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SINTESIS, PENCIRIAN, SIFAT-SIFAT NUCLEOLITIK, 

ANTIBAKTERIA DAN 

ANTIPOLIFERATIF BAGI KOMPLEKS VANADIUM, KUPRUM 

DAN MANGAN 

 

                                                      Abstrak 

 
 
Siri kompleks bagi vanadium karboksilato, kuprum karboksilato, mangan karboksilato 

dan terbitan vanadium fenantrolina telah disintesis dan dicirikan. Maklumat penuh 

tentang kompleks ditunjukkan dalam Jadual 2.2 (muka surat 37). Kompleks ini telah 

dicirikan dengan menggunakan kristalografi X-ray, analisis unsur, FT-IR, spektroskopi 

UV–Vis dan siklik voltammetrik. Dalam kajian elektrokimia, kompleks vanadium 

karboksilato telah menunjukkan aktif redok dengan mempamerkan pasangan redok 

kuasi-berbalik yang selaras dengan VV/VIV proses redok, manakala kompleks kuprum 

karboksilato telah menunjukkan aktif redok dengan mempamerkan dua pasangan redok 

kuasi-berbalik yang selaras dengan CuIICuII/CuIICuI dan CuIICuI/CuICuI proses redok 

dan mangan karboksilato telah menunjukkan aktif redok dengan mempamerkan 

pasangan redok kuasi-berbalik yang selaras dengan MnII/MnIII proses redok. Dalam 

kajian nukleolitik, semua kompleks didapati boleh mengakibatkan pengoksidaan belahan 

DNA tetapi dengan cara yang berbeza. Kompleks kuprum karboksilato dan mangan 

karboksilato boleh mengakibatkan belahan DNA dalam kehadiran H2O2. Sementara itu,  

untuk kompleks vanadium karboksilato, kompleks vanadium(V) karboksilato 

memerlukan H2O2 untuk mengakibatkan belahan DNA manakala kompleks 
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vanadium(IV) karboksilato tidak memerlukan H2O2 untuk mengakibatkan belahan DNA. 

Bagi kompleks terbitan vanadium fenantrolina pula, mereka boleh mengakibatkan 

belahan DNA dalam kehadiran H2O2 dan dalam keadaan tanpa H2O2. 

Walaubagaimanapun, aktiviti belahan DNA meningkat secara mendadak dalam 

kehadiran H2O2. Agen perencet reaktif spesis oksigen (ROS) juga telah digunakan untuk 

menentukan spesis reaktif yang bertanggunjawab dalam belahan DNA. Hidroksil radikal 

dan oksigen tunggal adalah ROS yang bertanggunjawab dalam belahan DNA. Dalam 

penyaringan antibakteria, semua kompleks kecuali kompleks mangan karboksilato 

mempamerkan aktiviti antibakteria terhadap spesis bakteria Gram positif atau Gram 

negatif. Kompleks kuprum karboksilato menunjukkan aktiviti antibakteria yang sangat 

selektif di mana mereka hanya menunjukkan aktiviti antibakteria terhadap Enterobacter 

aerogenes berGram negatif bakteria. Aktiviti antibakteria kompleks terbitan vanadium 

fenantrolina telah menunjukan bahawa kumpulan metil yang terikat pada kedudukan 2 

dan 9 pada gelang fenantrolina dapat meningkatkan aktiviti antibakteria. Dalam 

penyaringan antipoliferatif, secara umum kompleks vanadium karboksilato 

mempamerkan aktiviti antipoliferatif yang lebih tinggi berbanding dengan kompleks 

kuprum karboksilato dan mangan karboksilato. Kompleks kuprum karboksilato dan 

mangan karboksilato menunjukkan selektiviti sitotoksik terhadap garisan sel kanser  

HepG2 apabila dibandingkan dengan garisan sel kanser MCF-7 dan Hela. Eksperimen 

nukleolitik telah menyarankan bahawa belahan atau fragmentasi DNA oleh ROS yang 

dihasilkan oleh kompleks berkemungkinan besar bertangungjawab terhadap aktiviti 

antipoliferatif yang dipamerkan oleh kompleks.  
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Synthesis, Characterization, Nucleolytic, Antibacterial and 

