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KESAN LARUTAN PUNARAN TETRAMETILAMMONIUM HIDROKSIDA 

(TMAH) KE ATAS PENGHASILAN TRANSISTOR SILIKON 

NANOWAYAR DICORAKKAN OLEH LITOGRAFI MIKROSKOP DAYA 

ATOMIK (AFM) 

 

 

ABSTRAK 

 

 Dalam kajian ini, litografi AFM telah digunakan untuk mencorakkan struktur 

peranti transistor silikon nanowayar (SiNWT) daripada oksida berskala nano pada 

permukaan silikon atas insulator (SOI) melalui proses pengoksidaan anodik setempat 

(LAO). Corak oksida tersebut akan berfungsi sebagai topeng untuk melindungi 

lapisan silikon semasa proses pemunaran. Struktur SiNWT yang dihasilkan terdiri 

daripada sehelai nanowayar yang bertindak sebagai saluran dan pad-pad sentuh 

“source” (S), “drain” (D) dan “lateral gate” (G). Struktur peranti yang terhasil 

kemudian dipunar secara punaran kimia basah menggunakan tetrametilammonium 

hidroksida (TMAH) dan asid hidrofluorik (HF) yang bertujuan untuk menyingkirkan 

lapisan silikon dan lapisan oksida yang tidak diingini. Bagi litografi AFM, diperolehi 

bahawa voltan tip yang dikenakan 9 volt dan laju pergerakan tip semasa pencorakan 

6 µm/s merupakan parameter yang terbaik untuk menghasilkan nanostruktur corak 

topeng peranti tersebut. Selain itu, punaran dengan TMAH pada 65°C selama 35s 

adalah sesuai untuk menyingkirkan lapisan silikon yang tidak diingini daripada 

permukaan SOI. Selepas punaran dengan HF pada suhu bilik selama 5s, peranti 

SiNWT dengan ketebalan saluran 99.05 nm, panjang saluran 6.92 µm dan jarak 

saluran ke “gate” 318.64 nm telah dihasilkan. Daripada pencirian elektrik Id-Vd dan 

Id-Vg, dapat dibuktikan bahawa peranti yang dihasilkan adalah SiNWT yang 

bersaluran-p.  
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EFFECT OF TETRAMETHYLAMMONIUM HYDROXIDE (TMAH) 

ETCHANT ON THE FORMATION OF SILICON NANOWIRES 

TRANSISTOR PATTERNED BY ATOMIC FORCE MICROSCOPY (AFM) 

LITHOGRAPHY 

 

 

ABSTRACT 

 

 In this research, AFM lithography was performed to create nanoscale oxide 

pattern of silicon nanowires transistor (SiNWT) structure via local anodic oxidation 

(LAO) process on silicon on insulator (SOI) surface. These nanoscale oxide patterns 

will act as a mask to protect silicon layer during etching. The SiNWT structures 

consist of a nanowire as a channel with contact pads of source (S), drain (D) and 

lateral gate (G). The fabricated device structure was then wet chemically etched with 

tetramethylammonium hydroxide (TMAH) and hydrofluoric acid (HF) to remove the 

uncover silicon layer and oxide layer, respectively. Using AFM lithography, it was 

found that the 9 volt tip voltage and 6 µm/s tip writing speed were the most suitable 

parameters to fabricate nanostructure mask pattern of device. The TMAH etching at 

65°C for 35s was found as the best condition to remove silicon layer completely 

from uncovered SOI surface. After HF etching at room temperature for 5s, the 

SiNWT with 99.05 nm channel thickness, 6.92 µm channel length, and 318.64 nm 

channel to gate gaps was fabricated.  From the Id-Vd and Id-Vg electrical 

characteristic confirmed that the fabricated SiNWT is p-channel SiNWT. 
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CHAPTER 1 

INTRODUCTION 

 

1.1  Introduction 

 

 Nanotechnology has become one of the most promising research areas which 

it can bring significant progress in the development of materials and devices. 

Nanotechnology involves the definition, design and function of a structure in which 

the dimensions are measured in nanometers (Rosoft, 2002). To produce 

nanomaterials and nanostructures such as nanowires, nanorods, quantum dots and 

nanoparticles, research works have been done on the formation of these materials. To 

get specific nanoobjects and their properties, a particular technique should be 

selected. 

