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BEBERAPA TEKNIK TEGUH DI DALAM PENGKELASAN LINEAR 
SAKSAMA DUA-KUMPULAN 

 

ABSTRAK 

Kesukaran asas dalam masalah pengkelasan adalah cara untuk menetapkan 

pemerhatian atau cerapan yang tepat ke dalam kumpulan atau kelompok tertentu. 

Tesis ini diolah berdasarkan batasan dan kelemahan analisis pengkelasan linear 

Fisher dan versi teguhnya berdasarkan penganggar penentu kovarians minimum. 

Prosedur Fisher tidak teguh,  manakala versi teguhnya pula bergantung kepada  

maklumat yang diperoleh daripada set separuh. Kajian ini membangunkan beberapa 

teknik pengkelasan bagi mengatasi masalah tersebut. Teknik-teknik  tersebut adalah 

peraturan pengkelasan linear M,  peraturan pengkelasan linear bertapis, peraturan 

pengkelasan linear berpemberat, dan peraturan pengkelasan linear gabungan linear. 

Prosedur ini dibangunkan sedemikian rupa agar pemerhatian yang dipengaru dapat 

dimodel sejajar dengan pemerhatian yang sekata. Keteguhan dan kestabilan teknik-

teknik ini bergantung pada parameter pemisahan.  Model kontaminasi dan 

pembolehubah kawalan digunakan untuk mengkaji prestasi pengkelasan aturan 

tersebut. Perbezaan prestasi pengkelasan digunakan untuk membandingkan prestasi 

teknik-teknik yang dicadangkan dengan analisis pengkelasan linear Fisher  dan  

analisis pengkelasan linear Fisher  berasaskan penentu kovarians minimum min. 

Kebarangkalian pengkelasan yang betul bagi setiap prosedur digunakan untuk 

membandingkan min kebarangkalian optimum daripada pengkelasan yang betul, 

yang diperoleh daripada set data yang tidak terkontaminasi dalam usaha  memastikan  

teguh,  kegagalan  dan kebolehgunaan teknik tersebut. Keputusan pengkelasan 



xx 
 

menunjukkan bahawa teknik–teknik yang dicadangkan adalah sangat stabil, teguh 

dan boleh merintang sehingga  40% tahap kontaminasi. Teknik yang dicadangkan 

menunjukkan kadar  pengiktirafan yang tinggi bagi tiga jenis model kontaminasi 

yang dikaji.  Secara keseluruhan, analisis pengkelasan perbandingan menunjukkan 

bahawa peraturan pengkelasan linear M  adalah pengkelasan linear yang terbaik,  

diikut secara tertib oleh analisis pengkelasan linear Fisher berasaskan penentu 

kovarians minimum, peraturan pengkelasan linear bergabungan linear, peraturan 

pengkelasan linear berpemberat, peraturan pengkelasan linear bertapis dan analisis 

pengkelasan linear Fisher. 
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SEVERAL ROBUST TECHNIQUES IN TWO-GROUPS UNBIASED LINEAR 

CLASSIFICATION 

 

ABSTRACT 

The fundamental difficulty in classification problem is how to assign an 

observation accurately to the group it belongs. This thesis is written based on the 

limitations and weaknesses of the Fisher linear classification analysis and its robust 

version based on the minimum covariance determinant estimator. The Fisher’s 

procedure is not robust while the robust version depends upon information obtained 

from the half set. This study develops several techniques to address the weaknesses 

of the two methods. They are: M linear classification rule, filter linear classification 

rule, weighted linear classification rule and linear combination linear classification 

rule. These procedures are developed in such a way that the influential observations 

are modeled alongside the regular observations. The robustness and stability of these 

techniques depends on the separation parameters. Contamination models and control 

variables were used to investigate the classification performance of these linear 

classification rules. Classification difference was used to compare the classification 

performance of the proposed techniques over the Fisher linear classification analysis 

and the Fisher linear classification analysis based on the minimum covariance 

determinant procedures. The mean probability of correct classification for each 

procedure was used to compare the mean of the optimal probability of correct 

classification obtained from the uncontaminated data set in order to ascertain 

robustness, breakdown and admissibility of these techniques. The classification 
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results indicate that the proposed techniques are very stable, robust and can resist up 

to 40% contamination level. The proposed techniques shows high recognition rate for 

the three types of contamination models investigated. Overall, the comparative 

classification analyses indicate that the M linear classification rule was the overall 

best linear classification rule followed by the Fisher linear classification analysis 

based on the minimum covariance determinant, linear combination linear 

classification rule, weighted linear classification rule, filter linear classification rule 

and Fisher linear classification analysis technique in that order.  