Antiproliferative Properties of Vanadium, Copper and Manganese 

Complexes 

 

ABSTRACT 

 
 

Series of vanadium carboxylato complexes, copper carboxylato complexes, manganese 

carboxylato complexes and vanadium phenanthroline derivative complexes have been 

synthesized and characterized. The details of all the complexes are tabulated in Table 2.2 

(page 37). The complexes have been characterized by X-ray crystallography, elemental 

analysis, FT-IR, UV–Vis spectroscopy and cyclic voltammetry. In electrochemistry 

studies, vanadium carboxylato complexes show redox active by displaying a quasi-

reversible redox couple corresponding to VV/VIV redox process while copper 

carboxylato complexes show redox active by displaying two quasi-reversible redox 

couples corresponding to CuIICuII/CuIICuI and CuIICuI/CuICuI redox processes and 

manganese carboxylato complexes show redox active by displaying a quasi-reversible 

redox couple corresponding to MnII/MnIII redox process. In nucleolytic studies, all the 

complexes can induce oxidative DNA cleavage but in different manner. The copper 

carboxylato complexes and manganese carboxylato complexes can induce DNA 

cleavage in the presence of H2O2. Meanwhile for vanadium carboxylato complexes, 

vanadium(V) carboxylato complexes require H2O2 to induce DNA cleavage while 

vanadium(IV) carboxylato complexes do not require H2O2 to induce DNA cleavage. As 

for vanadium phenanthroline derivative complexes, they can induce DNA cleavage in 
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the presence and in the absence of H2O2. However, the DNA cleavage activity of the 

vanadium phenanthroline derivative complexes is greatly enhanced in the presence of 

H2O2.  Reactive oxygen species (ROS) scavengers have also been used to ascertain the 

reactive species responsible for DNA cleavage. The hydroxyl radical and singlet oxygen 

species have been found to be the ROS that are responsible in the DNA cleavage 

reaction. In the antibacterial screening, all the complexes except manganese carboxylato 

complexes exhibit antibacterial activity against certain Gram negative or Gram positive 

bacteria species. Copper carboxylato complexes show a very selective antibacterial 

activity whereby they only exhibit antibacterial activity against Gram negative bacteria 

Enterobacter aerogenes. The antibacterial activity of vanadium phenanthroline derivative 

complexes reveals that methyl groups attached at the position 2 and 9 in phenanthroline 

ring may increase the complexes antibacterial activity. In antiproliferative screening, 

vanadium carboxylato complexes in general exhibit higher antiproliferative activity 

when compared to copper carboxylato complexes and manganese carboxylato 

complexes. Copper carboxylato complexes and manganese carboxylato complexes 

exhibit cytotoxic selectivity against HepG2 cancer cell line when compared to MCF-7 

and Hela cancer cell lines. The nucleolytic experiments suggest that the cleavage or 

fragmentation of DNA by ROS generated by the complexes maybe responsible for the 

antiproliferative activity exhibited by the complexes.  

 

Keywords: Vanadium Complexes; Copper Complexes; Manganese Complexes; DNA    

                    Cleavage; Antibacterial; Antiproliferative
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Biological roles and medicinal applications of metal complexes and metal ions 

 

Studies on biological activities of metal complexes have been one of our long-term 

interests. Metal complexes are well known to exhibit antibacterial, antiproliferative, 

antiapoptotic, anti-inflammatory and insulin mimetic properties [1-28]. Several of the 

metal complexes have entered clinical trials and few have been registered for clinical use 

[29-31]. Platinum based complexes such as cisplatin, carboplatin and oxaliplatin are 

widely used as chemotherapeutic agents against ovarian, lung, head, neck and colorectal 

cancers, and have greatly improving the survival rates of patients worldwide. Schematic 

structures of cisplatin, carboplatin and oxaliplatin are depicted in Figure 1.1. These 

platinum complexes react in vivo, crosslink the DNA in several different ways and 

subsequently interfering the cell division by mitosis. The damaged DNA elicits DNA  

repair mechanisms, which in turn activate apoptosis when repair proves impossible. 

