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KEBARANGKALIAN PERALIHAN MARKOVAN: TATACARA 

PENGANGGARAN DAN UJIAN 

 

5 ABSTRAK 

Pembolehubah-pembolehubah kesudahan yang dijana daripada kajian-kajian 

longitud secara amnya adalah berkorelasi yang mana menimbulkan suatu cabaran 

sukar untuk memodelkan data sukatan-sukatan berulang. Adalah berfaedah untuk 

mengambil perhatian bahawa hubungan antara pembolehubah-pembolehubah 

bersandar dan juga hubungan antara pembolehubah bersandar dengan pembolehubah 

penerang boleh mendedahkan maklumat yang sangat berguna kepada penggubal 

dasar dan penyelidik dalam pelbagai bidang. Dalam memodelkan data dengan 

kesudahan-kesudahan yang bersandar serta kesudahan-kesudahan yang berkait 

dengan pembolehubah-pembolehubah penerang berpotensi, model-model sut dan 

bersyarat boleh digunakan. Kebanyakan hasil kerja yang ditemui dalam literatur 

adalah berdasarkan model-model sut dan hanya sebahagian kecil hasil kerja 

menggunakan model-model bersyarat dalam menangani kebersandaran. Dalam suatu 

kelas model yang berbeza, dikenali sebagai bentuk eksponen kuadratik, model-model 

dibangunkan supaya mengambil kira kaitan yang wujud antara pembolehubah-

pembolehubah kesudahan. Model-model bersyarat, di sisi lain, adalah 

kebanyakannya berasaskan kepada andaian-andaian Markovan. Model-model ini 

semakin penting disebabkan sifat yang mendasari hubungan antara pembolehubah-

pembolehubah kesudahan yang dijana daripada data longitud. 

 

Dalam kajian ini, tiga objektif utama diutarakan: (i) penganggaran dan ujian 

bagi model bersyarat dengan kebersandaran kovariat untuk peringkat pertama dan 

peringkat lebih tinggi serta suatu ujian kebagusan penyuaian berdasarkan skor efisien 
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Rao telah dilanjutkan bagi kebarangkalian peralihan dengan kebersandaran kovariat 

untuk peringkat pertama dan peringkat lebih tinggi, (ii) suatu lanjutan model rantai 

Markov berdasarkan taburan sut dan tatacara pentakbirannya untuk peringkat 

pertama dan peringkat lebih tinggi dan lanjutan ujian skor efisien untuk menguji 

kebagusan penyuaian bagi model yang dicadangkan, dan (iii) suatu model lanjutan 

bagi data Bernoulli bivariat menggunakan bentuk eksponen kuadratik untuk rantai 

Markov dengan kebersandaran kovariat, tatacara pentakbirannya dan suatu cadangan 

lanjutan ujian skor efisien bagi menguji kebagusan penyuaian model tersebut. Model 

bentuk eksponen kuadratik yang dicadangkan mengambil kira respons-respons sut 

serta parameter berkaitan dengan hubungan antara dua pembolehubah hasil. 

 

Kegunaan ujian yang dicadangkan telah diperiksa dengan suatu contoh data 

sebenar. Untuk menunjukkan penggunaan ujian yang dicadangkan, kami telah 

mengaplikasi tatacara penganggaran dan tatacara ujian ini pada data Kajian 

Kesihatan dan Persaraan (HRS), suatu set data tinjauan isirumah longitud bagi kajian 

persaraan dan kesihatan warga tua di Amerika Syarikat. Keputusan kajian 

menunjukkan kesesuaian teknik-teknik yang dicadangkan. Juga, keputusan kajian 

simulasi mempamerkan kadar penolakan hipotesis benar kekal dalam julat yang 

munasabah bagi saiz sampel agak kecil atau besar. Ujian kuasa untuk model yang 

dicadangkan bentuk eksponen kuadratik telah dilakukan berdasarkan kajian simulasi 

dan keputusan menunjukkan kesahan ujian yang dicadangkan dalam perbandingan 

dengan ujian alternatif. 

 

  



xii 
 

MARKOVIAN TRANSITION PROBABILITIES: ESTIMATION AND TEST 

PROCEDURES 

 

6 ABSTRACT 

 

The outcome variables generated from longitudinal studies are generally 

correlated and do pose a formidable challenge to model the repeated measures data. 

It is worth noting that the relationship between dependent variables as well as 

between dependent and explanatory variables can reveal very useful information for 

the policy makers and researchers in various fields. In modeling for data with 

dependence in outcomes as well as when the outcomes are associated with the 

potential explanatory variables, marginal or conditional models can be used. Most of 

the works found in the literature are based on marginal models and only relatively 

few works employ the conditional models in addressing the dependence. In a 

different class of models, known as the quadratic exponential form, models are 

developed in order to take account of underlying associations among the outcome 

variables. The conditional models, on the other hand, are mostly based on the 

Markovian assumptions. These models are gaining importance increasingly due to 

the underlying nature of relationships among the outcome variables generated from 

longitudinal data. 

 

In this study, three major objectives have been addressed: (i) the estimation and 

test for the first and higher order conditional models with covariate dependence and a 

goodness of fit test based on the Rao’s efficient score has been extended for the first 

and higher order transition probabilities with covariate dependence, (ii) an extension 

of the Markov chain model based on the marginal probabilities and it’s inferential 
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procedure for the first and higher orders and extension of the efficient score based 

test for testing goodness of fit for the proposed model, and (iii) an extended model 

for the bivariate Bernoulli data employing the quadratic exponential form for the 

Markov chain with covariate dependence,  it’s inferential procedure and a proposed 

extension of the efficient score test for testing goodness of fit of such model. The 

proposed quadratic exponential form model takes into account marginal responses as 

well as a parameter corresponding to association between two outcome variables.  

 

The suitability of the proposed test has been examined with an example for real 

life data. To display an application of the proposed test, we have applied the 

estimation and test procedure for the Health and Retirement Study (HRS) data, a 

longitudinal household survey data set for the study of retirement and health among 

the elderly in the United States. The results indicate the suitability of the proposed 

techniques. Also, results of simulations demonstrate the rejection rate of the true 

hypothesis remains within reasonable range for relatively small or large sample sizes. 

The power test for the proposed model of the quadratic exponential form has been 

performed based on the simulation study and the results show the validity of the 

proposed test in comparison with the alternative tests. 
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1 CHAPTER  1- 

INTRODUCTION 

 

1.1 Background 

The importance of repeated measures data has been evidently increasing in 

various fields such as time series, survival analysis, environmental studies, 

economics, engineering, reliability, epidemiology, etc. The outcome variables 

generated from longitudinal studies are generally correlated and do pose a formidable 

challenge to model the repeated measures data. It is worth noting that the relationship 

between dependent variables as well as between dependent and explanatory variables 

can reveal very useful information for the policy makers and researchers in various 

fields. 

 

In modeling for data with dependence in outcomes as well as when the 

outcomes are associated with the potential explanatory variables, the marginal or 

conditional models can be used. Most of the works found in the literature are based 

on marginal models and only relatively few works employ the conditional models in 

addressing the dependence. Lee and Nelder (2004), showed that the conditional 

models are fundamental and marginal predictions can be obtained from the 

conditional models. In a different class of models, known as the quadratic 

exponential form, models are developed in order to take account of underlying 

associations among the outcome variables. The conditional models, on the other 

hand, are mostly based on the Markovian assumptions. These models are gaining 

importance increasingly due to the underlying nature of relationships among the 

outcome variables generated from longitudinal data. 
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To test for the various associations in the models, the Likelihood Ratio and 

Wald tests are used. However, it has been observed that the efficient score tests can 

provide equally good tests and can provide an easier alternative. 

