages to the 

direct use of vegetable oils are the high viscosity (about 11 to 17 times higher than 
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petroleum based diesel fuel), lower volatilities content which causes the formation of 

deposits in engines due to incomplete combustion and inappropriate vaporization 

characteristics. Thus, many recent developments have been studied to reduce the 

viscosity associated with vegetable oil. One of them is transesterification which 

seems to be the best choice since it is possible to produce fatty acid alkyl esters 

(biodiesel) with physical properties very close to petroleum-derived diesel 

(Demirbas, 2006).  Figure 1.1 shows the conventional biodiesel production and 

purification steps. 

 
Figure 1.1: Conventional biodiesel production and purification steps (Atadashi et al., 

2010) 
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Transesterification is an equilibrium reaction which will convert triglyceride 

to FAME and by-products. Generally, the reaction will result to high yield of 

biodiesel, however, low yield of biodiesel could be obtained due to low conversion 

of the feedstocks (unreacted feedstock) in the reaction. This unreacted feedstock will 

result in the presence of impurities such as glycerol, monoglyceride and diglyceride, 

which are unfavourable for engine performance. The most common methods to 

produce biodiesel are through conventional catalytic and supercritical non-catalytic 

transesterification. In conventional catalytic transesterification, either homogenous or 

heterogeneous base or acid catalyst can be applied. Even though there is a great 

interest in both of these processes, there are some drawbacks that need to be 

considered. The problem with homogenous transesterification is that it is very 

sensitive to fatty acids and water concentration which could lead to saponification. 

The soap formed prevents glycerol separation and will damage the engine in the long 

run; hence, a further purification step is needed to separate it from biodiesel. Apart 

from that, there is also the problem of immiscible phases of the lipid and alcohol, 

which requires vigorous stirring to enable good contact of reactants for the reactions 

to occur (Kusdiana & Saka, 2001). Even though heterogeneous transesterification 

offers a series of advantages such as recovery of catalyst, however, refined feedstock 

is still specifically required for the base catalyst and they tend to lose their catalytic 

activity after several reuses (Di Serio et al., 2007; Di Serio et al., 2008; Marchetti et 

al., 2007a; Ngamcharussrivichai et al., 2007). Furthermore, the disadvantages of 

heterogeneous solid acid catalyst include corrosive, longer reaction time and weak 

catalytic activity (Juan et al., 2011). Due to these disadvantages, another alternative 

has been considered; supercritical non-catalytic transesterification process. 
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1.1 Supercritical Non-catalytic Method for Biodiesel Production 
 
 
One of the advantages of biodiesel production by supercritical method is it 

does not require any catalysts or auxiliary chemical and does not generate significant 

wastes (Demirbas, 2002; Kusdiana & Saka, 2001; Pinnarat & Savage, 2008; Saka & 

Kusdiana, 2001). Figure 1.2 shows a schematic diagram for biodiesel production by 

supercritical methanol (SCM). This figure shows that biodiesel production by SCM 

requires a minimum number of processing steps because the feedstock pre-treatment 

to remove moisture and free fatty acids, as well as some of the product post-

treatment steps, such as neutralization, washing and drying are not necessary 

(Sawangkeaw et al., 2010). As a consequence, this method has a low overall 

production time. 

 

 

Figure 1.2: Biodiesel production with SCM: (A) reactor and (B) product separation 
and methanol recovery unit (Sawangkeaw et al., 2010) 
 

 Currently, most of researches on biodiesel production have been conducted 

on supercritical alcohol. Methanol (Demirbas, 2009a) and ethanol (Vieitz et al., 

2008) are the most common type of alcohols used to make biodiesel. Biodiesel 

production with SCM still has several challenges in its research and development. 

For example, to achieve the highest oil and methanol to FAME conversion rates and  
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yields, high pressures (19-45 MPa), high temperatures (320-350 °C) and high 

methanol to oil ratios (40:1-42:1) have been reported in several studies (Demirbas, 

2002; Kusdiana & Saka, 2001; Saka & Kusdiana, 2001). Hence, there are some 

researches that have been conducted which focused upon reducing the high operating 

pressure, temperature and methanol to oil molar ratio by several techniques such as 

the addition of co-solvents or catalysts by using a modified supercritical process 

(Cao et al., 2005; Han et al., 2005; Tan et al., 2010a; Yin et al., 2008). 