Meanwhile, Aurum(I) thiolate drugs such as aurothiomalate (MyocrisinR), 

aurothioglucose (SolganolR), aurothiopropanol sulfonate (AllochrysinR), and the oral 

drug auranofin (RidauraR), are widely used for the treatment of difficult cases of 

rheumatoid arthritis. Bismuth(III) compounds such as bismuth subcitrate and 

subsalicylate are widely used for the treatment of diarrhoea, dyspepsia and gastric and 

duodenal ulcers. Bismuth(III) compounds are found to be antibacterial active against 
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bacteria Helicobacter pylori which is associated with the mucus layer of ulcers. Sodium 

nitroprusside (Na2[FeII(CN)5(NO)]·2H2O or (NiprideR) is used to treat hypotensive while 

Cu-salicylate (AlcusalR) is used to treat inflammatory. The success of metal complexes 

in medicinal applications has aroused great interest in the development of new metal 

complexes to diagnose and treat diseases including cancers, bacteria and virus infection 

related diseases, inflammatory and diabetes.  
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Figure 1.1: Schematic structures of cisplatin, carboplatin and oxaliplatin 

 

Apart from metal complexes, metal ion or inorganic elements play essential roles in 

biological and biomedical processes in human health and disease as metalloenzymes and 

metalloproteins [29]. As metalloproteins, metal ions perform as catalyst or stabilizer to 

stabilize the protein tertiary or quaternary structure. In addition, many proteins need to 

bind one or more metal ions to perform their functions. Complex zinc ion is one of the 
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most important components of metalloproteins in the human body, which functions as 

DNA transcription and regulation as well as oxidation and hydrolysis, cleavage of 

peptide bonds as well as formation of phosphodiester bonds. Meanwhile, copper ion is 

presence in some of the most important metalloenzymes in the human body and 

functions as superoxide dismutase to neutralize free radical generated from various 

human biological systems. Metal ions are also very important for the structure and 

function (in the case of RNA) of nucleic acids.  Besides, many organic compounds used 

in medicine do not have a purely organic mode of action; some are activated or 

biotransformed by metal ions including metalloenzymes, others have a direct or indirect 

effect on metal ion metabolism. Some of the metal ions have also been registered for 

clinical used as therapy and diagnosis agents, as listed in Table 1.1. 

 

        Table 1.1: Some of metal ions in clinical use 
 

Compounds 
 

Function/Treat  

Li2CO3 

 
Prophylaxis for bipolar disorders 

CaCO3, Mg(OH)2 

 

Antacid 

La2
III(CO3)3 Chronic renal failure 

 
MgSO4 

 

Hypomagnesemia 

Potassium citrate 

 

Kidney stones 

Magnesium citrate 
 

Saline laxative 

 

 

 

 

 

 



 4 

1.2 Antibacterial and antiproliferative activities of transition metal complexes 

 

Transition metal complexes such as vanadium, copper and manganese complexes are 

known to exhibit excellent antibacterial and antiproliferative activities. The summary of 

antibacterial and antiproliferative activities of selected few vanadium, copper and 

manganese complexes that have already described in the literatures is tabulated in Table 

1.2. Referring to Table 1.2, it can be seen that transition metal complexes are rich in 

antibacterial and antiproliferative activities, being active against a wide spectrum of 

bacteria species or cancer cells. Transition metal complexes may induce cell death 

through disruption of the cell cycle or by DNA strand scission [32]. There are evidences 

to indicate that metal complexes can induce DNA strand scission not directly reacting 

with DNA components but acting mainly through the production of highly reactive 

oxygen species, especially hydroxyl radicals generated in cells. These reactive oxygen 

species actually cause the DNA strand scission. Transition metal complexes through 