 

1.2 Estimation and test procedure on Markov chain models 

During the past, Markovian transition probabilities were estimated and tested 

in various fields of research. For instance, Bartlett (1951) was able to construct a 

likelihood ratio test for the goodness of fit by proving the asymptotic normality of 

certain frequency counts in Markov chains. The test procedure has been designed to 

test whether a sequence of observations is at most r-dependent. It considered that the 

transition probabilities are known, or at least depend upon a limited number of 

parameters which can be estimated. If the transition probabilities are completely 

unknown, a different test is needed. Hoel (1954) presented such a test. The derivation 

depended heavily upon Bartlett's results and methods, and was essentially a 

modification and amplification of some of his methods. 

 

Anderson and Goodman (1957) obtained the maximum likelihood estimates 

and their asymptotic distribution for the transition probabilities in a Markov chain of 

arbitrary order when there are repeated observations of the chain. The likelihood 

ratio tests and usual chi-square tests used in contingency tables are obtained for 

testing the hypotheses. For testing stationary and order of higher-order Markov 

chain, Billingsley (1961b) used the Whittle’s formula, chi-square and maximum 

likelihood methods. McQueen and Thorley (1991) used the Markov chain 

methodology on annual stock returns. Albert (1994) proposed a class of Markov 

models for analyzing sequences of ordinal data from a relapsing-remitting disease 
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which the state space was expanded to include information about the ordinal severity 

score as well as the relapsing-remitting status. He proposed a parameterization that 

reduced the number of parameters. It is noteworthy that most of the research works 

have been conducted for estimating the parameters based on the first order Markov 

chain. Recently there were few methods for higher order Markov chains reported, 

where the estimation and test procedures becomes complex due to increased order of 

model. 

 

It is of great interest to develop methods of estimation and test procedure for 

higher order Markov chain models, but the problem is that the number of parameters 

increases exponentially with the order and it has prevented the use of models for 

second or higher orders, even when higher order dependence is present. There are 

some methods to reduce the number of parameters such as mixture transition 

distribution (MTD) model which was introduced by Raftery (1985) for lth-order 

Markov chains which combines realism for parsimony. Adke and Deshmukh (1988) 

obtained the limit distribution of a Markov chain of order 𝑘𝑘 > 1 under condition 

weaker than conditions assumed by Raftery (1985). 

 

More research on estimating and test procedures of parameters of Markov 

chain model are extended to the new methods where covariates and link functions are 

used and repeated measures are considered. For example, Muenz and Rubinstein 

(1985) proposed a model for Markov chain based on covariates and showed how the 

covariates relate to changes in state. An extensive covariate-dependent for higher 

order Markov models was improved by Islam and Chowdhury (2006). An influence 

of time-dependent covariates on the marginal probabilities of binary response has 
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been studied by Azzalini (1994). It has been shown that the covariates relate only to 

the mean value of the process, independently of the association parameter. Liang and 

Zeger (1986) used the generalized estimating equations to overcome the difficulties 

related to ‘lack of a rich class of models such as the multivariate Gaussian’. The key 

feature of their method is that one does not attempt to model the joint distribution of 

the subject profile; only the marginal distribution at each time point is modeled as a 

function for data autocorrelation. Azzalini (1994) explored the possibility of 

developing proper statistical methods for some of the situations for which 

generalized estimating equations provide a solution. An application of Markov 

models based on marginal probabilities is provided by Rahman and Islam (2007). 

 

A goodness of fit test for the logistic regression model based on binary data 

was employed by Tsiatis (1980). He modified the model related to the probability of 

responses with a set of covariates. For testing the null hypothesis, efficient score test 

was used. The models for correlated binary data often focus on the dependence of 

marginal response probabilities on covariates and experimental conditions, although, 

there is a lack of study based on joint probability distributions that contain 

convenient estimation of marginal means and correlations for correlated binary data. 

In this case, logistic representations has been suggested by Cox (1972) which noted a 

probability distribution of this quadratic exponential form can be reparameterized in 

terms of marginal parameters of ready interpretation. This has been further discussed 

by Zhao and Prentice (1990) and they provided a comprehensive estimation 

procedure for the quadratic exponential form models and provided measures based 

on covariances (Yi et al., 2009). The quadratic exponential form models have been 
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employed by Hudson et al. (2001) for analyzing familial aggregation of two 

disorders. 

 

In their work, Van Duijn et al. (2009), compared the bias, standard errors, 

coverage rates and efficiency of maximum likelihood and maximum pseudo-

likelihood estimators by using simulated social network data based on two versions 

of an empirically realistic network model. They assumed estimation of both the 

natural parameters and the mean-value parameters. Also, an improved pseudo-

likelihood estimation method aimed at reducing bias was proposed by them. 

 

Rao (2005) in a statistical literature on testing hypothesis, showed that the three 

asymptotic tests, Neyman-Pearson Likelihood Ratio (LR), Wald's statistic (W) and 

Rao's score (RS) are equivalent to the first-order of asymptotic, but for extension to 

second-order, they are different. 

 

A large class of test statistics, including the LR, Rao’s score and Wald’s 

statistics, and their characteristics, is considered by Ghosh and Mukerjee (2001); 

with reference to the quasi-likelihood arising from an unbiased estimating function. 

They gave an explicit formula for the third-order power function under contiguous 

alternatives. Their work can be different based on the usual likelihood, because 

during working with quasi-likelihood the related Bartlett identities may not hold. 

 

1.3 Problem statement 

The problem of some previous methods is that, most of them have been 

obtained for the first order Markov chain and only a few methods worked on second 
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and higher order such as Muenz and Rubinstein (1985). There are several methods 

defined and well researched for estimation of parameters such as mixture transition 

distribution (MTD) model (Adke and Deshmukh, 1988; Islam and Chowdhury, 2006; 

Raftery, 1985). However, most of the models do not associate explanatory variables 

in explaining the transition probabilities. Nevertheless, the test procedures of 

transition probabilities have not been well discovered. The extension of existing 

models is not easy for higher order. In order to evaluate the parameters using 

different tests such as stationarity, order of Markov chain, and goodness of fit test, 

commonly used methods such as the likelihood ratio test and the chi-square test are 

employed. The use of conventional methods i.e. the likelihood ratio test and the chi-

square test require the evaluation of the model based on both null hypothesis and 

alternative. This could result in increase in the amount of work and time besides the 

fact that usually there are not sufficient data for alternative hypothesis. Therefore, in 

order to overcome these drawbacks the efficient scores test is employed in this 

research which only requires the estimation of parameters under the true null 

hypothesis.  

 

Correlated outcomes are collected in many areas of research. The correlation 

between outcomes within individuals is of interest in statistical inferences. Most of the 

research has been on correlated binary data which are based on the dependence of 

marginal response probabilities on covariates and experimental conditions. 