 

 Even though the application of co-solvents to reduce the high operating 

pressures, temperatures and molar ratio of methanol to oil ratio make this process 

attractive, however, the over-produced glycerol becomes another hurdle in the 

supercritical methanol process. Consequently, the non-catalytic supercritical method 

has turned to a new solvent application such as methyl acetate to produce glycerol-

free biodiesel. Supercritical methyl acetate (SCMA) produces triacetin at the end of 

reaction other than FAME. Triacetin has no adverse effects on the main fuel 

characteristics and the addition of triacetin to methyl oleate improved the pour point 

of biodiesel (Saka & Isayama, 2009). Hence, supercritical methyl acetate technology 

is a promising method to produce a clean renewable fuel. 

 

 

1.2 Feedstock for Biodiesel Production 
 
 
 Vegetable oil has commonly been used as oil feedstock for biodiesel 

production since it is readily available in large quantities. Figure 1.3 shows the global 

vegetable oil production (Carter et al., 2007). In year 2008, palm oil is the largest 

supply of edible oil in the world with Malaysia being the largest producer (Sumathi 
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et al., 2008). Palm oil has dominated the world’s vegetable oil demand because of its 

versatile applications ranging from food to consumer products, and currently being 

utilized as biodiesel. Furthermore, palm oil has high oil yield, requires smaller area 

of land to produce oil and has the lowest production cost relative to other energy 

crops (Janaun & Ellis, 2010). However, in terms of the properties of biodiesel 

derived from palm oil, even though it meets the requirement of EN 14214 and ASTM 

D6751 standards, palm oil biodiesel is typically associated with high cloud point and 

pour point, limiting its usage in warmer climates (Janaun & Ellis, 2010). In addition, 

utilization of palm oil like other edible oils (soybean, canola, sunflower, and 

rapeseed) is expected to create a short supply of food for human consumption (Emil 

et al., 2010). 

 

 

Figure 1.3: Global vegetable oil production (Carter et al., 2007) 
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 The utilisation of non-edible oil as biodiesel feedstock is expected to 

minimize the problems associated with edible oil. Table 1.1 shows the examples of 

non-edible oil source and its oil yield. Among the oils, Jatropha is receiving 

considerable attention in many parts of the world due to the advantages such as 

higher yield than other vegetable oils, easy to cultivate and possible reclamation of 

waste land for cultivation (Openshaw, 2000). In addition, conversion of Jatropha oil 

into biodiesel is comparable in the process and quality to other type of edible oils 

(Pinzi et al., 2009). 

 

Table 1.1: Oil yield for major non-edible oil resources (Gui et al., 2008) 

Oil source Oil yield (kg oil/ha) Oil yield (wt %) 

Jatropha 1590 Seed (35-40); Kernel (50-60) 

Rubber seed 80-120 40-50 

Castor 1188 53 

Pongamia pinnata 225-2250 30-40 

Sea mango N/A 54 

 

  

1.3 Problem Statement 
 
 
 Fatty acid methyl esters, also called biodiesel have been accepted widely and 

have become the leading biofuel for diesel engines since they have very similar fuel 

properties to fossil fuel and can be used without any changes to the engine. However, 

current production technology of biodiesel through conventional homogenous 

transesterification is time consuming and may require complicated purification steps. 

On the other hand, non-catalytic supercritical methanol method offers less 
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problematic and easier operation compared with homogenous reaction. However, 

supercritical method using methanol as the solvent produces glycerol as side product 

which may also complicate the separation process. Hence, a new solvent for glycerol 

free biodiesel production could create simpler reaction and solve the problems with 

overproduced glycerol. 

 

 The exploitation of edible oils for biodiesel production may lead to 

controversial issues of food versus fuel. This is because the supply and demand of oil 

for fat and food industries may be jeopardize if edible oils are being utilized for fuel 

as well. Due to this factor, it is crucial to search for other alternative oil feedstock for 

biodiesel production to substitute edible oils. 

 

 Therefore, the aim of this work is to study the feasibility of methyl acetate as 

a solvent for non-catalytic supercritical method in the production of biodiesel. 

Jatropha curcas oil will be used as oil feedstock to investigate its feasibility as non-

edible oil for biodiesel production via glycerol – free production method. 