1 
 

CHAPTER 1 

 

INTRODUCTION  

1.1 Introduction 

In various aspects of our daily activities we are often confronted with the 

responsibility of accepting or rejecting certain decisions. For instance, suppose a 

company advertised for vacant positions for employment, in response to the 

advertisement applicants submitted their applications. Based on the information 

(profile variables, e.g., age, education level, work experience, etc) provided by the 

applicants the human resources (HR) department is confronted with the task of 

classifying an applicant as qualified or not qualified for interview or employment. 

Accordingly, this is a classification into two groups problem, say, group one 

represent the group of applicants qualified for interview and group two not qualified 

for interview. The classification is done based on information provided. As an 

illustration, we classify applicants that are qualified for interview as belonging to 

group one and applicants that are not qualified to group two. Relying on previous 

recruitment history of the company, let 1n   denote the number of applicants 

shortlisted for interview, say group one 1W  and 2n  represent the number of 

applicants not shortlisted, say group two 2.W  In future, the information provided by 

new applicants will be utilized to classify them into any of these groups, respectively.  
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Having given prelude to the nature of classification problem, we are enlightened 

to distinguish between discriminant model and classification rule. In this study, we 

are interested in classification rather than discrimination; henceforth we refer to the 

Fisher linear discriminant analysis (FLDA) as the Fisher linear classification analysis 

(FLCA). The present study gives concise description of the classical Fisher linear 

classification analysis, robust Fisher linear classification analysis based on the 

minimum covariance determinant estimates (FMCD) and the proposed robust linear 

classification techniques. The comparative summary of the classification 

performance of these methods are given.  The organization of the chapter is as 

follows: preliminaries, the problem statement and research questions, evaluation 

criterion, objective of the study, contributions followed by the outline of the thesis.  

1.2 Preliminaries  

Classification allows diverse scientific studies and applications (Gnanadesikan et 

al., 1989). It involves a rule that is essentially an allocation technique that compares 

classification score to well define and established cutoff point that uniquely assign 

new observation to a known group. The fundamental difficulty in classification 

procedure is how to accurately assign an observation into one of the two groups. 

However, this difficulty can be resolved by applying well developed and robust 

linear classification rules. Conventionally, the linear classification problem for two 

groups is accomplished using the Fisher linear classification analysis (FLCA). This 

procedure  was proposed based on the assumptions that the distribution is 

multivariate normal and the variance covariance matrices for the two groups are 
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equal say, ,1 2Σ = Σ = Σ (Johnson and Wichern, 2007). With regard to the multivariate 

normality assumption of the FLCA, the density of the distribution is defined by the 

following equation, 

2
(1/2) 1/2

1( | , )= exp[- / 2],
(2 ) | |p i i ip

i

N
p

Lx μ Σ
Σ

   (1.2.1) 

where 2 1( ) ( ), 1, 2, 1,..., ,T
i ij i ij i ii j n-L = - - = =x μ Σ x μ is the squared Mahalanobis 

distance, x  is the multivariate sample observation, ijx  denote multivariate sample 

observations with respect to the groups and sample size, in  is the sample size of the 

multivariate sample observation for each group, p is the dimension of the 

multivariate sample observation or simply profile variable and ,i iμ Σ  are the 

population mean vectors and covariance matrices. However, in practice the 

population mean vectors iμ  and covariance matrices iΣ  are unknown. It is therefore 

imperative to substitute iμ  and iΣ  with their sample estimates ix  and iS  obtained 

from the training data randomly drawn from each group. Based on the above 

discussion Equation (1.2.1) can be written as, 

    2
(1/2) 1/2

1( | , )= exp[- / 2],
(2 ) | |p i i ip

i

N
p

Lx x S
S

   (1.2.2) 

where 2 1( ) ( ),T
i ij i ij i

-L = - -x x S x x  ix  denotes the sample mean vectors with respect 

to the groups and iS is the sample covariance matrices with respect to the groups. 
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As is often the case, the terms “Discriminant analysis” and “Classification 

analysis” are combined by most authors. It is essential to state the difference between 