 

 

       Nanowire is a one dimensional nanostructure that has thickness, diameter or 

length in the range of 0.1 nanometers to 100 nanometers. Silicon nanowire is one of 

the nanowires that exists in the development of nanostructure or semiconductor 

especially for nanoelectronic device industry. Due to silicon nanowire compatible 

with complementary metal-oxide semiconductor (CMOS) technology, it is a very 

attractive material to be used as interconnection materials and basic components for 

nanoelectronic and optoelectronic with lower power consumption such as light 

emitting diode (LED) and high speed field effect transistor (FET). Nanoelectronics 

are applied in the nanotechnology of the electronic components especially the often 



2 

 

referred to transistor devices that are so small that inter-atomic interaction exist in the 

quantum mechanical properties (Rosoft, 2002).  

 

 

 At present, SiNWT has become a very interactive material in its potential to 

be used in the building of nanoelectronics for device industry. Silicon nanowire 

transistor is a FET that is operated by either electrons or holes as carriers. Transistor 

is the fundamental block for all the electronic devices because the number of 

transistors in a silicon chip had grown from a few hundred to over ten million on a 

single chip. SiNWT can be fabricated by top-down and bottoms-up approach which 

depends on its application (Salem et al., 2009). Salem et al., (2009) had discussed 

that for the improvements of the potential of its application in the integrated circuits, 

the bottoms-up approach provides cost-effective nanowire compared to the top-down 

approach. In this research, the SiNWT with nanowire used as a channel with contact 

pads of source (S), drain (D) and gate (G) has been fabricated by AFM 

nanolithography and followed by the wet chemical etching process. 

 

  

1.2  Problem Statement 

 

 Since the early seventies, the number of the transistors in a silicon chip had 

increased from a hundred to over ten million on a single chip by today. The size of 

the transistor has obviously become smaller and smaller. Due to the shrinking size of 

the transistors, there are more and more transistors can be squeeze into a chip. 

Although increasing the amount of transistors into a chip will increase the 
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performance of the electronic device, it will also create some problems. When more 

transistors are put in a chip, a more complex structure will be created on the chip. 

The complexity of this structure is complicated and must be followed by many steps 

in the fabrication processes which are quite costly. Then, the amount of the 

transistors will also make the heat transferred into a smaller space and heat 

dissipation problem will happen. The SiNWT with simple structures and simple 

process with less complex structures and step of the fabrication processes can solve 

this problem. With simple structures, the electron mobility become faster and the 

performance of the electronic device will not be affected. Meanwhile, with the 

simple process, the cost of the electronic device fabrication is lower compared to the 

complicated fabrication processes. 

 

 

 There are many techniques that have been developed for SiNWT fabrication 

such as chemical-vapour-deposition (CVD) (Lee et al., 2009; Yoon et al., 2008; 

Salem et al., 2009; Suk et al., 2008), electron beam lithography (Salem et al., 2009),  

laser induced decomposition (Salem et al., 2009) and field-emission growth inducer 

on a scanning tunnelling microscopy tip (Salem et al., 2009). These techniques are 

very complex and require expensive masking system. To solve these problems, the 

SiNWT can be fabricated by an AFM lithography followed by a wet chemical 

etching process. The advantages of AFM lithography for fabrication of the SiNWT 

are, it is a simple and it does not need an expensive masking system.  
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       In a semiconductor industry, dry and wet chemical etching processes are used 

to produce nanostructured devices. Wet chemical etching process is widely used to 

etch silicon and silicon dioxide as the process is simple and easy to handle compared 

to dry etching process. Wet chemical etching of silicon dioxide is commonly done by 

hydrofluoric acid (HF) solutions (Williams and Muller, 1996). Potassium hydroxide 

(KOH) (Gwo, 2001; Biswas and Kal, 2006; Fu et al., 1999) and tetramethyl 

ammonium hydroxide (TMAH) (Tabata et al., 1992; Sonphao and Chaisirikul, 2001; 

Chien et al., 2002; Tokoro et al., 1998; Biswas and Kal, 2006) alkaline solution are 

commonly used for the silicon wet chemical etching process. KOH is a less-toxic, 

economical, with high silicon etch rate, high degree of anisotropy, low etched surface 

roughness and moderate Si/SiO2 etch rate ratio. But, KOH is not CMOS compatible 

due to the presence of K
+ 

metal alkaline ions in it (Biswas and Kal, 2006; Chien et al., 

2002). To solve that problem, TMAH is used for SiNWT fabrication. TMAH has the 

advantages of being CMOS compatible, non-flammable, smooth, less harmful, have 

high silicon etch rate and have high selectivity in masking layers and is also less-

toxic.   