 

 

1.4 Research Objective 
 
 
 This research project aims to achieve the following objectives: 

i) To study, optimize and compare the transesterification of Jatropha 

curcas oil using SCMA and SCM with varying process variables; 

reaction time, reaction temperature and molar ratio of methyl acetate 

(MA)/methanol (MeOH) to oil. 
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ii) To investigate the thermal stability of FAME and triacetin in 

supercritical methyl acetate 

iii) To study the effects of water, free fatty acids and acid acetic 

concentration on FAME yield in supercritical treatment. 

iv) To characterize the extracted Jatropha oil and the Jatropha biodiesel 

produced from SCMA reaction according to the required standard. 

 

1.5 Scope 
 
   
 This study consists of oil extraction, transesterification process study using 

supercritical methyl acetate and methanol, thermal stability study of fatty acid methyl 

esters (FAME) and triacetin in supercritical methyl acetate, and effect of water, free 

fatty acid and acetic acid concentration on FAME yield. The purpose of oil 

extraction is to obtain the oil required throughout this study and also to determine the 

oil content of Jatropha curcas. The extracted oil was also characterized based on 

Malaysian Palm Oil Board (MPOB) standard method (MPOB P2.3, P2.5, P3.1, P3.2) 

to determine its basic properties such as acid value, iodine and fatty acid value as 

well as peroxide value. 

 

 For transesterification process study, biodiesel was synthesized using methyl 

acetate as solvent by non-catalytic supercritical method. The range of temperature 

studied was from 340 °C to 420 °C, reaction time of 10 to 110 minutes and molar 

ratio of methyl acetate to oil from 20 mole/mole to 60 mole/mole. All these process 

variables were then optimized. Subsequently, the feasibility of methyl acetate as a 

solvent in transesterification of FAME was compared with supercritical methanol. 

The range of temperature studied for supercritical methanol is 276 °C to 394 °C, 
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reaction time from 5 to 35 minutes and molar ratio of methanol to oil from 5 

mole/mole to 61 mole/mole. The ranges of variables chosen in this study are also 

comparable with reported studies for biodiesel production using supercritical 

method.  

 

 Finally, thermal stability study of FAME and triacetin, and the effects of 

water, free fatty acid and acetic acid concentration on biodiesel yield by supercritical 

methyl acetate was investigated further. This study was investigated based on the 

optimum conditions obtained in transesterification process studied using supercritical 

methyl acetate. The subsequent results obtained from effects of water and free fatty 

acids studies were compared with supercritical methanol based on experimental runs. 

The FAME sample obtained was also characterized and compared with the American 

Society Testing and Materials (ASTM D6751) and European standard (EN 14214) 

standard. 

 

 

1.6 Organization of Thesis 
 

 There are five chapters in this thesis and each chapter gives specific 

information about this research project. 

 

Chapter 1 gives the introductory of the research project. This chapter starts with 

current energy scenario that leads to development of alternative energy particularly 

biodiesel. This chapter also gives brief information about biodiesel production 

particularly supercritical method and also example of feedstock to produce biodiesel. 

10 
 



The problem statement, scope and objective of this research project are also stated 

clearly in this chapter. 

 

 Chapter 2 gives literature review on this research project background. This chapter 

begins with definition of biodiesel, advantages and disadvantages of biodiesel, and 

transesterification process. Further in this chapter gives the reviews on feedstock and 

solvents available for synthesis of biodiesel. Other topics covered in this chapter 

include description on variables affecting transesterification process, thermal 

stability, biodiesel quality and design of experiment.  

 

Chapter 3 describes the materials and methodology used in this project. The first part 

explains about the list of materials and chemical used in this research project. The 

subsequent topics describe the methodology of extraction and characterization of 

Jatropha curcas oil, transesterification process study, analysis and characterization 

of FAME. 

 

Chapter 4 presents the results and discussions of this project. The first part of the 

chapter contains the results and discussion of Jatropha oil properties. This is 

followed by transesterification study using supercritical methyl acetate. The results 

and discussion include design of experiment, development of regression model 

equation, results on statistical analysis, effects of process variables and optimization 

study. Similar topics are also discussed for transesterification study using 

supercritical methanol. Then, thermal stability study in supercritical methyl acetate, 

as well as the effects of water, free fatty acids and acetic acid concentration on 

FAME are discussed. Subsequent topic on this chapter contains the discussion on 
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difference between the performance of supercritical methyl acetate and methanol. 