these terms before proceeding further. The term discrimination implies separation, 

distinguish, differentiate, distinction among groups of observations, or simply put the 

ability to understand and recognize variations between two things or more. As a 

distinctive or descriptive technique, it is applied once to determine the variations 

observed when the casual relationships are not explicitly known. In other words, this 

procedure depends on the contributions of each profile variable to the numerical 

value. The decision to discriminate between the profile variables depends on the 

numerical contribution of each profile variable to the numerical value. This is 

achieved by pre-multiplying the square root of the diagonal of the pooled within 

group sample covariance matrix pooledS with the Fisher linear classification 

coefficient q , that is,      

 ( ) ,pooleddiagw = S q   

where  

2

1
2

1

( 1)
,

2

g

i i
i

pooled g

i
i

n

n

=

=
=

=

-
=

-

å

å

S
S    (1.2.3) 

is the pooled sample covariance matrix, ( g denote the number of groups),  
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 1
( )( )

,
( 1)

in
T

ij i ij i
j

i
in

=

- -
=

-

å x x x x
S    (1.2.4) 

is the sample covariance matrices and  

1 2( ) ,
T

pooled

-
=

x xq
S

    (1.2.5) 

is the Fisher linear classification coefficient (Huberty, 1975; Rencher, 1988; Rencher, 

2002; Rencher and Scott, 1990; Tatsuoka and Lohnes, 1988). Relying on the above 

discussion, to perform discrimination depends on the numerical value of w which is 

based on the profile variables. The value of w  is rank, for instance, 1 2 3, , ,x x x for 

3.p =  Suppose that 1x  numerical value is higher than the numerical values of 

2 3, ,x x then this means that 1x  discriminate the most, if 2x has the second largest 

numerical value, this implies that 2x  discriminate more than 3,x respectively. On the 

other hand, 3x  discriminate less since it has the smallest numerical value. 

Classification on the other hand requires assignment or allocation or sort new 

observation to well defined or existing groups. Classification relies on the 

comparison between the classification scores and well defined cutoff point. Hence, 

classification is investigative and allows technical rules to be applied to allocate new 

observations. Discrimination and classification techniques have different objectives, 

respectively. Primarily, these two procedures are hardly distinguished in the sense 

that the same model (Equation (1.2.5)) is used to obtain the discriminant and 
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classification coefficient but implementation varies. Thus, there is difference 

between classification model and classification rule. Classification model depends on 

the classification coefficient; classification coefficient is obtain by post-multiplying 

the inverse of the pooled covariance matrix by the variation of the within group mean 

vectors. In general, classification coefficient does not have a unique fundamental 

formulation principle. The training sample or validation sample is applied to the 

classification coefficient to obtain the classification score. Classification score is the 

contribution of each profile variable, in other words, classification score is the 

numerical value of the classification model. The classification rule is more detail 

because it compares the classification score with a given cutoff point. This process 

allows new observations to be classified into one of the two  groups.  

 Conventionally, the Fisher’s linear discriminant analysis is fundamentally 

dimension reduction technique that encompasses separation. The discriminant model 

is one stage to develop classification rule. The linear classification procedure is a 

linear combination of measured variables that best describe the allocation of 

individual or observation to known or well define groups. The coefficient of this 

procedure is obtain by post-multiplying the inverse of the pooled covariance matrix 

by the within group mean vectors difference. In mathematical form, denote x   to be 

the classification score, q  is the coefficient vector and is non-zero ( 0)¹q  

p dimensional vector, Tq denote the transpose of the coefficient vector, x  be vector 

of observations and x  denote the comparative midpoint, a scalar. The Fisher linear 

classification rule assigns an observation  1x  to group one 1W  if  
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,Tx x= >q ξ       

otherwise to group two 2W  if  

.Tx x= <q ξ       

 In effect, the linear combination x  is univariate normal based on the bivariate 

normality of the multivariate sample observations, say 1 2,W Wx x  (Rencher, 2002).  