 

 

1.3  Research Objectives 

 

1. To fabricate a SiNWT using AFM lithography followed by wet chemical etching 

process. 

2. To investigate the effect of the TMAH etchant on the formation of SiNWT 

structures. 

3. To characterize the electrical properties of the fabricated SiNWT. 
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1.4  Scope of the research 

 

 In this research, SiNWT was created with the nanowire as a channel that is in 

contact with the source (S), drain (D) and gate (G) pads. The SiNWT was fabricated 

by AFM lithography and followed by wet chemical etching process. AFM 

lithography was performed by local anodic oxidation (LAO) process. The oxide 

patterns grew on the chemically reactive substrate which acts as a mask by the 

application of a voltage between a conductive AFM tip and its substrate. There are 

several parameters that influence the patterning process such as tip writing speed, 

relative air humidity, sample voltage tip, radius tip, sample distance tip, anodization 

time and crystalline orientation. The tip writing speed and sample- tip voltage which 

most influence the process were studied in this research (Cervenka et al., 2006; Mo 

et al., 2008; Fang, 2004; Kuramochi et al., 2003; Vijaykumar and Kulkarni, 2007; 

Umezu et al., 2002; Hsu and Lee, 2008; Fang et al., 2008; Held et al., 1998; 

Hutagalung et al., 2007; Fu et al., 1999). 

 

 

        The AFM lithography can only produce the oxide pattern mask and wet 

chemical etching was then performed in order to produce the SiNWT. TMAH and 

HF acid were chosen for silicon and silicon oxide etching. TMAH is an anisotropic 

chemical etchant and CMOS compatible, it was used to remove the uncovered silicon 

layer and leave behind the oxide pattern. Meanwhile, HF acid was used to remove 

oxide layer. In this research, the effect of the TMAH etchant due to etching time on 

the constant etching temperature and concentration during the formation of the 

SiNWT structures was studied.  
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 The fabricated SiNWT was observed under AFM for surface topography and 

dimension. The SiNWT had characterized by variable pressure field emission 

scanning electron microscope (VPFESEM) and EDX for the surface morphology, 

dimension and element measurement. For electrical characterization, the I-V 

electrical characteristic of the fabricated SiNWT was characterized under the 

semiconductor parameter analyzer (SPA) by using cryogenic probe station to 

investigate the electrical properties of the SiNWT structures.  
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1  Introduction 

 

 Nanotechnology is a technology that involves the design, definition and 

function of a structure in which the dimensions are measured in nanometers. Thus, it 

is not limited to the dimension of the materials or devices in the nanometer size. For 

materials or nano-sized devices, it is in the range of 0.1 nanometers to 100 

nanometers in size or dimensions. Nanotechnology is an extension of the 

conventional physical device to completely new approaches with self-assembly 

molecule rather than to develop new materials with nanoscale dimension and directly 

control the materials on the atomic scale. „Nano‟ is derived from the Greek word 

meaning „Dwarf‟ (Rosoft, 2002). 

 

 

According to the National Science Foundation and National Nanotechnology 

Initiative (NNI) of the United Kingdom, nanotechnology is the ability to understand, 

control and manipulate matter at the level of individual atoms and molecules (in the 

range of about 0.1 to 100nm) in order to create materials, devices and system with 

fundamentally new properties and functions because of their small structure. The 

definition also proposed the usage the same principles and tools to establish a 

unifying platform for science and engineering at nanoscale, and employing the 

atomic and molecular interaction to develop the efficient manufacturing methods 

(Goddard III et al., 2007). 
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 There are two main approaches used in nanotechnology fabrication which is 

called as the top-down approach and bottoms-up approach. These two approaches are 

really used for the development of materials or devices in the nanometer size. Top-

down approach is a method for materials or devices fabrication from bulk materials. 

This approach takes a bulk material, mechanize it or modify it to the desired shape or 

smaller components. So, this approach is conducted from large items to become 

smaller ones. Bottoms-up approach is a method to build materials or devices from 

the molecular component or smaller building blocks which chemically self-assemble 

itself. This approach is conducted from the small items to become bigger ones. 