Fenton-like reactions and/or during the intracellular reduction can generate reactive 

oxygen species. Besides, some transition metal complexes, which are photoactivatable, 

can induce DNA cleavage upon UV irradiation and singlet oxygen is the common 

reactive oxygen species that is generated in this process. Rich diversity of antibacterial 

and antiproliferative activities by transition metal complexes provides exciting prospects 

for the design of novel therapeutic agents with unique mechanisms of action to act 

against certain bacteria or cancers, as different metal complexes can produce different 

therapeutic effect. Therefore, detailed investigations could be helpful in designing more 

potent antibacterial and anticancer agents for the therapeutic use. 
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Table 1.2: The antibacterial and antiproliferative activities of some vanadium, copper  
                  and manganese complexes 

 
Complexes Antibacterial/ 

Antiproliferative 
activity 
 

Bacteria 
species/Cancer cells 

Ref: 

[CuII(4-(2-pyridylmethyl)-1,7-
dimethyl-1,4,7-triazonane-2,6- 
dione)(CH3CN)2](ClO4)2 

Antibacterial 
 
 
 
 
 
 

Escherichia coli 
(T7), 
Staphylococus 
aureus,  
Pseudomonas 
aeruginosa 

13 

CuII(2-furancarbaldehyde 
thiosemicarbazone) 0.5H2O 
 
 

Antibacterial 
 

Bacillus subtilis,  
Staphylococus 
aureus 

18 

[Cu2
II(N,N’-bis(3-

aminopropyl)oxamide)( 2,2’-
bipyridine)( 2,4,6-
trinitrophenol)(H2O)]( 2,4,6-
trinitrophenol) 
 

Antibacterial 
 

Escherichia coli, 
Bacillus subtilis,  
Staphylococus 
aureus 

16 

CuII
2(N,N’-bis(N-

hydroxyethylaminoethyl) 
oxamide)(2,4,6-trinitrophenol)2 

 

Antiproliferative 
 

SMMC-7721 human 
hepatocellular 
carcinoma cells, 
A549 human lung 
adenocarcinoma 
cells 
 

8 

CuII (ethyl 2-bis(2-
pyridylmethyl)aminopropionate)Cl2 

 

Antiproliferative 
 

Eca-109 human 
esophageal cancer 
cells, A549 human 
lung adenocarcinoma 
cells  
 

10 

CuII (norfloxacinato)(2,2’-
bipyridine)Cl2 

 
 

Antiproliferative 
 

HL-60 and K562 
human leukemia 
cells 

19 
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Table 1.2: Continued  
 
Complexes Antibacterial/ 

Antiproliferative 
activity 
 

Bacteria 
species/Cancer cells 

Ref: 

MnII(tetraphenyl porphyrin), 
(ebselen–porphyrin conjugate)  

Antibacterial 
 

Staphylococus 
aureus 
 

15 

MnII(tetraamide macrocyclic)NO3 Antibacterial Pseudomonas 
cepacicola, Klebsella 
aerogenous 
 

25 

MnII(6,7-dicycanodipyrido[2,2-
d:29,39-f ]quinoxaline) 
(NO3)(H2O)]NO3.CH3OH 
 
 

Antiproliferative 
 

BGC-823 human 
stomach cancer cells, 
HL-60 human 
leukemia cells 
 

27 

VV
 4O10(µ-O)2[VO(H- 

ciprofloxacin)2)]2.13H2O 
 
 

Antibacterial Staphylococus 
aureus, Escherichia 
coli, 
Pseudomonas 
aeruginosa 
 

21 

VV (2-methyl-3H-5-hydroxy-6-
carboxy-4-pyrimidinone ethyl ester) 
 

Antiproliferative 
 

Hela human cervical 
cancer cells 
 

6 

VVO2(salicylaldehydesemicarbazone) 
 
 

Antiproliferative 
 

MC3T3-E1 
osteoblastic mouse 
calvaria-derived 
cells,  
UMR106 rat 
osteosarcoma- 
derived cells  
 

12 

VIVO(3-amino-6(7)-
chloroquinoxaline-2-carbonitrile N1, 
N4-dioxide)2 
 
 

Antiproliferative 
 

V79 chinese hamster 
lung fibroblasts cells 
 

24 
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1.3 Background of nucleolytic activity of metal complexes 

 

Recently, research on nucleolytic activity of metal complexes has blossomed leading to 

the discovery of the capacity of metal complexes to interact with DNA and further to 

induce DNA cleavage in the presence of co-factor. Transition metal complexes such as 

ruthenium, copper, cobalt, manganese and vanadium complexes have been reported to 

promote DNA cleavage in the presence of co-factor [33-55]. The DNA cleavage by 

metal complexes can occur via oxidative, photolytic and hydrolytic cleavage.  