In the present study, we assume equal cost of misclassification ciÀ  for each group 

and equal prior probability ip  for each group which allows  

2 2

1 1

(1/ 2)- ln =0,
(2 /1)

p
p

x x
æ öæ öÀ

³ ç ÷ç ÷À è øè ø
c

c

    (1.2.6) 

2 2

1 1

(1/ 2)- ln =0.
(2 /1)

p
p

x x
æ öæ öÀ

< ç ÷ç ÷À è øè ø
c

c

    (1.2.7) 

This assumption (Croux and Dehon, 2001) is necessary in the present study and 

complies with the equal sample size used for the definition of equal probability, that 

is, 1 2= , .i
i

np n n n
n

= +  If the prior probability is assume unequal for each group with 

unequal sample sizes and equal misclassification cost, then the classification rate 

depends on the prior probability for each group, hence Equations (1.2.6 and 1.2.7) 

will not hold. Consequently, if the cost of misclassification is assume unequal for 

each group and the prior probability assume equal for each group with equal sample 
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sizes, then the classification rate depends on the unequal cost of misclassification, as 

such Equations (1.2.6 and 1.2.7) is violated. The situation is more complicated when 

both are estimated because classification will depend on misclassification cost and 

the prior probability. In practice, estimating the cost of misclassification is infeasible, 

hence the misclassification cost can be estimated using the off diagonal of the 

confusion matrix. The cost of correct classification is obtained based on the diagonal 

of the confusion matrix. In both situations, one can multiply their respective 

probabilities with the diagonal and off diagonal of the confusion matrix to obtain the 

cost of correct classification and misclassification, respectively.  

The misclassification rate associated to the classification performance of the 

Fisher linear classification analysis can be linked to estimation errors of the group 

mean vectors and covariance matrices (Pohar et al., 2004). The classical sample 

mean vectors and sample covariance matrices are unstable because these parameters 

are susceptible or easily influenced by influential observations (Maronna et al., 2006; 

Munoz-Pichardo et al., 2011). A single influential observation (outlier) can cause the 

classical sample mean vectors, covariance matrices and the pooled covariance matrix 

to be unreliable (Hennig, 2002).  

Considering the shortcomings of the classical estimates, several propositions have 

been proposed to remedy the effects of influential observations on the sample mean 

vectors and covariance matrices. These propositions are based on robust high 

breakdown estimators such as; the maximum likelihood type estimators (M 

estimators), minimum volume ellipsoid (MVE) estimators, minimum covariance 
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determinant (MCD) estimators, smooth estimators (S estimator), modified maximum 

likelihood estimators (MM estimators), generalized maximum likelihood estimators 

(GM estimators) that are applied to obtain robust mean vectors and covariance 

matrices. The above mentioned robust high breakdown techniques are used to detect 

and resist the influence of the influential observations in the data set. These 

procedures are applied as a preprocessing process for the technique of interest.  

The Fisher linear classification analysis based on the robust high breakdown 

estimators using the minimum covariance determinant estimates (FMCD) is 

considered in the present study. Consequently, as detailed in Chapters Two and 

Three, the minimum covariance determinant technique computes its estimates based 

on the half set. The half set is the sum of the average of the sample size, dimension 

and constant one. The identification performance of the minimum covariance 

determinant strictly depends on the half set computed on several concentration steps 

(C-steps). Accordingly, the minimum covariance determinant procedure performs 

optimally if the sample size is moderate and the dimension of the sample observation 

is small (lower dimension). This similarity provides us the possibility to combine the 

Fisher linear classification analysis and the minimum covariance determinant 

technique.  

This thesis is designed based on the conclusion that the conventional Fisher linear 

classification analysis is not robust against influential observations or contaminated 

data set and unequal variance covariance matrices. The existing robust estimation 

procedures based on plug-in techniques (minimum covariance determinant and 
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minimum volume ellipsoid) compute their estimates based on the half set. These 

techniques downweight the influential observations and compute their estimates 

based on the clean data set. The Fisher linear classification analysis based on the 

minimum covariance determinant method does not perform well in certain 

contamination model, say, asymmetric, moderate high dimensional and large sample 

size for contaminated normal data set. Based on the above reasons, the present study 

focus on robust high breakdown and affine equivariant techniques that compute their 

estimates based on the information glean from the data set. The proposed robust 

linear classification procedures except for the Filter linear classification rule 

(MYROB) do not downweight the influential observations rather their estimates are 

computed from the entire data set.  