The final part of this chapter presents the results and discussion of biodiesel 

characterization. 

 

Chapter 5 concludes the research project. Recommendations for future work related 

to this research project are also given. 
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CHAPTER TWO 
 
 

LITERATURE REVIEW 
 
 
 
 

This chapter reviews background information of the study. It begins with 

brief information on biodiesel, advantages and disadvantages of biodiesel, methods 

and feedstock to produce biodiesel, introduction on solvents, Jatropha curcas oil, 

and variables affecting transesterification reaction. The description on biodiesel 

quality is presented in the subsequent topic. Finally the design of experiments (DOE) 

using response surface methodology (RSM) combined with central composite design 

(CCD) is presented at the end of chapter. 

 

 

2.1 Biodiesel 
 
 
2.1.1 Definition of Biodiesel 
 
 
 Biodiesel is defined as an alternative diesel fuel comprised of mono-alkyl 

esters of long-chain fatty acids derived from vegetable oils or animal fat. This fuel is 

obtained by a transesterification reaction with an alcohol; with or without the 

presence of a catalyst to produce glycerol as co-product (Janaun & Ellis, 2010). In 

experimental studies, the final product is termed as fatty acid alkyl esters (FAAE) or 

fatty acid methyl esters (FAME) instead of biodiesel unless it meets the specification 

of ASTM D6751 (Knothe, 2010). 
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2.1.2 Advantages and Disadvantages of Biodiesel 
 
 
 The application of biodiesel in diesel engines is advantageous for its 

environmental friendliness over petrol-diesel. The main advantage of using biodiesel 

is that it helps to reduce carbon dioxide and other pollutants emitted from vehicle 

engines (Juan et al., 2011). The use of millions of vehicles across the globe 

contribute a lot in generating green house gases such as carbon dioxide, carbon 

monoxide, nitrogen oxide and sulphur which cause climatic distraction such as 

global warming (Atadashi et al., 2010). It has been reported that commercial 

biodiesel fuel can significantly reduced exhaust emissions by 75-83% compared to 

petro-diesel based fuel (Demirbas, 2009b).  Furthermore, Helwani et. al (2009) have 

reported that combustion of neat biodiesel decreases carbon monoxide (CO) 

emission by 46.7%, particulate matter emission by 66.7% and unburned 

hydrocarbons by 45.2%.  

 

 Biodiesel also provides significant lubricity improvement over petro-diesel 

fuel (Demirbas, 2009b; Quesada-Medina & Olivares-Carrillo, 2011). This lubrication 

property helps in improving the fuel injectors and fuel pumps lubrication capacity. 

This could therefore prolong the self-life of the engines. Biodiesel also has better 

properties compared to petro-diesel in terms of biodegradability, free sulphur 

content, viscosity, density and flash point (Andrade et al., 2011; Prafulla & 

Shuguang, 2009). Other advantages of biodiesel are it is synthesized from renewable 

sources (Juan et al., 2011), portability, lower aromatic content and high combustion 

characteristics (Atadashi et al., 2010). 
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Although the environmental considerations for biodiesel are particularly 

favourable in terms of overall reduced emissions, however, the disadvantages of 

biodiesel include increase emission of nitrogen oxides (Szybist et al., 2005) and 

higher fuel cost compared to petroleum due to higher cost of lipid feedstock (Knothe, 

2010). However, the cost of biodiesel could vary depending on local conditions such 

as distance from plantation to production site and availability of local feedstock 

(Soetaert & Vandamme, 2009). Another disadvantage associated with the use of 

biodiesel is poor low-temperature flow properties, due to relatively high cloud and 

pour point (Knothe et al., 2005; Mittelbach & Remschmidt, 2004). This problem 

could clog fuel lines and filters and causing major operability problems. Despite of 

these several drawbacks of biodiesel, the advantages of biodiesel nevertheless 

superseded generally on the environmental aspects, thus making it a very popular 

alternative fuel to replace petroleum derived diesel oil. 

 

 

2.1.3 Transesterification Process 
 
 
 Several methods have been developed to convert vegetable oil such soy and 

rapeseed oil into biodiesel. These methods include direct use of vegetable oil, micro-

emulsion, thermal cracking and transesterification (Juan et al., 2011). Direct use of 

vegetable oil is not applicable to most of diesel engines as the high viscosity would 

damage the engine by causing coking and trumpet formation (Agarwal & Agarwal, 

2007). Meanwhile, biodiesel obtained from micro-emulsion and thermal cracking 

methods would likely lead to incomplete combustion due to a low cetane number and 

energy content (Leung et al., 2010). Cetane number is a measure of ignition quality. 