 

 

In the semiconductor industry, top-down approach and bottom-up approach 

are applied in the nanoelectronic device fabrication. The most common methods for 

top-down approach in the nanoelectronic device fabrication are electron beam 

lithography (EBL) (Wang et al., 2006; Feste et al., 2009; Koo et al., 2005; Lee et al., 

2009b; Weber et al., 2006; Salem et al., 2009) and scanning probe lithography 

(SPL)(Martinez et al., 2008).This approach involves molding or etching materials 

into smaller components. For bottoms-up approach, the common methods are 

molecular beam epitaxy (MBE), physical vapor deposition (PVD) and chemical 

vapor deposition (CVD). 
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2.2  Scanning probe microscopes (SPM) 

 

 A decade ago, scanning probe microscopes (SPMs), a molecular microscope 

was invented in the area of nanoscience and nanotechnology researches. The basic 

method of these SPMs was essentially to be able to move a tip over the substrate 

surface with a probe (sensor) with molecular sensitivity in the nanometer scale of the 

horizontal and vertical direction. The sensor movement was controlled under a 

highly sensitive feedback system which will then be coupled to a variety of signals to 

provide atomic surface details. 

 

  

 There are two types of the SPMs that were invented which are called as 

scanning tunnelling microscope (STM) and atomic force microscope (AFM). The 

STM was invented to characterize the surface structures for conducting materials. 

Due to the data from the STM images that provides information on the relative 

importance of molecule-molecule and molecule-substrate interaction, it is useful in 

such applications as microelectronic fabrication, epitaxial growth of thin films, 

lubrication and chromatography. Meanwhile, the AFM was developed to characterize 

the surface structures for non-conducting and conducting materials. The AFM is 

mostly used to characterize the surface of the thin film, polymer coating and single-

crystal substrates. In advance, the AFM is used for nanoelectronic fabrication which 

happened in this research. 
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2.3  Atomic force microscope (AFM) lithography 

 

  Atomic force microscope (AFM) lithography has shown itself to be unique 

for patterning and materials structuring in the nanometer precision. As usual, the 

AFM is used as a microscope to directly illustrate the image on the surface 

topography with atomic and molecular resolution. The image of the surface is 

obtained by recording and regulating the force felt by a probe as it scans the surface. 

AFM can be used to study both insulating and conducting material, and can be 

operated in the liquid, vacuum or air (Xie et al., 2006).  

 

 

 The AFM lithography works based on the principle of interaction between the 

probe and substrate separation in close contact condition < 1 nm. So, the AFM 

lithography can operate in contact mode (Fu et al., 1999; Giesbers et al., 2008; 

Kuramochi et al., 2003; Hu and Hu, 2005; Kuramochi et al., 2004; Park et al., 2007) 

or noncontact mode (Hsu and Lee, 2008; Kuramochi et al., 2004; Fang et al., 2008; 

Fang, 2004; Hutagalung et al., 2007). When suitable external field applied and/or 

forces are exerted, the probe can induce various physical and chemical processes on 

the substrate surface. Due to the physical and chemical processes on the substrate 

surface, the localized nanostructures are generated. AFM lithography possesses the 

versatility to pattern a wide range of materials including metals, semiconductors, 

polymers and biological molecules in different media. The surface topography and 

physical properties of the fabricated localized nanostructures can be immediately 

characterized with AFM (Xie et al., 2006). 
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 AFM lithography can be classified into two groups in term of their 

operational principles which are bias-assisted AFM lithography and force-assisted 

AFM lithography as shown in Figure 2.1. Bias-assisted AFM lithography is used in 

this project where the AFM tip is biased to create a localized electric field and the 

AFM tip acts as a nanoscale electrode for current injection or collection. Depending 

on the magnitude of the tip‟s biasness (positive bias or negative bias) and substrate 

materials, the application of the tip voltage can lead to anodic oxidation for 

nanostructures, nano-lines or nano-dots fabrication (Xie et al., 2006). 

 

 In force-assisted AFM lithography, a large force is applied to the tip for 

pattern fabrication and the tip-surface interaction is mainly mechanical. During 

force-assisted AFM lithography, forces larger than those used for AFM imaging are 

loaded onto the tip. The initially featureless surface is then patterned by mechanically 

scratching, pushing or pulling the surface atoms and molecules with the probe (Xie et 

al., 2006). Park et al., (2007) had used force-assisted AFM lithography for the 

formation of the damage layer on silicon substrate by a simple scratching process 

using special designed diamond tip cantilever for industrial application as a micro-to-

nano machining tool.  