 

Double helical DNA consists of two complementary, antiparallel 

polydeoxyribonucleotide strands associated by specific hydrogen bonding interactions 

between nucleotide bases, Figure 1.2. The backbone of the DNA strand is made from 

alternating phosphate and sugar residues. The sugar in DNA is 2-deoxyribose, which is a 

pentose (five-carbon) sugar. The sugars are joined together by phosphate groups that 

form phosphodiester bonds between the third and fifth carbon atoms of adjacent sugar 

rings. The sugar phosphate backbone of paired strands defines the helical grooves, 

within which the edges of the heterocyclic bases are exposed. The biologically relevant 

B-form structure of the DNA double helix is characterized by a shallow, wide major 

groove and a deep, narrow minor groove. The major and minor grooves provide a lot of 

hydrogen binding sites. The DNA double helix is stabilized by hydrogen bonds between 

the nucleotide bases attached to the two strands. The four bases found in DNA are 

adenine, cytosine, guanine and thymine, Figure 1.3. These four bases are attached to the 

sugar/phosphate to form the complete nucleotide.  
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Figure 1.2: The structure of part of a DNA double helix 
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Figure 1.3: The chemical structure of DNA. Hydrogen bonds are shown as dotted lines 
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The DNA cleavage by metal complexes can be monitored by agarose gel electrophoresis. 

The DNA strain that was used in DNA cleavage studies is pBR322 DNA. The pBR322 

DNA is a double helix DNA and it exists in supercoil form. In general, if scission or 

cleavage occurs on one strand of the supercoil DNA, the supercoil (Form I) will relax 

and convert to nicked form (Form II) while if scission occurs on both strands, a linear 

form (Form III) will be generated (Figure 1.4). These three forms of DNA will migrate 

in different rate in gel electrophoresis (Figure 1.5) with supercoil form migrates the 

fastest while nicked form migrates the slowest and linear form migrates in between 

supercoil and nicked forms. DNA cleavage by metal complexes is varied among the 

complexes, with some metal complexes can induce both single and double strand 

scissions while some metal complexes can only induce single scission.  

 

In oxidative and photolytic DNA cleavage, metal complexes cannot induce DNA 

cleavage directly but indirectly through generating reactive oxygen species (ROS) such 

as hydroxyl radical and singlet oxygen. These ROS are actually responsible in DNA 

cleavage reaction. In order to study the DNA cleavage mechanism by metal complexes, 

various inhibiting agents have been used such as DMSO, t-butanol, mannitol and sodium 

azide. DMSO, t-butanol and mannitol are used as hydroxyl radical inhibitors while 

sodium azide is used as singlet oxygen inhibitor. Meanwhile in hydrolytic DNA 

cleavage, metal complexes can induce DNA cleavage directly by cleaving the P–O 

bonds in the phosphodiester of DNA.  
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Figure 1.4: Supercoiled, nicked and linear DNA 
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Figure 1.5: Supercoiled, nicked and linear DNA bands in gel electrophoresis diagram 

 

 

1.3.1 Oxidative DNA cleavage by metal complexes in the presence of 3-

mercaptopropionic acid (MPA) 

 

Complexes [CuII(ternary-L-glutamine)(1,10-phenanthroline)(H2O)](ClO4) and 

[CuII(ternary-S-methyl-L-cysteine)(1,10-phenanthroline)(H2O)](ClO4) (Figure 1.6) can 

exhibit oxidative DNA cleavage in the presence of 3-mercaptopropionic acid (MPA) [33, 