Hence, when cetane number is low, it shows an increased emission due to incomplete 
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combustion in the engine. Consequently, transesterification seems to be the best 

choice since the physical characteristics of fatty acid esters (biodiesel) are very close 

to those of diesel fuel and the process is relatively simple (Demirbas, 2005). 

 

Transesterification is the general term used to describe the important class of 

organic reactions where an ester is transformed into another through interchange of 

the alkoxy moiety. As shown in Equation 2.1, transesterification is a reversible 

reaction and the transformation occurs essentially by mixing reactants. The source of 

vegetable oil (triglycerides) can be from edible or non-edible oil. The oil can be 

obtained from waste cooking oil or obtain directly from the oil-bearing seeds. The 

alkyl esters produced depend on the alcohol used where methanol (R = CH3) and 

ethanol (R = CH2CH3) are the most common. The reaction can be catalyzed by 

homogenous, heterogeneous or enzymatic catalyst. Excess alcohol with adequate 

catalyst generally forces the reaction equilibrium toward the products of biodiesel 

esters and glycerol (Meher et al., 2006). The stoichiometric relationship requires 3 

mol of alcohol per mole of triglyceride (3:1).  

 

 
 

 The overall process to produce alkyl esters is reversible in which it consists of 

three consecutive steps as can be seen in Equation 2.2a, 2.2b and 2.2c (Ma & Hanna, 

1999). In the first step, reaction between triglyceride and alcohol produces 
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diglyceride and ester. Then in the second reaction, diglyceride from the first reaction 

step reacts with alcohol to produce monoglyceride and esters. Finally, the reaction 

between monoglyceride from the second reaction with alcohol produces esters and 

glycerol.  

 

 

 

Other than alcohol, biodiesel can also be produced using other type of 

solvent. For instance, methyl acetate has been utilized to produce biodiesel. The 

reaction is presented in Equation 2.3 where the reaction between triglyceride and 

methyl acetate produces FAME and triacetin. 

 

 

 

Similar to the reaction between triglyceride with alcohol, the reaction 

between triglycerides and methyl acetate is reversible and produces one molecule at 

a time to generate one molecule each of monoacetylglyceride and FAME. In the 

same manner, diacetylglyceride and FAME are generated from monoacetylglyceride 

and methyl acetate, and finally triacetin and FAME are generated from 
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diacetylglyceride and methyl acetate (Saka & Isayama, 20009). When methyl acetate 

is utilized, triacetin generated is also considered as the product since it can act as 

biodiesel additive. 

 

 

2.1.4 Methods and Catalysts for Biodiesel Production 
 
 
 Generally, there are two methods of transesterification which are catalytic 

and non-catalytic transesterification. In catalytic reaction, various catalysts are 

employed such as homogenous base and acid catalyst, heterogeneous and enzymatic 

catalyst. Meanwhile, non-catalytic reaction includes supercritical and subcritical 

processes, and co-solvent system. 

 

 

2.1.4 (a) Catalytic Method 
 
 
 In general, a catalyst is used to initiate the esterification reaction for making 

biodiesel. The catalyst enhances the solubility of alcohol and thus increase the 

reaction rate (Karmakar et al., 2010). The type of catalyst used for producing 

biodiesel is very much dependent on free fatty acids (FFA) content of vegetable oil 

(Juan et al., 2011). The most commonly used base catalysts are sodium hydroxide 

(NaOH), potassium hydroxide (KOH) and sodium methoxide (CH3ONa) (Vicente et 

al., 2004). Normally, homogenous base catalytic method is used when FFA content 

of the feedstock is less than 1%. The base-catalyzed process proceeds faster than 

acid-catalyzed reaction and a successful transesterification reaction by this catalyst 

produces two liquid phases which are ester and crude glycerol (Demirbas, 2008). 

18 
 



However, base-catalyzed reaction is affected by water content and free fatty acids of 

oils or fat. Free fatty acids can react with base catalysts to form soaps and water, thus 

decreasing the yield of biodiesel and make the separation of biodiesel and glycerol 

difficult.  