 

There are only few studies which focused on the joint probability distributions 

that contain convenient estimation of marginal means and correlations for binary 
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outcomes (Cox, 1972; Cox and Wermuth, 1994, 2002; Yi et al., 2009; Zhao and 

Prentice, 1990). 

 

1.4 Objectives of the Investigation 

This study is planned and carried out to address the following objectives: 

1. To propose higher-order Markov chain models with covariate dependence. 

2. To develop alternative test procedures suitable for Markov chain models. 

3. To introduce new link functions in the quadratic exponential models for 

analyzing transition probabilities in order to consider the order of the 

underlying Markov chain model. 

4. To develop estimation and test procedures in the proposed models for 

higher order Markov chains. 

5. To apply the proposed models to real life data. 

 

1.5 Scope of study 

In this thesis, the efficient score test which only requires the estimate of 

parameters under the null hypothesis is provided for the goodness of fit test which 

could be satisfied to test the order and stationarity of  Markov chain model based on 

the conditional and marginal methods, by considering repeated measurements data. 

In a Markov chain framework, the current outcomes provide relationships of various 

orders with previous ones, over a period of time in a longitudinal analysis; which the 

relationships between outcome and risk factors can also be examined. This study 

extends the quadratic exponential model for displaying the estimation procedure for 

the nature and extent of dependence among the binary outcomes. In addition, a test 

procedure for testing the order of the underlying Markov chain is shown. The 
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proposed models and the test procedures have been examined thoroughly with 

applications to real life data. 

 

1.6 Organization of the thesis 

In this thesis, we will study the development of methods on the estimation and 

test procedures of transition probabilities for higher order Markov chain models. This 

thesis contains six main chapters. In the chapter on Literature Review (Chapter 2), an 

overview of the reported results related to this study and the main basic knowledge 

about this study such as definition of models, methods of estimations and tests and 

others are discussed in detail. Chapter 3 introduces the goodness of fit test for the 

first order Markov chain based on conditional probabilities by considering covariates 

and their expansion for higher order Markov chains. Then the proposed test is 

applied to the real life data to examine the suitability of the techniques. Chapter 4 

develops the goodness of fit test for the first and higher order Markov chains based 

on the marginal probabilities and a numerical example of the application of the 

proposed model is demonstrated. It also provides some simulation results for 

examining the suitability of the proposed models. In chapter 5 a quadratic 

exponential model is defined to test the order of Markov chain models, with its 

application for real life data. In Chapter 6 (Conclusions and Future Research), the 

overall conclusions based on the results and findings made in the present study are 

given in brief. Recommendations for future research based on the understanding and 

knowledge generated in the present study are also given in this chapter. 
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2 CHAPTER  2 -  

LITERATURE REVIEW  

 

2.1 Introduction 

The behavior of a Markov chain depends on the values used in the transition 

matrix, which specifies the probabilities that the system moves from one state to 

another in unit time. Standard texts assume that the values of such transition matrices 

are known. However, in most practical studies, this is not the case and the transition 

matrix needs to be estimated (Billingsley, 1961a). 

 

There are various methods and models for estimating the transition probability 

matrix. These models were proposed for fitting first or higher order Markov chains. 

However, most of these studies focused on the first or second order Markov chains 

and there is a lack of realistic methods for analyzing the parameters of higher order 

Markov models. In this chapter a review of the past literatures about methods of 

estimating and test procedure for transition probability matrices are provided. 

 

2.2 Repeated measurement data 

In the past, all the models have been for data from studies which for each 

variable there is just one value, i.e. each person is observed only one time. In 

longitudinal studies (repeated measures data), each person is observed more than 

once. In experiments, values of dependent variable are compared before and after 

training program. For these studies data can be analyzed with the procedures used for 

cross-sectional data only by considering that the residuals are uniform. But in general 

such uniformity cannot be assumed because differences between measurements of 
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effects of time or treatment show more variations on some observations. So repeated 

measurements model must be used. 

 

In statistics, analysis of data becomes more complex when subjects are 

observed (measured) more than once and we collect repeated measures (longitudinal) 

data. For instance, this could arise in an experiment where values of an outcome 

variable before and after a treatment or interference are compared, or the study is 

about looking at changes over time in one or more outcome variables (Littell et al., 

1996). 

 

Let us consider a set of observations, which only take two values, 1 as success 

and 0 as failure. For the ith individual this response can be represented by a random 

variable, 𝑌𝑌𝑖𝑖 , called binary variable, without loss of generality code the two possible 

values of 𝑌𝑌𝑖𝑖  by 1 and 0 and 

E(𝑌𝑌𝑖𝑖) = Pr(𝑌𝑌𝑖𝑖 = 1) =  𝜇𝜇𝑖𝑖 ,   Pr(𝑌𝑌𝑖𝑖 = 0) =  1 − 𝜇𝜇𝑖𝑖 .  

 

Binary observations of 𝑌𝑌𝑖𝑖  of n individuals are usually assumed to be 

independent. The problem is to develop good methods of analysis for assessing any 

dependence, 𝜇𝜇𝑖𝑖 , on explanatory variables. (Cox and Snell, 1989) 

 

2.3 Markov chain model 

A Markov process {𝑌𝑌𝑡𝑡} is a stochastic process with the property that, the 

probability of any particular future behavior of the process, when its current state is 

known exactly, is not altered by additional knowledge concerning its past behavior. 

A discrete-time Markov chain is a Markov process whose state space is a finite or 
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countable set, and its time set is 𝑻𝑻 =  {0, 1, 2, … }. Consider a discrete-time random 

variable 𝑋𝑋𝑡𝑡  taking values in the finite set 𝑬𝑬 =  {1, 2, … ,𝑚𝑚}. The first-order Markov 

hypothesis says that the present observation at time t is conditionally independent of 

those up to and including time (𝑡𝑡 − 2) given the immediate past [time (𝑡𝑡 − 1)]. Thus 

it can be written, 

Pr(𝑌𝑌𝑡𝑡 = 𝑗𝑗|𝑌𝑌0 =  𝑖𝑖0, … ,𝑌𝑌𝑡𝑡−2 =  𝑖𝑖𝑡𝑡−1,𝑌𝑌𝑡𝑡−1 =  𝑖𝑖) = Pr(𝑌𝑌𝑡𝑡 = 𝑗𝑗| 𝑌𝑌𝑡𝑡−1 =  𝑖𝑖)  

where 𝑖𝑖0, … , 𝑖𝑖𝑡𝑡−1, 𝑖𝑖, 𝑗𝑗 ∈ 𝑬𝑬. 

The above probability is called the first-order transition probability and is 

denoted by  𝑝𝑝𝑖𝑖𝑖𝑖 (𝑡𝑡). That is, 𝑝𝑝𝑖𝑖𝑖𝑖 (𝑡𝑡) = Pr(𝑌𝑌𝑡𝑡 = 𝑗𝑗| 𝑌𝑌𝑡𝑡−1 =  𝑖𝑖). 