In this discussion, we coined the name of this linear classification rule based on 

the definition given by Donoho and Gasko (1992). In that paper, for 1,p =  they 

defined the median as the “deepest” x  value. For  1,p >  they defined the deepest x  

value as multidimensional median. To name this linear classification rule, we denote 

the M as multidimensional median. Unlike the Fisher’s technique and the minimum 

covariance determinant procedure, the M-linear classification rule (MLCR) technique 

does not pool the covariance matrices rather it was developed by taking the square 

root of the summed covariance matrices. Experimental results indicate that this 

method yield minimum misclassification error rate compared to the conventional 

Fisher and the robust Fisher linear classification rule based on the minimum 

covariance determinant estimates.  
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It is a common phenomenon to downweight influential observations to reduce the 

influence of the influential observations. This process has been employed in various 

robust estimation procedures. Consequently, techniques based on this process tend to 

lose vital information that the influential observations may provide. Techniques such 

as the MCD, MVE, M, S, winsorized or trimming certainly lose vital information the 

influential observations may contain. Hence it was appropriate to develop a 

technique that does not substitute or downweight the influential observations. 

Therefore, it is imperative to propose a procedure that attracts the influential 

observations to the center of the data set. This method is developed by using the 

median and the median absolute deviations to compute the weight used to transform 

the sample observations. The transformed sample observations allow the influential 

observations to be close to the regular observations. A tuning constant is applied to 

the weighted sample observations before the coefficient is computed. The uniqueness 

of this rule is based on the way the coefficient and the comparative cutoff point are 

computed. This technique can be used for high dimensional data set (small sample 

size). Like every other robust procedure, this method is stable, consistent and robust. 

The classification rule is described in Section 4.5 and the method is called the 

weighted linear classification rule (WLCR).  

In what follows, we propose robust affine equivariant classification technique that 

filters the sample observations and retains the regular observations. This procedure 

compares a given constant with the values of the squared Mahalanobis distance to 

obtain the weight. The weight is used to pre-multiply the sample observations to 

obtain the weighted sample observations. The classification rule is obtain based on 
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the information glean from the weighted sample observations. Details of this 

technique is described in Section 4.6 and the method is called the Filter linear 

classification rule (MYROB).  

The last contribution focused on developing unique and stable linear classification 

rule. This robust linear classification method computes its coefficients based on 

adjusted within group median. The adjusted group median consist of the medians, 

within group mean vectors and  constant .g  This linear classification rule can be use 

for high dimensional data set. This procedure is referred to as the Linear combination 

linear classification rule (LCMLCR) and is described in detail in Section 4.7. Finally, 

the term classification difference was coined to describe the robustness and 

admissibility of the proposed linear classification methods over the conventional 

FLCA and FMCD procedures. In what follows, the classification difference was also 

applied to describe the robustness and admissibility of the conventional FLCA and 

FMCD  techniques over the proposed linear classification methods, respectively. The 

propose linear classification techniques assume that the separation parameters are not 

equal. These linear classification methods perform optimally if the sample 

observations come from a multivariate normal distribution. The proposed WLCR and 

LCMLCR techniques can be used to solve small sample size problems. The present 

study is designed for ,in p>  where in is the sample size for each group ( 1,2).i =   

In this study, we investigated the influence of the control variables (sample sizes, 

dimensions, variance shift, mean vector shift, epsilone ) on the classification 

performance of these linear classification techniques. We also investigated 
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robustness, admissibility and breakdown point of these various techniques based on 

the values of epsilon .e  We examined the classification performance of these various 

linear classification methods via different contamination models (say, symmetric, 

asymmetric, combined contamination and mixture contamination). The classification 

performance of the various linear classification procedures were also investigated 

using data set generated from  the contaminated normal models using  heterogeneous 

variance covariance matrices 2 2
1 2( ),s s¹  respectively. In general, the performance of 

the linear classification methods were investigated using real data set and simulated 

data set. For the simulated data set, the mean of the optimal probability of correct 

classification computed from the uncontaminated data set was used as the 

performance benchmark to determine robustness, admissibility and breakdown 

across board.  

The mean probability of correct classification and standard deviations obtain over 

1000 replications are reported in the classification tables for each technique. In 

general, the linear combination of the control variables is 900 each for data set 

generated based on the contaminated normal models, 576 for data set generated using 

the mixture contamination model and 4 for data set based on the heterogeneous 

variance covariance matrices. The above numbers are the linear combination of the 

control variables used in the Monte Carlo simulations to investigate the classification 

performance of each linear classification technique. In each classification table, the 

mean probabilities of correct classification and standard deviations reported in each 

block and table are 24 and 120 for the contaminated normal models, 24 and 96 for 
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the mixture contamination model and 24 for the unequal variance covariance 

matrices.  