 

Figure 2.1: (a) Force-assisted and (b) bias-assisted AFM lithography (Xie et al., 

2006). 

Applied force, F 

 

Applied 

voltage, V 
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2.3.1 Bias-assisted AFM lithography 

 

 In bias-assisted AFM lithography, a bias is applied to the AFM probe to 

create a localized electric field in the nanometer-sized close contact tip-sample 

distance. The distance is usually less than a few nanometers, with applying a tip bias 

of several volts, an electric field of 10
8 

V/m to 10
10 

V/m would be generated. Due to 

the high electric field, this will initiate several physical and chemical processes 

which make the patterning formation happen through field emission, joule heating, 

charge injection, explosive discharge, electrostatic attraction and electrochemical 

reaction. During the patterning formation, the process involved is ion solvation and 

mobility on the substrate surface. Ionic motion in liquid range from a few seconds to 

fractions of a millisecond and ions at the surface of materials are natural nucleation 

sites in absorbing water. Solvation increases the ionic mobility, and this is reflected 

in their response to the electric field around the tip (Rosoft, 2002). There are various 

technique of the bias-assisted AFM lithography such as anodic oxidation, 

electrochemical modification and functionalization of molecules, electrochemical 

deposition, charge deposition and manipulation, and nanoexplosion and shock wave 

generation (Xie et al., 2006). The bias-assisted AFM lithography with anodic 

oxidation technique is then reviewed. 

 

 

2.3.2 Principle of  AFM lithography by local  anodic oxidation (LAO)  

 

 In the local anodic oxidation (LAO) technique as shown in Figure 2.2, oxide 

will grow on a chemically reactive substrate by the application of a voltage or bias 
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between a conductive AFM tip and a substrate surface which act as an anode. There 

was a threshold voltage at which the anodic oxidation started. The water molecules 

are adsorbed onto a substrate that is dissociated due to high electric field (E > 10
7
 

V/m) which is generated by applying several volts at a few nanometer tip-substrate 

surface distance into fragments (e.g. H
+
, OH

- 
and O

2-
) and acted as an electrolyte. 

Oxygen containing radicals will then contribute to the formation of surface oxides 

due to an electric field enhanced diffusion through the oxide layer (Cervenka et al., 

2006).  

 

Figure 2.2: Schematic view of local anodic oxidation process induced by AFM tip 

(Cervenka et al., 2006). 

 

 

 Xie et al., (2006) proposed that in the LAO technique, the water meniscus 

formed in the tip-sample gap which is dissociated by the negative tip bias, and the O
-
 

and OH
-
 oxidative ions that reacts with the substrate to form localized oxide 

nanostructures. Because the molecular volume of the oxide is usually larger than that 

of the substrate material, raised nanopatterns are formed after the oxidation reaction.  

 

V 
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 Held et al., (1998) reported that LAO is usually carried out by placing the 

sample in an electrolytic cell and the water is used as the electrolyte. The conductive 

AFM tip is used as applied bias either as a constant voltage or current source. The 

AFM tip acts as a cathodically biased electrode to the sample surface, while the 

contamination layer between the tip and sample acts as an electrolyte producing this 

chemical reaction. So, the oxide patterns can be inspected immediately after the 

writing process. The water film is very important because it plays the primary role in 

forming the oxides.  

 

 

 Gwo, (2001) has discussed that the LAO process happened where a positive 

sample bias is applied between the sample and the grounded tip of the probe. The 

electrolysis of the water meniscus is formed by the capillary force between the tip 

(cathode) and the humidity absorbed sample surface (anode) that supplies the 

necessary oxidant anions (mainly OH
-
 ions). The applied sample bias also provides 

the strong electric field for ion migration into the sample.  