34]. MPA plays as reduction agent in the DNA cleavage reaction. Both of the complexes 

can only induce single DNA scission by converting supercoil DNA to nicked form. The 

mechanistic aspects of the DNA cleavage reactions have been investigated with various 

inhibiting agents and the results show that hydroxyl radical scavenger DMSO can inhibit 

the DNA cleavage induced by both of the complexes. This indicates the involvement of 

Form I 
(supercoil) 

Form II 
(nicked) 

Form III 
(linear) 
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hydroxyl radical in the cleavage reaction. The proposed DNA cleavage mechanism of 

metal complex in the presence of MPA is illustrated in Figure 1.7.   
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Figure 1.6: The schematic structures;  
                    a) [CuII (ternary-L-glutamine)(1,10-phenanthroline)(H2O)](ClO4) 
                    b) [CuII(ternary-S-methyl-L-cysteine)(1,10-phenanthroline)(H2O)](ClO4) 
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Figure 1.7: The proposed DNA cleavage mechanism of metal complex in the presence    
                    of 3-mercaptopropionic acid (MPA) 

 
 

 



 14 

1.3.2 Oxidative DNA cleavage by metal complexes in the presence of ascorbic acid 

 

Complexes [RuII(imidazo[4,5-f][1,10]phenanthroline)(NH3)4](PF6)2
 and [CuII(L-

threonine)(1,10-phenanthroline)(H2O)](ClO4) (Figure 1.8) can induce oxidative DNA 

cleavage in the presence of ascorbic acid [35, 36]. Similar to MPA, ascorbic acid also 

acts as the reduction agent in the DNA cleavage reaction. Complex [RuII(imidazo[4,5-

f][1,10]phenanthroline)(NH3)4](PF6)2
 can only induce single DNA scission by 

converting supercoil DNA to nicked form while complex [CuII(L-threonine)(1,10-

phenanthroline)(H2O)](ClO4) can induce both single and double DNA scissions by 

converting supercoil DNA to nicked and linear forms. In comparison, complex [CuII(L-

threonine)(1,10-phenanthroline)(H2O)](ClO4) appears to be a better DNA cleaver when 

compared to complex [RuII(imidazo[4,5-f][1,10]phenanthroline)(NH3)4](PF6)2 in the 

presence of ascorbic acid. In mechanistic studies, it is evident that the hydroxyl radical 

scavenger DMSO diminish significantly the nuclease activity of complex [CuII(L-

threonine)(1,10-phenanthroline)(H2O)](ClO4)], which is indicative of the involvement of 

the hydroxyl radical in the cleavage process. The proposed DNA cleavage mechanism of 

metal complex in the presence of ascorbic acid is illustrated in Figure 1.9.   
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      Figure 1.8: The schematic structures;  
                          a) [RuII(imidazo[4,5-f][1,10]phenanthroline)(NH3)4](PF6)2 
                          b) [CuII(L-threonine)(1,10-phenanthroline)(H2O)](ClO4) 
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Figure 1.9: The proposed DNA cleavage mechanism of metal complex in the presence  
                    of ascorbic acid 
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1.3.3 Oxidative DNA cleavage by metal complexes in the presence of H2O2 

 

Complexes [CoII(imidazole-terpyridine)2](ClO4)2 and [CuII(imidazole 

terpyridine)2](ClO4)2  (Figure 1.10) can promote oxidative DNA cleavage in the presence 

of H2O2 [37, 38]. In contrast to MPA and ascorbic acid, H2O2 acts as oxidation agent in 

the DNA cleavage reaction. Complex [CoII(imidazole-terpyridine)2](ClO4)2
 can only 

induce single DNA scission by converting supercoil DNA to nicked form while complex 

[CuII(imidazole terpyridine)2](ClO4)2 can induce both single and double DNA scissions 

by converting supercoil DNA to nicked and linear forms. This indicates that the DNA 

cleavage efficiency of complex [CuII(imidazole terpyridine)2](ClO4)2 is higher than the 