 

The transition probabilities are functions not only of the initial and final states, 

but also of the time of transition as well. When the transition probabilities are 

independent of time, Markov chain has stationary transition probability and we have 

a homogeneous Markov chain. Then 𝑝𝑝𝑖𝑖𝑖𝑖 (𝑡𝑡) =  𝑝𝑝𝑖𝑖𝑖𝑖  is independent of t and arrange in 

a matrix 

𝑷𝑷 =  �

𝑝𝑝11 𝑝𝑝12 … 𝑝𝑝1m
𝑝𝑝21 𝑝𝑝22 … 𝑝𝑝2m
⋮ ⋮ ⋮

𝑝𝑝𝑚𝑚1 𝑝𝑝𝑚𝑚2 … 𝑝𝑝𝑚𝑚𝑚𝑚

� 

( 2.1) 

 

and refer to 𝑷𝑷 =  �𝑝𝑝𝑖𝑖𝑖𝑖 � as the Markov matrix or transition probability matrix of the 

process. A Markov process is completely defined once its transition probability 

matrix and initial state 𝑌𝑌0 (or the probability distribution of 𝑌𝑌0) are specified. That is 

Pr[𝑌𝑌0 =  𝑖𝑖0,𝑌𝑌1 =  𝑖𝑖1, … ,𝑌𝑌𝑡𝑡 =  𝑖𝑖𝑡𝑡] =  𝜋𝜋𝑖𝑖0  𝑝𝑝𝑖𝑖0,𝑖𝑖1  ⋯  𝑝𝑝𝑖𝑖𝑡𝑡−2,𝑖𝑖𝑡𝑡−1  𝑝𝑝𝑖𝑖𝑡𝑡−1,𝑖𝑖𝑡𝑡  ,  
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where 𝜋𝜋𝑖𝑖0 = Pr(𝑌𝑌0 =  𝑖𝑖0). Related computations show that ( 2.1) is equivalent to the 

Markov property in the form 

Pr(𝑌𝑌𝑛𝑛+1 = 𝑗𝑗1, … ,𝑌𝑌𝑛𝑛+𝑚𝑚 =  𝑗𝑗𝑚𝑚 |𝑌𝑌0 =  𝑖𝑖0, … ,𝑌𝑌𝑛𝑛 =  𝑖𝑖𝑛𝑛) 

                      = Pr(𝑌𝑌𝑛𝑛+1 = 𝑗𝑗1, … ,𝑌𝑌𝑛𝑛+𝑚𝑚 =  𝑗𝑗𝑚𝑚 | 𝑌𝑌𝑛𝑛 =  𝑖𝑖𝑛𝑛)  

for all time points n and all states 𝑖𝑖0, … , 𝑖𝑖𝑛𝑛 , 𝑗𝑗0, … , 𝑗𝑗𝑚𝑚  . 

 

The analysis of Markov chain concerns mainly the calculation of the 

probabilities of the possible realizations of the process. Central in these calculations 

are the n-step probability matrices 𝐏𝐏(𝑛𝑛) =  �𝑝𝑝𝑖𝑖𝑖𝑖
(𝑛𝑛)�. Here 𝑝𝑝𝑖𝑖𝑖𝑖

(𝑛𝑛) denotes the probability 

that process goes from state i to state j in n transitions. Formally, 

𝑝𝑝𝑖𝑖𝑖𝑖
(𝑛𝑛) = Pr(𝑌𝑌𝑡𝑡+𝑛𝑛 = 𝑗𝑗|𝑌𝑌𝑡𝑡 = 𝑖𝑖) .  

 

The n-step transition probability of a Markov chain satisfy 

𝑝𝑝𝑖𝑖𝑖𝑖
(𝑛𝑛) =  �𝑝𝑝𝑖𝑖𝑖𝑖  𝑝𝑝𝑘𝑘𝑘𝑘

(𝑛𝑛−1)
∞

𝑘𝑘=0

 , 
 

where 𝑝𝑝𝑖𝑖𝑖𝑖
(0) =  �1 𝑖𝑖𝑖𝑖 𝑖𝑖 = 𝑗𝑗

0 𝑖𝑖𝑖𝑖 𝑖𝑖 ≠ 𝑗𝑗
� . 

From the theory of matrices, 𝐏𝐏(𝑛𝑛) = 𝐏𝐏 × 𝐏𝐏(𝑛𝑛−1). By iterating this formula, 𝐏𝐏(𝑛𝑛) =

𝐏𝐏𝐧𝐧. 

 

In some situations, the present depends not only on the last state, but on the last 

l observations. We have then an lth-order Markov chain whose transition 

probabilities are 

Pr(𝑌𝑌𝑡𝑡 = 𝑗𝑗|𝑌𝑌0 =  𝑖𝑖0, … ,𝑌𝑌𝑡𝑡−2 =  𝑖𝑖𝑡𝑡−2,𝑌𝑌𝑡𝑡−1 =  𝑖𝑖) 

                         = Pr(𝑌𝑌𝑡𝑡 = 𝑗𝑗|𝑌𝑌𝑡𝑡−𝑙𝑙 =  𝑖𝑖𝑙𝑙 , … ,𝑌𝑌𝑡𝑡−1 =  𝑖𝑖) =  𝑝𝑝𝑖𝑖𝑙𝑙… 𝑖𝑖𝑖𝑖  .  
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For instance, if we set 𝑙𝑙 = 2 and 𝑚𝑚 = 3, the corresponding transition matrix is 

𝑷𝑷 =  

𝑌𝑌𝑡𝑡
𝑌𝑌𝑡𝑡−2 𝑌𝑌𝑡𝑡−1 1 2 3

1
2
3
1
2
3
1
2
3

1
1
1
2
2
2
3
3
3 ⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑝𝑝111
𝑝𝑝211
𝑝𝑝311
𝑝𝑝121
𝑝𝑝221
𝑝𝑝321
𝑝𝑝131
𝑝𝑝231
𝑝𝑝331

�

𝑝𝑝112
𝑝𝑝212
𝑝𝑝312
𝑝𝑝122
𝑝𝑝222
𝑝𝑝322
𝑝𝑝132
𝑝𝑝232
𝑝𝑝332

�

𝑝𝑝113
𝑝𝑝213
𝑝𝑝313
𝑝𝑝123
𝑝𝑝223
𝑝𝑝323
𝑝𝑝133
𝑝𝑝233
𝑝𝑝333⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 . 

 

 

Whatever the order is, there are (𝑚𝑚− 1) independent probabilities in each row 

of the matrix P, the last one of which is completely determined by the others since 

each row is a probability distribution summing to 1. The total number of independent 

parameters to be estimated is thus equal to 𝑚𝑚𝑙𝑙(𝑚𝑚− 1). 