1.3 Problem Statement 

 Consider two groups of p dimensional predictor variables of the training 

samples, say 1 1
1,....., px x  from 1( )pN μ ,Σ  and 2 2

1 ,....., px x  from 2( )pN μ ,Σ  and  

> , ( =1,2).in p i  We assumed that each of the two groups is p dimensional multivariate 

normal distribution and the two groups are independent, respectively. The population 

means for both groups are denoted as 1( 1, 2), .i i = ¹ 2μ μ μ The two groups have the 

same population covariance matrix, say 1 2Σ = Σ = Σ.  Let 1n  be the sample size for 

group one 1W  and let 2n  be the sample size for group two 2W  and
2

1
i

i
n n= å

=

be the 

total sample size for all groups.  Let 1 jx  1( =1,...., )j n be the jth  training sample of 

the multivariate observation for group one   and 2 jx 2( =1,...., )j n  be the jth training 

sample of the multivariate observation for group two,  respectively. The training 

samples for both groups are reshuffled using uniform distribution. Define 1 jt  as the 

validation sample for group one  obtain by reshuffling the generated data set using 

uniform distribution for the entire data set and  2 jt  be the validation sample for group 

two obtain in similar fashion. Since the population mean vectors and covariance 

matrices are unknown, we estimate the population mean vectors and covariance 

matrices using the training sample mean vectors ix  and covariance matrices ,iS  that 

is, i ix = μ and ,i iS = Σ  respectively. 
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Based on the above parameter definitions and the illustration given above, it is 

assumed that the groups are well established or defined. The problem we investigate 

is to determine how to classify an unknown individual or observation into one of 

these groups accurately based on the measured  variables or profile variables and to 

obtain maximum correct classification rate. The conventional technique to perform 

this task is based on the Fisher linear classification analysis and this technique is 

susceptible to influential observations or contaminated data set and hence yield high 

misclassification rate. The Fisher linear classification procedure performs poorly 

when the sample mean vectors and covariance matrices are directly applied to 

develop the classification model. Based on the shortcomings of the conventional 

Fisher linear classification procedure and its robust version, the present study focus 

on robust techniques that incorporate all the information provided by the sample 

observations to compute its estimates. The proposed techniques allow us to 

investigate how these methods can be applied accurately to assign observations from 

unknown groups to well established groups. Furthermore, we compare the 

classification performance of the proposed linear classification techniques with the 

conventional Fisher’s technique and the robust Fisher linear classification analysis 

based on the minimum covariance determinant estimates. We further investigate the 

effects of the control variables on the proposed methods, the classical Fisher linear 

classification method and its robust version (FMCD).  We also investigated 

robustness, admissibility and breakdown point of these linear classification 

techniques. The proposed linear classification rules are expected to achieve minimum 

misclassification rate.  
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 Based on the above problem statement and the assumptions the conventional 

Fisher linear classification analysis was proposed, the present study tends to answer 

the following questions:  

1) How does the FLCA technique perform when these assumptions are 

violated? 

 2) Do the FLCA and FMCD techniques affected by varying epsilon value?  

3) Does the sample size variation affect the performance of these techniques? 

4) Can this procedure (FLCA) be tuned to account for improved  

performance?  

5) Can the classical parameters (sample mean and covariance matrix) be 

modeled to enhance the performance of the FLCA?  

6) Do the proposed robust procedures outperform the classical procedures 

 when the assumptions are violated?  

7) Do these proposed procedures respond to variation of epsilon value and 

 sample size?  

8) Does sample size  and dimension affects the robustness of the proposed 

techniques?  
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9) What percentage of contamination can these linear classification methods  

 accommodate before it breakdown?  

10) Are these methods unbiased linear classification techniques? 