DNA cleavage efficiency of complex [CoII(imidazole-terpyridine)2](ClO4)2 in the 

presence of H2O2. From the mechanistic studies, it is shown that the hydroxyl radical 

scavenger DMSO can reduce significantly the nuclease activity of complex 

[CoII(imidazole-terpyridine)2](ClO4)2 while the hydroxyl radical scavenger ethanol can 

reduce significantly the nuclease activity of complex [CuII(imidazole 

terpyridine)2](ClO4)2. This results reflect that the participation of hydroxyl radical in the 

cleavage process. The proposed DNA cleavage mechanism of metal complex in the 

presence of H2O2 is illustrated in Figure 1.11.  
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                Figure 1.10: The schematic structures;  
                                      a) [CoII(imidazole-terpyridine)2](ClO4)2 

                                      b) [CuII(imidazole terpyridine)2](ClO4)2 
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Figure 1.11: The proposed DNA cleavage mechanism of metal complex in the presence  
                      of H2O2 
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1.3.4 Photolytic DNA cleavage by metal complexes  

 

Complexes [CuII(ternary-S-methyl-L-cysteine)(dipyridoquinoxaline)(H2O)](ClO4), [CoIII 

(ethylenediamine)2(imidazo[4,5-f][1,10]-phenanthroline)]Br3, [RuII(2,2’-bipyridine)2(5-

methoxy-isatino-[1,2-b]-1,4,8,9-tetraazatriphenylene)](ClO4)2 and [NiII(naptho[2,3-a] 

dipyrido[3,2-h:2’,3’-f]phenazine-5,18-dione)(1,10-phenanthroline)](PF6)2 (Figure 1.12) 

can trigger photolytic DNA cleavage upon irradiation [34, 39, 40, 41]. Complexes 

[CuII(ternary-S-methyl-L-cysteine)(dipyridoquinoxaline)(H2O)](ClO4) and [RuII(2,2’-

bipyridine)2(5-methoxy-isatino-[1,2-b]-1,4,8,9-tetraaza triphenylene)](ClO4)2 can induce 

both single and double DNA scissions by converting supercoil DNA to nicked and linear 

forms while complexes [CoIII(ethylenediamine)2(imidazo[4,5-f][1,10]-

phenanthroline)]Br3 and [NiII(naptho[2,3-a]dipyrido[3,2-h:2’,3’-f]phenazine-5,18-

dione)(1,10-phenanthroline)](PF6)2 can only induce single DNA scission by converting 

supercoil DNA to nicked form. In comparison, DNA cleavage efficiency of complexes 

[RuII(2,2’-bipyridine)2(5-methoxy-isatino-[1,2-b]-1,4,8,9-tetraazatriphenylene)](ClO4)2 

and  [CuII(ternary-S-methyl-L-cysteine)(dipyridoquinoxaline)(H2O)](ClO4) is higher 

than the DNA cleavage efficiency of complexes [CoIII(ethylenediamine)2(imidazo)[4,5-

f][1,10]-phenanthroline)]Br3 and [NiII(naptho[2,3-a]dipyrido[3,2-h:2’,3’-f]phenazine-

5,18-dione)(1,10-phenanthroline)](PF6)2 under photolytic DNA cleavage. In mechanistic 

studies, DNA cleavage activity of complexes [RuII(2,2’-bipyridine)2(5-methoxy-isatino-

[1,2-b]-1,4,8,9-tetraazatriphenylene)](ClO4)2 and  [CuII(ternary-S-methyl-L-cysteine) 

(dipyridoquinoxaline)(H2O)](ClO4) can be inhibited by singlet oxygen inhibitor sodium 

azide which indicate the contribution of singlet oxygen in the cleavage process. The 

DNA cleavage mechanism of the complexes CoIII(ethylenediamine)2(imidazo[4,5-
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f][1,10]-phenanthroline)]Br3 and [NiII(naptho[2,3-a]dipyrido[3,2-h:2’,3’-f]phenazine-

5,18-dione)(1,10-phenanthroline)](PF6)2 is still under investigation. It is proposed that 

photon from the excitation source excites the metal complexes, which then transfers the 

energy to the ground state oxygen molecule (3O2) and excites it to the 1∆g state (1O2). 