 

2.4 Covariates 

Consider random variables 𝑌𝑌1, … ,𝑌𝑌𝑛𝑛  , not in general binary, and suppose that 

𝐸𝐸(𝑌𝑌𝑖𝑖) =  �𝛽𝛽𝑠𝑠′𝑋𝑋𝑖𝑖𝑖𝑖

𝑝𝑝

𝑠𝑠=1

 ,    
( 2.2) 

where {𝑋𝑋𝑖𝑖𝑖𝑖} (𝑖𝑖 = 1, … ,𝑛𝑛; 𝑠𝑠 = 1, … ,𝑝𝑝) are known constants and 𝛽𝛽1, … ,𝛽𝛽𝑝𝑝  are 

unknown parameters. In matrix forms 

𝐸𝐸(𝒀𝒀) = 𝜷𝜷′𝑿𝑿 , 𝐸𝐸(𝑌𝑌𝑖𝑖) =  𝜷𝜷′𝑿𝑿𝑖𝑖    (𝑖𝑖 = 1, … ,𝑛𝑛).  ( 2.3) 

 

For binary data, Cox and Snell (1989) considered the model 

𝜇𝜇𝑖𝑖 = Pr(𝑌𝑌𝑖𝑖 = 1) = 𝐸𝐸(𝑌𝑌𝑖𝑖) =  �𝛽𝛽𝑠𝑠′𝑋𝑋𝑖𝑖𝑖𝑖

𝑝𝑝

𝑠𝑠=1

 ,    
 

via to ( 2.2). 
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In representing the dependence of a probability on explanatory variables where the 

constraint 0 ≤  𝜇𝜇𝑖𝑖 ≤ 1 is certainly satisfied, assumes a dependence for 𝑖𝑖 = 1, … ,𝑛𝑛 , 

𝜇𝜇𝑖𝑖 =  
𝑒𝑒𝜷𝜷′ 𝑿𝑿𝑖𝑖

1 +  𝑒𝑒𝜷𝜷′ 𝑿𝑿𝑖𝑖
 , 1 −  𝜇𝜇𝑖𝑖 =  

1
1 +  𝑒𝑒𝜷𝜷′ 𝑿𝑿𝑖𝑖

 .   
( 2.4) 

 

Equations ( 2.4) are equivalent to 

𝜃𝜃𝑖𝑖 = log �
𝜇𝜇𝑖𝑖

1 −  𝜇𝜇𝑖𝑖
� =  𝜷𝜷′𝑿𝑿𝑖𝑖 =  �𝛽𝛽𝑠𝑠′𝑋𝑋𝑖𝑖𝑖𝑖

𝑝𝑝

𝑠𝑠=1

 ,    
( 2.5) 

or in other way 

𝜽𝜽 =  𝜷𝜷′𝑿𝑿   ( 2.6) 

The equation 𝜃𝜃𝑖𝑖 = log � 𝜇𝜇𝑖𝑖
1− 𝜇𝜇𝑖𝑖

� is called the logistic transform of the probability 

𝜇𝜇𝑖𝑖  and 𝜽𝜽 =  𝜷𝜷′𝑿𝑿  is a linear logistic model. 

 

In many ways ( 2.6) is the most useful analogue for binary response data of the linear 

model ( 2.3) for normally distributed data. For instance, let 𝑌𝑌1, … ,𝑌𝑌𝑛𝑛  be independent 

binary random variable distributed in conformity with ( 2.5) and let 𝑦𝑦1, … , 𝑦𝑦𝑛𝑛  be the 

observed values. Then the likelihood is 

∏ 𝑒𝑒𝜷𝜷′ 𝑿𝑿𝑖𝑖𝑦𝑦𝑖𝑖𝑛𝑛
𝑖𝑖=1

∏ �1 +  𝑒𝑒𝜷𝜷′ 𝑿𝑿𝑖𝑖�𝑛𝑛
𝑖𝑖=1

=  
exp�∑ 𝛽𝛽𝑠𝑠′ 𝑡𝑡𝑠𝑠

𝑝𝑝
𝑠𝑠=1 �

∏ �1 +  𝑒𝑒𝜷𝜷′ 𝑿𝑿𝑖𝑖�𝑛𝑛
𝑖𝑖=1

 ,      
 

where 𝑇𝑇𝑠𝑠 =  ∑ 𝑋𝑋𝑖𝑖𝑖𝑖𝑌𝑌𝑖𝑖𝑖𝑖   and 𝑡𝑡𝑠𝑠 is its observed value. Since the 𝑌𝑌𝑖𝑖’s are binary, 𝑇𝑇𝑠𝑠 is a 

random subtotal of the sth column of the matrix 𝑿𝑿. 

 

The goal of an analysis using this method is the same as that of any model-

building technique used in statistics: To find the best fitting and most parsimonious, 

yet biologically reasonable model to describe the relationship between an outcome 
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(dependence or response) variable and a set of independent (predictor or explanatory) 

variables. These independent variables are called covariates. 

 

2.5 Methods of estimation and test procedures 

If the transition probabilities are unknown, or else are specified functions of an 

unknown parameter, there arises the problem of making inferences about them from 

empirical data. For instance, for estimation and test procedures of parameters we 

need to know initial probabilities or distribution functions of parameters. 

 

2.5.1 Maximum likelihood estimation 

Billingsley (1961b) used the Whittle’s formula, chi-square and maximum 

likelihood methods to estimate and test parameters. Let {𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑛𝑛+1} be a sample 

from a first-order Markov process with transition probabilities, 𝑝𝑝𝑖𝑖𝑖𝑖 , and initial 

probabilities, 𝜋𝜋𝑖𝑖 . If {𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑛𝑛+1} is a sequence of (𝑛𝑛 + 1) states, then the 

probability that 𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑛𝑛+1 is in this sequence is just 𝜋𝜋𝑎𝑎1  𝑝𝑝𝑎𝑎1,𝑎𝑎2  ⋯  𝑝𝑝𝑎𝑎𝑛𝑛 ,𝑎𝑎𝑛𝑛+1 . For 

𝑖𝑖, 𝑗𝑗 = 1, … , 𝑠𝑠,  let 𝑛𝑛𝑖𝑖𝑖𝑖  be the number of transition from state i to state j, with 1 ≤ 𝑚𝑚 ≤

𝑛𝑛, for which 𝑎𝑎𝑚𝑚 = 𝑖𝑖 and 𝑎𝑎𝑚𝑚+1 = 𝑗𝑗. The 𝑠𝑠 × 𝑠𝑠 matrix 𝑭𝑭 =  �𝑛𝑛𝑖𝑖𝑖𝑖 � will be called the 

transition count of the sequence (Billingsley, 1961b). He has shown that 

�
�𝑛𝑛𝑖𝑖𝑖𝑖 −  𝑛𝑛𝑖𝑖  𝑝𝑝𝑖𝑖𝑖𝑖 �

2

𝑛𝑛𝑖𝑖  𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖 ,𝑗𝑗

 
( 2.7) 

is asymptotically chi-square in distribution. If all the 𝑝𝑝𝑖𝑖𝑖𝑖  are positive, then the 

degrees of freedom is 𝑠𝑠(𝑠𝑠 − 1).This chi-square statistic is useful for testing whether 

the transition probabilities of the process have specified values 𝑝𝑝𝑖𝑖𝑖𝑖 . There arises 

naturally in the problem of testing whether these transition probabilities have a 
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specified form 𝑝𝑝𝑖𝑖𝑖𝑖 (𝜃𝜃), where 𝜃𝜃 is an unknown parameter which should be estimated 

from the sample. 

 

Results of this sort apply equally well, of course, if the number of samples is 

three or more. It must be assumed, however, that the number of samples is fixed, 

while the sample sizes go to infinity. A different theory is needed in the opposite 

case, that in which the samples are of fixed length (say l), while the number n of 

them goes to infinity (Billingsley, 1961b). 