1.4 Evaluation Criteria  

 The classification performance of the conventional Fisher linear classification 

rule, its robust version based on the MCD and the proposed robust linear 

classification rules are investigated using data set generated from the contaminated 

normal models such as: symmetric, asymmetric, combined contamination and 

mixture contaminated distributions model for small, medium, large sample sizes and 

the control variables, say; mean vector shift, variance shift, epsilon value and 

dimension. The simulated data set are generated from the contaminated normal 

models. The contaminated normal model consists of the uncontaminated data set 

portion which depends on (1 )e- and the contaminated data set portion that depends 

on ,e respectively. The data set are uniformly reshuffled and divided into training 

sample and validation sample. The training sample is used to develop the 

classification model and the validation sample is used to validate the developed 

classification model. The classification performance or the mean probability of 

correct classification of these techniques based on the validation sample is compared 

with the mean of the optimal probability of correct classification computed from the 

uncontaminated normal data set. By comparing the mean probability of correct 

classification obtained for each technique with the mean of the optimal probability of 
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correct classification we can decide which method is robust and admissible over 

other methods. Breakdown was also investigated using the classification difference 

between the mean probability of correct classification and the mean of the optimal 

probability of correct classification. Their respective standard deviations with respect 

to the mean probability of correct classification of each replication over 1000 runs 

and the total mean probability of correct classification was also reported. The 

misclassification rate was also reported. 

 1.5 Objective of the Study 

This study was carried out to achieve the following objectives;  

i) To investigate the classification performance of the classical FLCA and its robust 

version based on the MCD estimates.  

ii) To develop robust, high breakdown, affine equivariant and admissible linear 

classification rules.  

iii)  To compare the classification performance between (i) and (ii) based on the 

control parameters. 

iv) To investigate the effect and influence of sample sizes and dimensions on (i) and 

(ii). 

v) To investigate the effect of varying epsilon e  value using mean vector shift and 

variance shift on (i) and (ii). 
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vi) To investigate robustness, admissibility and breakdown point based on the  data 

set generated from the contaminated normal  models  using (v). 

vii) To develop SAS/IML program to perform Monte Carlo simulations to 

achieve objective (i) through objective (vi). 

Based on the above objectives, the end user can decide which linear classification 

technique to apply when the need arises. Secondly, the comparative classification 

results reported in the different classification tables will reveal the strength and 

weakness of each of the linear classification methods. The performance analyses of 

the proposed techniques over the conventional methods will indicate if the proposed 

methods are desired over the classical methods or otherwise. 

1.6 Contributions 

  Having studied the conventional Fisher linear classification analysis and its robust 

version based on the minimum covariance determinant estimators; we proposed 

different robust, high breakdown, affine equivariant and admissible linear 

classification techniques. In all, four different linear classification methods were 

proposed, say, MLCR, MYROB, WLCR, and LCMLCR, respectively. The 

performance of the proposed techniques was compared with those of the 

conventional procedures. Uncontaminated and contaminated data set based on 

laboratory rear aedes albopictus mosquitoes was applied to investigate the 

classification performance of the above techniques. The performance of these 

methods was also investigated using simulated data set. Different contamination 
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models, say, symmetric, asymmetric, combined contamination and mixture 

contamination models based on the control variables were applied to investigate 

robustness, admissibility and breakdown. The term classification difference was 

coined to illustrate the classification performance of each procedure over other linear 

classification techniques investigated in the present study. In other words, the 

classification difference is the numerical difference between the mean probability of 

correct classification of the admissible proposed technique and the mean probabilities 

of correct classifications for the FLCA and FMCD techniques. The mean of the 

optimal probability of correct classification used as a performance benchmark was 

also derived. The Monte Carlo simulations indicates that the proposed techniques are 

admissible over the conventional Fisher linear classification technique and its robust 

version based on the minimum covariance determinant technique. The simulation 

results revealed that both the conventional methods and the proposed procedures are 

unbiased linear classification methods. 

1.7 Outline of the Thesis 

The remainder of this thesis is organized as follows. Chapter Two contains the 

review of literature; this includes the background of the classical FLCA and the 

robust estimates. Different robust multivariate estimation procedures and their 

modification were given. Robust, high breakdown and affine equivariant multivariate 

estimation procedures and their applications to the Fisher linear classification rule are 

reviewed. Chapter Three contains introduction and detail definitions of parameters, 

measure of robustness; breakdown point (BDP) and influence function (IF). 
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Derivation of the optimal probability of misclassification and correct classification 

was given. 