 

 

 Fang, (2004) reported that the LAO process on the specimen‟s surface will 

occur directly below the AFM probe tip when a negative bias voltage is applied to 

the probe. There is an adsorbed water layer on the surface, which provides the 

required electrolyte under the ambient conditions. Under the AFM tip as a cathode, 

the specimen‟s surface will be oxidized and the ions (including OH
-
 and O

2-
) that 

contributes to the formation of the surface oxide and finally the nanooxidized 

structure will be made.  
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2.3.3 Oxide nanostructures fabricated by AFM-based local  anodic oxidation 

(LAO) technique 

 

 AFM-based local anodic oxidation has been applied to produce oxide 

structures on semiconductors, metals and other materials. Although LAO process 

happened by applying the voltage between the AFM tip and the substrate surface, the 

fabricated oxide structure depends on the substrate materials because different 

substrate materials will provide different properties of the oxide structures (Xie et al., 

2006). 

 

 

 The AFM-based LAO process is mostly applied to produce oxide structure on 

semiconductors especially onto silicon surface (Cervenka et al., 2006; Calleja et al., 

1999; Blasco et al., 2001; Vijaykumar and Kulkarni, 2007; Hu and Hu, 2005; Fang, 

2004; Kuramochi et al., 2003; Fu et al., 1999; Palasantzas et al., 1999; Luo et al., 

2006) or H-passivated silicon surface (Mo et al., 2008; Kuramochi et al., 2004) for 

micro/nano-devices (Palasantzas et al., 1999; Mo et al., 2008) or nanoimprinting 

mould fabrication (Luo et al., 2006). Umezu et al., (2002) has reported that the 

height and width of the oxides on the amorphous silicon surface are larger compared 

to crystalline silicon when LAO technique is applied to the crystalline silicon and 

amorphous silicon. So, the microstructure of the silicon surface affects the oxide 

nanostructures fabrication. Equation (2.1) shows the chemical reaction between the 

silicon surface and water. Hu and Hu, (2005) proposed the chemical reaction by 

LAO on silicon surface as shown in Equation (2.2), where the OH
-
 is ionization on a 

few nanometers of water film on the silicon surface.  
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+

22 H4+SiO→OH2+Si                                                                                  (2.1) 

+

2

_ H2+SiO→OH2+Si                                                                                  (2.2) 

 

 Then, the AFM-based LAO process is also applied to produce oxide 

nanostructure on silicon nitride thin film on silicon substrate. The reaction of the 

LAO process on the silicon nitride thin film is the same with the reaction to produce 

oxide nanostructure on the silicon surface but the oxidation rate is extremely fast 

compare to the silicon surface. So, the silicon nitride thin film functions as a tool to 

increase the oxidation rate of the LAO process (Hsu and Lee, 2008; Gwo, 2001). 

Cervenka et al., (2006) have discussed that during the LAO process to produce oxide 

line on GaAs and silicon surface, the oxide line fabricated on the GaAs surface are 

generally less developed.  

 

 

 Besides that, the oxidized nanostructures are grown onto the titanium thin 

film which have been deposited on the silicon substrate (Fang et al., 2008; Kim et al., 

2008) or GaAs (Held et al., 1998) substrate by the LAO process. Fang et al., (2008) 

have studied the fabrication of the titanium dots and wires using amplitude 

modulation AFM-based LAO process. Held et al., (1998) reported that the oxide 

lines are able to be fabricated on the titanium films with excellent electronic 

properties. Kim et al., (2008) had investigated the influence of voltage waveform in 

AFM-based LAO process on titanium by analysing the current behaviour and the 

morphology of fabricated oxide nanodots features. The chemical reactions leading to 

anodic oxidation of titanium happened when ions OH
-
 and ions Ti

2+
 migrated 

through the oxide, driven by the potential drop and are combined to form a rather 
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unstable Ti(OH)2 and finally form TiO2 as shown in Equation (2.3) (Held et al., 

1998).  

 

( )
222 H+TiO→OHTi                                                                                                (2.3) 

 

 Lazzarino et al., (2006) have studied the chemical properties of LAO oxide 

nanostructures that‟s fabricated on layered GaAs/AlAs/GaAs heterostructures and 

the result showed that the aluminium compound present in the oxide nanostructure.  

Giesbers et al., (2008) reported that the AFM-based LAO process was also applied to 

fabricate the oxide nanostructure on the graphene surface. It showed that isolating 

trenches oxide nanostructure is able to be fabricated on the single layer and few layer 

graphene flakes, which enables the possibility for the fabrication of table top 

graphene based device. Lee et al., (2003) has fabricated predesigned antidot arrays 

with feature sizes of 70 nm (width) x 10 nm (height) on various materials including 

aluminium, titanium and silicon using AFM-based LAO process and selective wet 

etching technique.  