 

Berchtold and Raftery (2002) showed that given a set of observations, these 

parameters can be estimated by log-likelihood of the entire sequence of observations: 

ln 𝐿𝐿 =  � 𝑛𝑛𝑖𝑖𝑙𝑙  … 𝑖𝑖0 log�𝑝̂𝑝𝑖𝑖𝑙𝑙  … 𝑖𝑖0�
𝑚𝑚

𝑖𝑖𝑙𝑙  …𝑖𝑖0=1

, 
 

where 𝑛𝑛𝑖𝑖𝑙𝑙  … 𝑖𝑖0  denote the number of transitions of the type 𝑌𝑌𝑡𝑡−𝑙𝑙 =  𝑖𝑖𝑙𝑙 , … ,𝑌𝑌𝑡𝑡−1 =  𝑖𝑖1,

𝑌𝑌𝑡𝑡 =  𝑖𝑖0 in the data. The maximum likelihood estimate of the corresponding 

transition probability 𝑝𝑝𝑖𝑖𝑙𝑙  … 𝑖𝑖0  is then 𝑝̂𝑝𝑖𝑖𝑙𝑙  … 𝑖𝑖0 =  𝑛𝑛𝑖𝑖𝑙𝑙  … 𝑖𝑖0 𝑛𝑛𝑖𝑖𝑙𝑙  … 𝑖𝑖1+⁄  , where, 𝑛𝑛𝑖𝑖𝑙𝑙  … 𝑖𝑖1+ =

 ∑ 𝑛𝑛𝑖𝑖𝑙𝑙  … 𝑖𝑖0
𝑚𝑚
𝑖𝑖0=1 .  

 

2.5.2 Maximum pseudo likelihood estimation 

In some statistical studies because of the complexity of the likelihood function 

or for more power, some modification for likelihood is needed. One of the special 

forms is pseudo-likelihood which is useful when independent variables are complex 

in the full likelihood (Cox and Reid, 2004). 
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Cox and Reid (2004), considered random vector 𝑌𝑌 = (𝑌𝑌1, … ,𝑌𝑌𝑛𝑛) with density 

function 𝑓𝑓(𝑦𝑦, 𝜃𝜃), where 𝜃𝜃 is an unknown parameter. Maximum likelihood estimator 

of 𝜃𝜃 could be found from the independent observations which have approximately 

normal distribution with mean 𝜃𝜃 and variance of inverse Fisher information. If it is 

possible to indicate one or two dimensional distributions up to some order but not 

full q-dimensional, the univariate and bivariate densities for all 𝑠𝑠, 𝑡𝑡 = 1, … , 𝑞𝑞 can be 

specified. Then from the vector Y the first and second order log-likelihood 

contributions can be written as 

𝑙𝑙1(𝜃𝜃;𝑌𝑌) =  � log 𝑓𝑓(𝑦𝑦𝑠𝑠;  𝜃𝜃)
𝑠𝑠

 ,                                 
 

𝑙𝑙2(𝜃𝜃;𝑌𝑌) =  � log 𝑓𝑓(𝑦𝑦𝑠𝑠 ,𝑦𝑦𝑡𝑡 ;  𝜃𝜃)
𝑠𝑠>𝑡𝑡

−  𝑎𝑎𝑎𝑎𝑙𝑙1(𝜃𝜃;𝑌𝑌) , 
 

 

where a is an arbitrary constant. Considering 𝑎𝑎 = 0 corresponds to take all possible 

bivariate distributions and 𝑎𝑎 = 1/2 corresponds to take all possible conditional 

distributions; that is the pseudo-likelihood suggested by Besag (1974) for analyzing 

spatial data. It may represent the one-dimensional marginal distribution having no 

information about 𝜃𝜃. For many applications it is difficult to construct the full 

likelihood function. Besag’s Pseudo-likelihood is obtained from 𝑙𝑙2 with 𝑎𝑎 = 1/2 is a 

similar form in the analysis of spatial data. 

 

For some applications where it is difficult to find the full joint distribution, the 

pseudo-likelihood function of pairs of observations can provide a useful model. In 

other applications, the pseudo-likelihood function for bivariate normal distribution is 

the likelihood for the quadratic exponential distribution, proposed by (Cox, 1972; 

Cox and Wermuth, 1994; Zhao and Prentice, 1990). The score function of the 
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quadratic exponential is a special case of generalized estimating models where they 

show consistent estimators of parameters for the mean function. In a similar manner 

for a range of possible models for higher-order dependency, using the pseudo-

likelihood 𝑙𝑙2 may lead to consistent estimators of correlation parameters. 

 

Billiot et al. (2008), used maximum pseudo-likelihood estimator for 

exponential family models of marked Gibbs point processes. Many researchers 

worked on this area to estimate the energy function based on marked Gibbs point 

processes. The likelihood function is the best method for estimation if the energy 

comes from a parametric family model. The main problem is that the likelihood 

function includes an unknown constant factor which its value depends on the 

parameters and is difficult to estimate. One way of solving the problem is using the 

pseudo-likelihood function. They showed that the pseudo-likelihood function 

contains all properties of estimators such as strong consistency and asymptotic 

normality. 

 

In a recent paper, Van Duijn et al. (2009) compared the bias, standard  errors, 

coverage rates and efficiency of the maximum likelihood and maximum pseudo-

likelihood estimators based on two versions of an empirically realistic network 

model. Their results showed that it is better to use the maximum likelihood estimator 

than maximum pseudo-likelihood estimator and maximum bias-corrected pseudo-

likelihood estimator; however, in situations when the maximum likelihood is not 

feasible, then the maximum pseudo-likelihood could be useful. 
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2.5.3 Score test 

If the probability distribution of a set of variables contains k unknown 

parameters, the statistical hypothesis related to them can be simple or composite. 

When the hypothesis leads to a complete description of the values of the k 

parameters, it is a simple hypothesis; and if it leads to a collection of acceptable set, 

it is a composite hypothesis. 

 

An important problem is the estimation of parameters under restrictions of 

alternative hypothesis test from which their validity may be tested before the final 

estimates. There is another problem in estimating parameters when there are 

restrictions arising from empirical considerations. The precision of the estimates can 

be enhanced by using the empirical relations. However, slightly imprecise relation 

may result in bias in the estimates. It is observed that it may still provide better 

results as compared to that of a less efficient estimate (Rao, 1948). 

 

As shown by Rao (2005), the three asymptotic tests, Likelihood Ratio (LR), 

Wald's statistic (W) and Rao's score (RS) are equivalent to the first-order of 

asymptotic, but extension to second-order may be different. In general, if the null 

hypothesis is rejected, models for the alternative hypothesis should be considered. 

The score test depends on likelihood function only under true null hypothesis. If the 

score test is significant, there is no necessity to know about the alternatives. 

 

Let 𝑌𝑌 = (𝑌𝑌1, … ,𝑌𝑌𝑛𝑛) be an iid sample with density function 𝑓𝑓(𝑦𝑦,𝜽𝜽), where 𝜽𝜽 is 

p-dimensional vector parameter, and denote the log likelihood by 𝑙𝑙(𝜽𝜽;𝑌𝑌). The Fisher 

score vector of p components is defines as 
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𝜙𝜙(𝜽𝜽) =  
𝜕𝜕𝜕𝜕
𝜕𝜕𝜽𝜽

=  �𝜙𝜙1(𝜽𝜽), … ,𝜙𝜙𝑝𝑝(𝜽𝜽)�  

𝜙𝜙𝑖𝑖(𝜽𝜽) =  
𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃𝑖𝑖

,   𝑖𝑖 = 1, … ,𝑝𝑝.               
 