 

 On the other hand, homogenous acid catalyst is used when there is a high 

amount FFA content of more than 1%. The examples of acid catalysts used are 

sulphuric acid (H2SO4) and phosphoric acid (H3PO4). Acid catalysts can 

simultaneously catalyze both esterification and transesterification reactions. The 

advantage of using acid catalyst is that they can directly produce biodiesel from low-

cost lipid feedstock, generally associated with high FFA concentrations (Lotero et 

al., 2005).  However, reaction with acid catalysts has slow reaction rate and requires 

high ratio of alcohol to triglyceride (Karmakar et al., 2010). 

 

 Heterogeneous catalyst is a type of solid catalyst which allows the catalyst to 

be easily separated from the biodiesel by simple filtration. The heterogeneous 

catalyzed process used solid catalyst such as metal oxides (Marchetti et al., 2007b), 

zeolites, resins, membranes and enzyme to catalyze the transesterification process. 

Application of heterogeneous catalyst could eliminate those post-reaction 

purification steps such as neutralization and washing as needed in homogenous 

catalyst process (Atadashi et al., 2011). In addition, it could potentially lead to 

cheaper production costs because the catalyst can be reused since it can be separated 

easily (Lopez et al., 2005). However, generally heterogeneous catalyst system faces 

difficulties in term of leaching of active sites from solid catalyst (Lopez et al., 2005). 
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 Enzymatic transesterification using lipase is another method of biodiesel 

production. This method has advantages in terms of easy product separation, minimal 

wastewater treatment needs, easy glycerol recovery and absence of side reactions 

(Raman et al., 2008). However, the largest obstacle of this method is the high cost for 

applying enzymes to industrial systems where the goal is to make a product in high 

volume and at lower cost (Modi et al., 2007). 

 

 

2.1.4 (b) Non-catalytic Method 
 
 
 Supercritical and subcritical alcohol transesterification are the examples of 

reaction without the need of catalyst. This method could omit costly and time-

consuming steps of removing catalyst as well as special equipment required for 

handling highly corrosive catalyst. In addition, transesterification reaction in 

supercritical conditions can be completed within minutes, while conventional 

catalytic transesterification normally takes several hours (Huayang et al., 2007). 

Another positive effect of using supercritical conditions is that the alcohol does not 

only act as reactant but also as an acid catalyst (Kusdiana & Saka, 2004).  

 

Above the critical temperature, a gas cannot be liquefied. Thus, supercritical 

fluid poses liquid as well as gaseous properties that have a lot of application 

including to carry out chemical reactions (Mittelbach, 2009). Table 2.1 shows the 

critical states for alcohol ranging from methanol to 1-octanol as reported by Warabi 

et. al (2004a). In their study, the reaction conditions for esterification and 

transesterification of different alcohols were determined where percent conversion to 

fatty acids esters were shown  at 10 minutes and 30 minutes reaction times of 300 
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°C. In general, the more unsaturated the fatty acid is, the faster the rates of 

esterification. Meanwhile, transesterification of rapeseed oil triglycerides exhibited 

slower rates of conversion than esterification reactions. However, the duration 

required for complete conversion was close to the alkali-catalyzed transesterification. 

Referring to Table 2.1, it shows that methanol is the best solvent for 

transesterification since the yield of FAME obtained is much higher than other types 

of alcohols used. In methanolysis, the methoxide ion formed could break down the 

triglyceride easily to form FAME and glycerol. Hence, this could be one of the 

reasons why reaction with methanol produces higher yield.  

 

Table 2.1: Critical states and yield of fatty acids esters for different alcohols (Warabi 
et al., 2004a) 

Alcohol Critical 
temperature 

(°C) 

Critical 
pressure 
(MPa) 

Reaction 
pressure at 

300 °C 
(MPa) 

Esterification 
yield 

(10 min) % 

Transesterification 
yield  

(30 min) % 

Methanol 239 8.09 20 98 98 

Ethanol 243 6.38 15 79 88 

1-propanol 264 5.06 10 81 85 

1-butanol 287 4.90 9 80 75 

1-octanol 385 2.86 6 - - 

 

In another study on supercritical alcohol reported by Kusdiana and Saka 

(2001), the reaction kinetics for subcritical and supercritical transesterification of 

rapeseed oil was investigated. They reported that supercritical methanol performed 

much better than subcritical conditions with an optimum reaction temperature of 350 

°C and optimum pressure of 19 MPa. In addition, high molar ratio of methanol to oil 

of 42:1 significantly increases conversion rates. The conversion of biodiesel reported 
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at this optimum condition were nearly 95 wt% compared to 60 wt% for a 6:1 ratio at 

350 °C when reaction duration was fixed at 4 minutes.  