  

 

 Lee et al., (2004) proposed that the AFM-based LAO process are applied to 

produce oxide nanostructures on various organized molecular films as a resist like 

self-assembled monolayers (SAMs), Langmuir-Blodgett (LB) films and spin-coated 

polymer films which is deposited onto the silicon substrate. The functional groups of 

self-assembled molecules for SAMs can affect the AFM lithography speed, so 

choosing the right functional groups is very important. For LB films, the result 

showed that oxide nanostructures started to grow at the point of degradation that 
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resist in AFM-based LAO process. Due to thermal stable and more resistant to 

etching solution of the polymer films compare to organic self-assembled layers, so 

polymer resist is suitable for oxide nanostructures fabrication.  

 

 

2.3.4 Parameters that influenced the AFM-based on LAO technique 

 

 AFM-based LAO process is actually influenced by several parameters such 

as tip writing speed, relative air humidity, tip sample voltage, tip radius, tip sample 

distance, anodization time and crystalline orientation (Cervenka et al., 2006; Mo et 

al., 2008; Fang, 2004; Kuramochi et al., 2003; Vijaykumar and Kulkarni, 2007; 

Umezu et al., 2002; Hsu and Lee, 2008; Fang et al., 2008; Held et al., 1998). 

 

 

2.3.4.1 Tip writing speed 

 

 In Figure 2.6, Cervenka et al., (2006) has studied the silicon nanolines 

prepared at different tip sample voltages and writing speeds on Si (100) substrate. 

The nanolines are fabricated under a relative humidity of 46% and a temperature of 

23°C. Going from left to right, the lines are prepared at progressively increasing 

writing speeds. On the other hand, the lines are grown at a progressively increasing 

tip sample voltages when going from bottom to top. From Figure 2.3, at constant tip 

sample voltage, the oxide lines will be less developed with increasing writing speeds. 

It is obvious that the lines prepared at the highest tip sample voltage and the lowest 

writing speed (top-left) is the best developed one in height and width. Then, it is less 
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developed when the lines prepared are at the lowest tip sample voltage and the 

highest writing speed (bottom-right). In Figure 2.4, the height of silicon oxide lines 

was inversely proportional to the logarithm of the tip writing speed for the 6 volt and 

8 volt tip sample voltage.  

 

 

Figure 2.3: Si nanolines prepared at different tip sample voltages and writing speeds 

on a Si (100) substrate (relative humidity = 46%; T= 23°C) (Cervenka et al., 2006). 

 

 

 

 

 
Figure 2.4: The height of Si oxide lines as a function of tip writing speed for two tip 

sample voltages (relative humidity = 46%; T= 23°C) (Cervenka et al., 2006). 

Tip-sample 

voltage V(volt) 
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 Kuramochi et al., (2003) have studied the effect of the tip writing speed at a 

variation of relative humidity in the range of 40% to 80%. The size of the silicon 

oxide lines were reduced from 3 nm to 0.1 nm when the tip writing speed increased 

from 400 nm/s to 1200 nm/s at a variation of relative humidity (Kuramochi et al., 

2003). 

 

 

 Fang et al., (2008) have reported the effect of the tip writing speed during the 

titanium oxide nanowire fabrication by LAO process. The oxide nanowires generated 

applied voltages of 7, 8, 9, and 10 volt at tip writing speed of 2 µm/s, 5 µm/s and 7 

µm/s. It is obvious that the heights and widths of oxide nanowires are affected by the 

tip writing speed due to the applied voltage. When the tip speed is lowered, 2 µm/s 

was used to induce the oxide and the nanowires with a higher height and width are 

achived. On the other hand, nanowires with a lower height and width are fabricated 

when a higher tip speed, 7 µm/s with same voltage is used to induce the oxide (Fang 

et al., 2008). 

  

 

2.3.4.2  Relative air humidity 

 

 Held et al., (1998) have studied the effect of the relative air humidity during 

the oxide nanostructures fabrication at titanium film. Figure 2.5 showed the 

relationship between the FWHM oxide line width and relative humidity due to the 

applied voltage of -5.5 volt. It was observed that the line width scales is linear with 

the humidity. The FWHM oxide with 50 nm width had been produced when the 
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oxidation happened at 30% relative humidity and the oxidation was impossible 

below a relative humidity of 25% (Held et al., 1998). 