The Fisher information matrix of 𝑝𝑝 × 𝑝𝑝 is given by 

𝓕𝓕 =  (ℱ𝑟𝑟𝑟𝑟) = 𝐸𝐸[𝜙𝜙(𝜽𝜽)𝜙𝜙′(𝜽𝜽)].  

where ℱ𝑟𝑟𝑟𝑟 = 𝐸𝐸[𝜙𝜙𝑟𝑟(𝜽𝜽)𝜙𝜙𝑠𝑠(𝜽𝜽)]. The maximum likelihood estimation of parameter, 𝜽𝜽�, 

is acquired from equations 

𝜙𝜙𝑖𝑖(𝜽𝜽) = 0,   𝑖𝑖 = 1, … ,𝑝𝑝.  

 

Let 𝐻𝐻0: 𝜽𝜽 =  𝜽𝜽0. To test the null hypothesis, three usual test statistics are as 

follows. 

1. Likelihood ratio test (Neyman and Pearson, 1928) 

𝐿𝐿𝐿𝐿𝐿𝐿 =  −2(ln 𝐿𝐿0 − ln 𝐿𝐿1)  

where 𝐿𝐿0 is likelihood function under true null hypothesis and 𝐿𝐿1 is 

likelihood function based on alternative hypothesis. 

2. Wald test (Wald, 1943) 

𝑊𝑊 =  �𝜽𝜽� −  𝜽𝜽0�
′
𝓕𝓕�𝜽𝜽���𝜽𝜽� −  𝜽𝜽0�  

where 𝓕𝓕�𝜽𝜽�� is value of Fisher information matrix based on 𝜽𝜽�. 

3. Rao score test (Rao, 1948) 

𝑅𝑅𝑅𝑅 =  [𝜙𝜙(𝜽𝜽0)]′ [𝓕𝓕(𝜽𝜽0)]−1[𝜙𝜙(𝜽𝜽0)].  

All the three statistics have the same asymptotic chi-square distribution with p 

degrees of freedom. 

 

A large class of test statistics, including the LR, Rao’s score and Wald’s 

statistics, and their characterization, is considered by Ghosh and Mukerjee (2001); 
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with reference to the quasi-likelihood arising from an unbiased estimating function. 

They mentioned that under the criteria of maximinity and average local power, Rao 

score test is more (or equally) efficient than LR test and Wald test. 

 

As referred by Rao (1948), generally computation of RS statistic is simple 

because it depends only on estimates of parameters under null hypothesis. It is 

constant under transition of the parameters, but not for Wald test. The RS test has the 

same local efficiency as the Wald and LR tests. Parameters do not affect the 

distribution of RS test under null hypothesis parameter space; but in the same case 

for the LR test and sometimes Wald test, they are not applicable. 

 

2.5.4 Goodness of fit test, stationarity, and order test for Markov chain 

Bartlett (1951) was able to construct a likelihood ratio test for the goodness of 

fit by proving the asymptotic normality of certain frequency counts in Markov 

chains. His test is designed to test whether a sequence of observations is at most r-

dependent. In developing the test it is assumed that the transition probabilities are 

known, or at least depend upon a limited number of parameters which can be 

estimated. If the transition probabilities are completely unknown, a different test is 

needed. Hoel (1954), presented a similar test. The derivation depended heavily upon 

Bartlett's results and methods, and was essentially a modification and amplification 

of some of his methods. Let us consider the problem of testing the hypothesis 𝐻𝐻0 that 

a chain of order (𝑟𝑟 − 1) will suffice. More precisely, if 𝑝𝑝𝑖𝑖𝑖𝑖…𝑘𝑘𝑘𝑘  denotes the transition 

probability for an r-order Markov chain, the hypothesis to be tested is: 

𝐻𝐻0 ∶  𝑝𝑝𝑖𝑖𝑖𝑖…𝑘𝑘𝑘𝑘 =  𝑝𝑝𝑗𝑗…𝑘𝑘𝑘𝑘
′     (𝑖𝑖 = 1, 2, … , 𝑠𝑠).  
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The test that will be constructed is an asymptotic version of the likelihood ratio 

test for composite hypotheses. Now, following Bartlett, the likelihood function is, 

except for neglected beginning term is given by: 

𝐿𝐿 =  �𝑝𝑝𝑖𝑖𝑖𝑖…𝑘𝑘𝑘𝑘
𝑛𝑛𝑖𝑖𝑖𝑖…𝑘𝑘𝑘𝑘

𝑖𝑖 ..𝑙𝑙

 , 
 

where the indices range from 1 to s (corresponding to s possible states) and 𝑛𝑛𝑖𝑖𝑖𝑖…𝑘𝑘𝑘𝑘  

denotes the observed frequency of the r-chain state ij... kl. The maximum-likelihood 

estimate of 𝑝𝑝𝑖𝑖𝑖𝑖…𝑘𝑘𝑘𝑘  is 𝑝̂𝑝𝑖𝑖𝑖𝑖…𝑘𝑘𝑘𝑘 =  𝑛𝑛𝑖𝑖𝑖𝑖…𝑘𝑘𝑘𝑘 𝑛𝑛𝑖𝑖𝑖𝑖…𝑘𝑘 .⁄ , where 𝑛𝑛𝑖𝑖𝑖𝑖…𝑘𝑘 . =  ∑ 𝑛𝑛𝑖𝑖𝑖𝑖…𝑘𝑘𝑘𝑘
𝑠𝑠
𝑙𝑙=1  . Using 

primes to denote parameter under 𝐻𝐻0, it follows from previous equation that 

𝑝̂𝑝′𝑖𝑖𝑖𝑖…𝑘𝑘𝑘𝑘 =  𝑝̂𝑝𝑖𝑖𝑖𝑖…𝑘𝑘𝑘𝑘 =  𝑛𝑛𝑖𝑖𝑖𝑖…𝑘𝑘𝑘𝑘 𝑛𝑛𝑖𝑖𝑖𝑖…𝑘𝑘 .⁄  .  

The likelihood ratio test for testing 𝐻𝐻0 then assumed the form 

𝜆𝜆 =  
𝐿𝐿0 �𝑝̂𝑝′𝑖𝑖𝑖𝑖…𝑘𝑘𝑘𝑘 �

𝐿𝐿�𝑝̂𝑝𝑖𝑖𝑖𝑖…𝑘𝑘𝑘𝑘 �
 . 

 

 

It was shown by Bartlett (1951), that 𝑛𝑛𝑖𝑖𝑖𝑖…𝑘𝑘𝑘𝑘  are asymptotically normally 

distributed under mild regularity conditions. Anderson and Goodman (1957) 

obtained the maximum likelihood estimates and their asymptotic distribution for the 

transition probabilities in a Markov chain of arbitrary order when there are repeated 

observations of the chain. The likelihood ratio tests and chi-square tests of the form 

used in contingency tables are obtained for testing the following hypotheses: (a) that 

the transition probabilities of a first order chain are constant, (b) that in case the 

transition probabilities are constant, they are specified numbers, and (c) that the 

process is a uth order Markov chain against the alternative it is rth but not uth order. 