 

 

2.1.5 Side Reactions: Saponification and Hydrolysis 
  
 
 Normally, transesterification reaction can be accompanied with side reactions 

such as saponification and hydrolysis. These reactions depend on the quality of 

feedstock. High FFA content present in vegetable oil will be neutralized with excess 

base, thus potentially resulting in two undesirable products (Lotero et al., 2005).  

 

As shown in Equation 2.4, saponification creates soap and water from excess 

free fatty acids in the mixture. Meanwhile Equation 2.5 shows a second type of side 

reaction, hydrolysis reaction, which causes conversion of biodiesel esters, via base 

catalysis to free fatty acids. The free fatty acids can subsequently react with base-

catalyst and will result in the formation of more soap and water until the catalyst is 

finally consumed and deactivated. 

 

RCOOH  +  NaOH                  R’COONa+     +   H2O           (2.4) 

FFA                    Base catalyst                Soap    Water 

 

RCOOR’   +   H2O                    RCOOH      +   R’OH           (2.5) 

Alkyl ester                              Base catalyst    FFA  Alcohol 
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2.1.6 Glycerol Production 
 
 

The production of biodiesel is accompanied by the formation of glycerol as 

the by-product when reacting triglycerides with alcohol. Glycerol is commonly used 

for personal care products such as soaps, cosmetics, hair care, toothpaste, in 

pharmaceutical, and also used as sweetener in candies and cake (Behr et al., 2008; 

Jakobson et al., 1989; Morrison, 1994).  

 

The increase of biodiesel production in recent years has led to the oversupply 

of glycerol. Glycerol obtained from transesterification reaction does not require any 

further processing except purification (Knothe, 2010). However, in alkaline 

catalyzed method, glycerol phase was recovered along with a mixture of methanol, 

water, and alkaline catalyst. Thus, in order to produce pure glycerol, crude glycerol 

must be neutralized by acid such as sulphuric acid and this process forms a large 

quantity of salt. Therefore, purification of crude glycerol is complicated and cost 

consuming. The sales value of this crude glycerol is extremely low at approximately 

USD 0.1/kg, compared with the purified glycerol at approximately USD 1.3-2.0/kg. 

When the cost of transportation is considered, the market price becomes 

uneconomical (Johnson & Taconi, 2007). Therefore, effective production of 

biodiesel without glycerol formation is worth to be established. 

 

There are a few processes proposed to overcome this problem. For instance, 

Fabbri et al. (2007) have proposed a study in which soybean oil was reacted with 

dimethyl carbonate, in the presence of sodium methoxide as homogenous catalyst to 

produce FAME and glycerol carbonate (GC) simultaneously. In this process, 

dimethyl carbonate is utilized as methylating agent instead of methanol and GC is 
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obtained as side product rather than the lower-valued glycerol. Even though the 

properties of biodiesel produced were comparable with those produced from 

conventional method-based reaction, however this method suffers from long reaction 

time (5 hours) and it still requires alkaline catalyst in the reaction which is difficult to 

be adapted for some vegetable oil especially those with high content of free fatty 

acids such as Jatropha curcas oil. Furthermore, the presence of catalyst necessitates 

tedious separation and purification procedures. 

 

 

2.1.7 Feedstock to Produce Biodiesel 
 
 
 Generally, all types of vegetable oils and animal fats can be utilized as 

feedstock for biodiesel production. Most of these oils and fats have a similar 

chemical composition which consists of triglyceride with different amounts of 

individual fatty acids. The major difference between methyl esters from different 

feedstock is the amount of unsaturated fatty acids. The best combustion 

characteristics as well as oxidation stability of biodiesel can be obtained when it is 

derived from saturated fatty acids. However, cold temperature behaviour is 

unfavorable due to high melting points of these fatty acids. On the other hand, high 

unsaturated fatty acids leads to optimum cold temperature properties, but the 

oxidation and storage stability is not so good (Mittelbach, 2009). 

 

Table 2.2 shows the oil and fatty acid composition of some selected vegetable 

oil sample. 

 

 

24 
 