The proposed DNA cleavage mechanism of metal complex under irradiation is 

illustrated in Figure 1.13.  
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Figure1.12: The schematic structures;  
                      a) [CuII(ternary-S-methyl-L-cysteine)(dipyridoquinoxaline)(H2O)](ClO4) 
                      b) [CoIII(ethylenediamine)2(imidazo[4,5-f][1,10]-phenanthroline)]Br3 
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Figure 1.12:  Continued  
                      c) [RuII(2,2’-bipyridine)2(5-methoxy-isatino-[1,2-b]-1,4,8,9-tetraaza   
                          triphenylene)](ClO4)2 

                                d) [NiII(naptho[2,3-a]dipyrido[3,2-h:2’,3’-f]phenazine-5,18-dione)(1,10- 
                          phenanthroline)](PF6) 

 
 
 
 
 
 
 
 
 
 



 21 

 
 
 
 
 
 
 
 
 
 
 

Figure 1.13: The proposed DNA cleavage mechanism of metal complex upon 
                               irradiation 
 

 

1.3.5 Hydrolytic DNA cleavage by metal complexes  

 

Cis-aquahydroxo-tetraamine-cobalt(III) complex, [CoIII(bis[2-(2-pyridylethyl)](2-

pyridylmethyl)amine)(OH)(H2O)]2+, generated from [CoIII(bis[2-(2-pyridylethyl)](2-

pyridylmethyl)amine)(CO3)]ClO4 and complex [MnII(quercetin)2(H2O)2]Cl2 (Figure 

1.14) can induce DNA cleavage via hydrolytic pathway [42, 43]. Both of the complexes 

can induce DNA cleavage in the absence of co-factor and in the dark. The mechanistic 

aspects of the DNA cleavage reaction have been investigated with various inhibiting 

agents and the results show that hydroxyl radical and singlet oxygen scavengers cannot 

inhibit the DNA cleavage induced by both of the complexes. These observations indicate 

that hydroxyl radical and singlet oxygen species are not involved in the cleavage 

reaction. The DNA cleavage characteristics of complexes [CoIII(bis[2-(2-pyridylethyl)] 

(2-pyridylmethyl)amine)(OH)(H2O)]2+ and [MnII(quercetin)2(H2O)2]Cl2 support 

hydrolytic cleavage. Both of the complexes can induce single and double DNA scissions 

by converting supercoil DNA to nicked and linear forms. In hydrolytic cleavage, it is 
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proposed that DNA cleavage occurs at the P–O bond in the phosphodiester of DNA. The 

proposed hydrolytic DNA cleavage mechanism by metal complex is illustrated in Figure 

1.15. 
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Figure 1.14: The schematic structures;  
                    a)  [CoIII(bis[2-(2-pyridylethyl)](2-pyridylmethyl)amine)(OH)(H2O)]2+ 
                              b) [MnII(quercetin)2(H2O)2]Cl2           
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Figure 1.15: The proposed hydrolytic DNA cleavage mechanism by the metal complex 

 

 

1.3.6 Oxidative DNA cleavage by copper(II) amino acid complexes in the presence 

of H2O2 

 

Recently, Ng et al. have demonstrated that neutral CuII amino acid complexes such as 

CuII(N,N-di-(N’-methylacetamido)-L-alaninato)2 and CuII(N,N’-dimethylglycinato)2 

(Figure 1.16)  can induce oxidative cleavage of DNA in the presence of H2O2 [44, 45]. 

Both of the complexes can induce single and double DNA scissions by converting 

supercoil DNA to nicked and linear forms. Hydroxyl radical scavenger DMSO can 

inhibit significantly the cleavage reaction induced by complex CuII(N,N’-
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dimethylglycinato)2 which reflect the involvement of hydroxyl radical in cleavage 

reaction. The proposed DNA cleavage mechanism by complex CuII(N,N’-

dimethylglycinato)2  is similar to the proposed DNA cleavage mechanism illustrated in 

Figure 1.11.  
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                      Figure 1.16: The schematic structures; 
                                            a) CuII(N,N’-dimethylglycinato)2                       
                                            b) CuII(N,N-di-(N’-methylacetamido)-L-alaninato)2 
 