The stationary transition probabilities, 𝑝𝑝𝑖𝑖𝑖𝑖 , can be estimated by maximizing the 
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probability ∏ 𝑝𝑝𝑖𝑖𝑖𝑖
𝑛𝑛𝑖𝑖𝑖𝑖

𝑖𝑖 ,𝑗𝑗  with respect to the 𝑝𝑝𝑖𝑖𝑖𝑖  subject of course to the restrictions 

𝑝𝑝𝑖𝑖𝑖𝑖 ≥ 0 and ∑ 𝑝𝑝𝑖𝑖𝑖𝑖𝑚𝑚
𝑗𝑗=1 = 1 , 𝑖𝑖 = 1, … ,𝑚𝑚, when  the 𝑛𝑛𝑖𝑖𝑖𝑖  are the actual observations. 

 

The maximum likelihood estimates for 𝑝𝑝𝑖𝑖𝑖𝑖  is: 

𝑝̂𝑝𝑖𝑖𝑖𝑖 =  𝑛𝑛𝑖𝑖𝑖𝑖 𝑛𝑛𝑖𝑖∗⁄ =  �𝑛𝑛𝑖𝑖𝑖𝑖 (𝑡𝑡)
𝑇𝑇

𝑡𝑡=1

��𝑛𝑛𝑖𝑖𝑖𝑖 (𝑡𝑡)
𝑇𝑇

𝑡𝑡=1

𝑚𝑚

𝑘𝑘=1

� =  �𝑛𝑛𝑖𝑖𝑖𝑖 (𝑡𝑡)
𝑇𝑇

𝑡𝑡=1

�𝑛𝑛𝑖𝑖(𝑡𝑡)
𝑇𝑇−1

𝑡𝑡=1

�  
 

where 𝑛𝑛𝑖𝑖𝑖𝑖 (𝑡𝑡) denote the number of individuals in state i at 𝑡𝑡 − 1 and  j at t, and 

𝑛𝑛𝑖𝑖(𝑡𝑡 − 1) =  ∑ 𝑛𝑛𝑖𝑖𝑖𝑖 (𝑡𝑡)𝑚𝑚
𝑗𝑗=1  . Hence this is also true for any other distribution in which 

the elementary probability is of the same form except for parameter-free factors, and 

the restrictions on the  𝑝𝑝𝑖𝑖𝑖𝑖 s are the same. 

 

When the transition probabilities are not necessarily stationary, the general 

approach used in the preceding paragraph can still be applied, and the maximum 

likelihood estimates for the 𝑝𝑝𝑖𝑖𝑖𝑖 (𝑡𝑡)s are found to be 

𝑝̂𝑝𝑖𝑖𝑖𝑖 (𝑡𝑡) =  𝑛𝑛𝑖𝑖𝑖𝑖 (𝑡𝑡) 𝑛𝑛𝑖𝑖(𝑡𝑡)⁄ =  𝑛𝑛𝑖𝑖𝑖𝑖 (𝑡𝑡) �𝑛𝑛𝑖𝑖𝑘𝑘(𝑡𝑡)
𝑚𝑚

𝑘𝑘=1

�  . 
 

For tests of hypotheses and confidence regions, Anderson and Goodman first 

considered testing the hypothesis that certain transition probabilities 𝑝𝑝𝑖𝑖𝑖𝑖  have 

specified values 𝑝𝑝𝑖𝑖𝑖𝑖0 . The null hypothesis is 𝐻𝐻0: 𝑝𝑝𝑖𝑖𝑖𝑖 =  𝑝𝑝𝑖𝑖𝑖𝑖0  , 𝑗𝑗 = 1, … ,𝑚𝑚, for given i. 

if the null hypothesis is true, 

�𝑛𝑛𝑖𝑖∗  
�𝑝̂𝑝𝑖𝑖𝑖𝑖 −  𝑝𝑝𝑖𝑖𝑖𝑖0 �

2

𝑝𝑝𝑖𝑖𝑖𝑖0

𝑚𝑚

𝑗𝑗=1

     
( 2.8) 

has an asymptotic 𝜒𝜒2 distribution with 𝑚𝑚 − 1 degrees of freedom. A test for all 

𝑝𝑝𝑖𝑖𝑖𝑖  (𝑖𝑖, 𝑗𝑗 = 1, … ,𝑚𝑚) can be obtained by summing ( 2.8) over all i, the result is a 𝜒𝜒2 

variable with 𝑚𝑚(𝑚𝑚 − 1) degrees of freedom. 
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The null hypothesis 𝐻𝐻0: 𝑝𝑝𝑖𝑖𝑖𝑖 (𝑡𝑡) =  𝑝𝑝𝑖𝑖𝑖𝑖   (𝑡𝑡 = 1, … ,𝑇𝑇), is that the transition 

probabilities are constant. Under the alternative hypothesis, the estimates of the 

transition probabilities are 

𝑝̂𝑝𝑖𝑖𝑖𝑖 (𝑡𝑡) =  
𝑛𝑛𝑖𝑖𝑖𝑖 (𝑡𝑡)

𝑛𝑛𝑖𝑖(𝑡𝑡 − 1) , 
 

and the likelihood function maximized is 

��𝑝̂𝑝𝑖𝑖𝑖𝑖 (𝑡𝑡)𝑛𝑛𝑖𝑖𝑖𝑖 (𝑡𝑡)

𝑖𝑖 ,𝑗𝑗

𝑇𝑇

𝑡𝑡=1

 . 
 

The likelihood function maximized under the null hypothesis is 

��𝑝̂𝑝𝑖𝑖𝑖𝑖
𝑛𝑛𝑖𝑖𝑖𝑖 (𝑡𝑡)

𝑖𝑖 ,𝑗𝑗

𝑇𝑇

𝑡𝑡=1

 . 
 

The likelihood ratio criterion is defined 

𝜆𝜆 =  ���
𝑝̂𝑝𝑖𝑖𝑖𝑖
𝑝̂𝑝𝑖𝑖𝑖𝑖 (𝑡𝑡)

�
𝑛𝑛𝑖𝑖𝑖𝑖 (𝑡𝑡)

𝑖𝑖 ,𝑗𝑗𝑡𝑡

. 
( 2.9) 

When the null hypothesis is true, −2 log 𝜆𝜆 has a 𝜒𝜒2 distribution with (𝑇𝑇 −

1) 𝑚𝑚 (𝑚𝑚 − 1) degrees of freedom. The likelihood ratio ( 2.9) is similar to the 

likelihood ratios obtained for standard tests of homogeneity in contingency tables. 

So, 

𝜒𝜒2 =  �𝜒𝜒𝑖𝑖2
𝑚𝑚

𝑖𝑖=1

=  ��𝑛𝑛𝑖𝑖(𝑡𝑡 − 1)
�𝑝̂𝑝𝑖𝑖𝑖𝑖 (𝑡𝑡) −  𝑝̂𝑝𝑖𝑖𝑖𝑖 �

2

𝑝̂𝑝𝑖𝑖𝑖𝑖𝑡𝑡 ,𝑗𝑗𝑖𝑖

 , 
 

is distributed as 𝜒𝜒2 with (𝑇𝑇 − 1) 𝑚𝑚 (𝑚𝑚− 1) degrees of freedom. 

 

For testing the order of Markov chain, they defined 𝑝𝑝𝑖𝑖𝑖𝑖  ⋯𝑘𝑘𝑘𝑘   (𝑖𝑖, 𝑗𝑗, … , 𝑘𝑘, 𝑙𝑙 =

1, … ,𝑚𝑚) as the transition probability of order r. The null hypothesis is that the 
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