 

 

 The air humidity was influenced by the height and width of the oxide 

nanowires which was reported by Fang, (2004). It was obvious that as the humidity 

increased, the height and width of the oxide nanowires also increased. The lateral and 

vertical dimension of the oxide nanowires have a direct relationship to the amount of 

induced humidity. This is due to the electric field effect that initiates the oxide 

mechanism, as the humidity increased, the electrochemical interaction between the 

tip and the surface becomes stronger (Fang, 2004). 

 

 

Figure 2.5: FWHM oxide line width as a function of relative humidity at applied 

voltage of -5.5 volt (Held et al., 1998). 

 

 

 Kuramochi et al., (2003) have studied the effect of the humidity on the 

fabricated oxide dots shaped according to the applied voltage, Vs, exposure time, t, 

and relative humidity, RH. Figure 2.6 shows the topographic images and line profile 
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of the fabricated oxide dots at the same applied voltage and exposure time with 

different relative humidity of 50% and 80%.  It is observed that the height of the 

oxide dots was increased from 3.55 nm to 5.38 nm when the relative humidity is 

increased from 50% to 80%. From the topographic images, when the relative 

humidity was increased, the fabricated dot became “two-storied shape” with a broad 

base and a narrow upper half. This is due to the space charge effect and ionic 

diffusion through the surface water layer (Kuramochi et al., 2003). 

 

 

 
Figure 2.6: Topographic images and line profile of fabricated oxide dots. (a) Vs= 8  

volt, t= 100 s , RH =50% and (b) Vs=8 volt, t= 100s , RH =80% (Kuramochi et al., 

2003). 

 

 

 

 

 

 Figure 2.7 shows the variation in height of the oxide protrusions fabricated by 

applying various voltages at low relative humidity (30-50%) and high relative 

humidity (60-70%). For low and high relative humidity, it is obvious that the height 

of the oxide protrusions increased as relative humidity increased for the applied low 

voltages. Hsu and Lee, (2008) have discussed that when high voltages applied, the 

saturation height oxide protrusions were generated for the low and high relative 
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humidity which was about 4.05 nm and 3.75 nm. This behaviour suggested that a 

space charge is build up to hinder the oxyanions diffusing in the oxide.  

 

(a) 

 
 

(b) 

 

Figure 2.7: Relation between sample voltage and height at (a) low relative humidity 

(30-50%) and (b) high relative humidity (60-70%) (Hsu and Lee, 2008).  

 

 

 

2.3.4.3 Tip sample voltage 

 

 Cervenka et al., (2006) discussed on the effect of the tip sample voltages to 

produce the silicon oxide line for two different writing speeds (50 nm/s and 500 nm/s) 

at a relative humidity of 46% and a temperature of 23°C. It is obvious that the height 

of the silicon oxide lines showed a linear relationship due to the applied tip sample 

voltages and the smallest height of 1.5 nm was achieved at a tip sample voltage of 6 

volt and a tip writing speed of 500 nm/s.  

 

 

 Fang et al., (2008) proposed that the applied voltages are one of the important 

factors that affect the growth of dots and lines during LAO process. Figure 2.8 shows 

the relationships between the growth rate and the oxide height of the oxide nanodots 
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at the static voltages of 7, 8, 9, and 10 volt. It can be observed that the larger the 

oxide height, the slower the growth rate. The applied voltages were proportional to 

the growth rate of the oxide height.  

 

 

Figure 2.8: The growth rate of the oxide nanodots under different oxide heights by 

applied voltages of 7, 8, 9 and 10 volt (Fang et al., 2008). 

 

 

 Hsu and Lee, (2008) reported the effect of the various sample voltages 

ranging from 5 volt to 10 volt on oxide protrusions shaped at a relative humidity of 

70%. From the topographic image and cross-section profiles in Figure 2.9, the height 

and width of the oxide protrusions are also increased as the applied voltages 

increased from 5 volt to 10 volt.  The topographic image showed that the oxide 

protrusions are in simple dome shaped at low sample voltages (≤ 8.5 volt). At high 

sample voltages (≥ 9 volt), the oxide protrusions shapes are “two-storied shape” 

because the fabricated oxide protrusions had a narrow peak at the center and a broad 

base. The formation of the “two-storied shape” oxide protrusions is due to the high 
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