 Chapter Four contains the methods; the Fisher linear classification rule, robust 

Fisher linear classification rule based on the minimum covariance determinant and 

the proposed robust linear classification rules: MLCR, WLCR, MYROB, LCMLCR 

and simulation for the laboratory reared aedes  albopictus mosquito data. Monte 

Carlo simulation design, data generation and Monte Carlo simulations for symmetric, 

asymmetric, combined contamination, mixture contamination models using 

homogeneous and heterogeneous variance covariance matrices for small, medium 

and large sample sizes are contained in Chapter Five. Chapter Five also contains 

classification results and analyses. Summary, discussion, conclusion and 

recommendation for future study  are contained in Chapter Six. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

In previous chapter, we described and gave the fundamentals required to 

understand the present study. In this chapter, the background of the classical Fisher 

linear classification analysis and the review of various robust estimates used in 

developing the robust Fisher linear classification analysis are described. Section 2.2 

contains the background of the classical Fisher linear classification analysis and other 

related classical linear classification methods. The classical Fisher linear 

classification method was developed based on the sample means and covariance 

matrices. Since the sample means and covariance matrices are not robust, the 

procedures which depend on them will not be robust. Hence different procedures 

have been proposed to transform the data set to obtain robust sample means and 

covariance matrices. The robust sample means and covariance matrices are plug-in 

into the classical multivariate techniques to obtain the robust multivariate techniques 

including the Fisher linear classification method, respectively. 

 In the foregoing, we gave details on how the data set are transformed to obtain the 

robust sample means and covariance matrices. Section 2.3 contains detail 

background of robust estimation. Modifications of the Fisher linear classification 

analysis is given in Section 2.4. Section 2.5 contains applications of the Fisher linear 

classification analysis. 
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2.2 Background of the Study 

This section contains the background of the classical Fisher linear classification 

analysis and other related classical linear classification methods. The Fisher linear 

discriminant analysis was introduced by Ronald Aylmer Fisher (1936) when he 

applied it to study the Iris data set for two groups. This technique was developed for 

.in p>  Its basic assumptions are homoscedasticity of the variance covariance matrix 

and normality of the data set. Welch (1939) observed that the Fisher linear 

classification analysis (FLCA) constitute part of the Anderson classification statistics 

and the linear combinations come from the multivariate normal data set. Smith 

(1947) affirmed that Fisher’s approach performs optimally if the data set comes from 

a multivariate normal distribution. Rao (1948) generalized the Fisher’s linear 

classification model to more than two groups. With the generalization to more than 

two groups, the conventional objectives of the Fisher linear classification analysis  

remain consistent  until the mid 1960’s when the objectives of the Fisher linear 

classification analysis was assumed to include separation, discrimination and 

estimation (Huberty, 1975).  

Wald (1944) proposed the W classification rule (Anderson, 1951, 1984). This rule 

simply replaces the population parameters (population means and covariance 

matrices) with the sample parameters (sample means and covariance matrices). See 

(Johnson and Wichern, 2007) for the W rule. The W classification rule is now known 

as Wald-Anderson or simply Anderson-classification statistics. A comparable 

classification rule to the Fisher linear classification analysis and the Wald-Anderson 
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classification rule was subsequently proposed by Kudo (1959,1960) and John (1960). 

This rule is called the Z rule.  Wakaki (1994) observed that to obtain the Z rule the 

sample means and covariance matrices in W rule is multiplied by ,
1

i

i

n
n +

where in  is 

the sample size for each group. The Z rule is a special version of the likelihood rule, 

the likelihood rule was proposed by Anderson (1958) and was extensively discussed 

by Das Gupta (1965). Wakaki and Aoshima (2009) recently gave comparative 

description of the W rule and Z rule. 

The classical multivariate techniques including the Fisher linear classification 

analysis (FLCA) was developed based on the classical sample mean vectors and 

covariance matrices. The sample mean vectors and covariance matrices are the 

building blocks of most classical multivariate techniques but are sensitive to 

influential observations (outliers) (Basak, 1998; Devlin et al., 1981; Filzmoser and 

Hron, 2008; Hubert et al., 2008; Jin and An, 2011; Kim et al., 2005; Pires and 

Branco, 1996; Roelant et al., 2009; Wu et al., 2011). However, the sample mean 

vectors and covariance matrices perform optimally if the data set is normally 

distributed (Linnet, 1988; Zuo, 2005).  

2.3 Robust Estimation 

The motivation to review the various robust estimation procedures stem from the 

fact that most robust methods depends on the robust sample means and the 

covariance matrices. The classical multivariate methods are robustified by plug-in 

these robust estimates. The robustness of the sample means and the covariance 
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