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KAEDAH BOOTSTRAP UNTUK MENILAI EFISIENSI 

PENGANGGAR MODEL RERUANG SESISI AR(1,1) 

 

 

ABSTRAK 

 

 
 Tiga kategori data reruang ialah data geostatistik, data kekisi dan data pola 

titik. Tesis ini memfokuskan aspek penganggaran model reruang sesisi autoregresi 

untuk data reruang kekisi pada grid biasa dua dimensi. Secara khusus, tesis ini 

menilai efisiensi penganggar model reruang sesisi autoregresi, AR(1,1), 

menggunakan kaedah bootstrap. Kajian perbandingan dilakukan untuk 

membandingkan prestasi antara kaedah yang tersedia untuk menganggar parameter 

model AR(1,1), iaitu  kaedah Yule-Walker, kaedah Yule-Walker tak-pincang, kaedah 

kuasa dua terkecil dan kaedah kebolehjadian maksimum. Dua jenis kaedah bootstrap 

dipertimbangkan, iaitu kaedah bootstrap reja dan kaedah bootstrap blok yang biasa 

digunakan pada analisis siri masa. Ralat piawai anggaran digunakan sebagai kriteria 

untuk mengukur efisiensi penganggar-penganggar. Untuk menunjukkan 

kebolehpercayaan anggaran, dibina selang keyakinan piawai. Perbezaan prestasi 

antara dua jenis kaedah bootstrap juga diperiksa. Sebagai tambahan, contoh 

berangka juga diberikan untuk menjelaskan prosedur kaedah bootstrap dalam 

menilai efisiensi penganggar. Kajian tesis ini mendapati, secara umum, anggaran 

Yule-Walker adalah lebih efisien berbanding anggaran yang lain dan kaedah 

bootstrap reja lebih mudah dan lebih konsisten daripada kaedah bootstrap blok. 
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BOOTSTRAP METHODS TO EVALUATE THE EFFICIENCY 

OF THE ESTIMATORS OF THE SPATIAL UNILATERAL 

AR(1,1) MODEL 

 

 

ABSTRACT 

 

 
Three categories of the spatial data are geostatistical data, lattice data and 

point pattern data. This thesis focuses on the estimation aspect of the spatial 

unilateral autoregressive models for spatial lattice data on two-dimensional regular 

grid. Specifically, this thesis evaluate the efficiency of the estimators of the first 

order spatial unilateral autoregressive model, AR(1,1) using the bootstrapping 

methods. A comparative studies are done to compare the performance among the 

available methods for estimating the parameters of AR(1,1) model, namely the Yule-

Walker, the unbiased Yule-Walker, the least squares and the maximum likelihood 

methods. Two types of bootstrap methods are considered, namely bootstrapping the 

residual and block bootstrap, which are commonly used in time series analysis. The 

standard error of the estimate is used as criterion to assess the efficiency of the 

estimators. To indicate the reliability of the estimate, the standard confidence 

intervals are constructed. The differences of the performance between two types of 

bootstrap methods are also being examined. In addition, the numerical examples are 

also given to illustrate the procedure of the bootstrapping methods to assess the 

efficiency of the estimators. The results of the thesis show that, in general, the Yule-

Walker estimate is more efficient as compared to the other estimates and 

bootstrapping the residual method is easier and more consistent than the block 

bootstrap method. 
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CHAPTER 1 

 

 

INTRODUCTION 

 
 

Spatial statistics discuss about pattern, relationship and trends of space and 

time. The usefulness of spatial statistics has attracted many scientists to utilize it in 

their research. In many aspects, as in the field of economics, health, agricultural, 

public safety and environmental sciences, spatial statistics is used to get more 

geographical information of the data and to model the data. 

 

  Many models have been proposed to analyze spatial data and the procedures 

have been developed to estimate the parameters of the models. These include the 

Yule-Walker, the least squares and the maximum likelihood estimators. The 

asymptotic properties of the estimate have been established for some estimators. 

However, in practice, we always deal with small to moderate sample sizes. 

Therefore, it is of interest to study the behaviors of the estimates, such as 

accurateness and efficiency, for small to moderate sample sizes.  

 

This introductory chapter provides background of spatial processes, the 

statement of problems, research objectives and the organization of thesis. 

 

1.1 Introduction to Spatial Processes 

 

Let dX R∈  be the data location in d-dimensional Euclidean space. Usually, 

d = 1 is used in time series, d = 2 is used in geographic area and d = 3 is used in 
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spatiotemporal. The spatial with random processes can be given as { }DXYX ∈:  

where D is subset of R
d
 (see Cressie, 1993).  

 

Three categories of spatial data were defined by Cressie (1993) namely, 

geostatistical data, lattice data and point patterns data. These categories of the spatial 

data will be discussed in details in the next paragraphs. 

 

In geostatistical data, a spatial process is indexed over a continuous space. 

The index can be written as D, where D is fixed subset of R
d
 and YX is a random 

variable at location DX ∈ . Geostatistics is regarded as hybrid discipline of mining 

engineering, geology, mathematics and statistics. It recognizes spatial variability at 

both the large scale or spatial trend and the small scale or spatial correlation. Trend-

surface methods take on large-scale variation and assuming independent error. An 

important process in geostatistics is kriging, which can predict the ore grade in a 

mining block from observed sample. Examples of geostatistical application include 

modeling soil, studies on ground water, rainfall, public health and many more. 

 

Lattice data is spatial data indexed over a lattice in space. In this case, D is a 

fixed (regular or irregular) and graph in R
d 

and YX is a random variable at location 

DX ∈ . For spatial data on regularly spaced set of points, it is analogous to time 

series data. However, in time series, the observations are obtained over a regularly 

spaced set of points. An example of application of lattice data can be seen in remote 

sensing by means of satellites or aircraft, in which the data come in the form of small 

rectangular shaped regions called pixels. 
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The data are called point patterns when D is a point process in R
d
 or subset of 

R
d
 and YX  is a random variable at location DX ∈ . In point patterns, the important 

variable to be analyzed are the location of events, and whether or not the pattern is 

exhibiting a complete spatial randomness. Examples of this case include the spread 

of infectious diseases and the long life pines in an old growth forest. 

 

 In this thesis, the discussion will focus on the spatial lattice data on two-

dimensional regular grid. 

 

1.2 Statement of Problems 

 

 

In time series, there is the natural distinction of past and future, and the value 

of the observation depends only upon past values, whereas in spatial, the dependence 

extends in all directions (see Whittle, 1954). An example for spatial case is fertilizer 

which is applied at any point in a field will ultimately affect soil fertility in all 

directions.  

 

Some models are used to analyze the spatial data and many procedures are 

used to estimate the parameter of the models. Since the dependence in spatial data 

extends in all directions, the process of estimating the parameter of spatial models is 

more complicated. Several studies have been conducted to remedy the estimation 

problem of spatial models. Martin (1979) discussed the separable models where this 

type of model has a product correlation structure which makes the estimation 

simpler. The estimation of separable processes is then equivalent to estimation for 

one-dimensional processes. Basu and Reinsel (1993) focused on the unilateral 
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models where this type of model can be analyzed using extension of time series 

theory. 

 

The model of spatial processes in lattice which receives much attention is the 

spatial unilateral autoregressive model. Several methods have been proposed to 

estimate the parameter of these models, namely the Yule-Walker method (Tjøstheim, 

1978), the least squares method and the maximum likelihood method (Awang, 2005). 

Guyon (1982) found that the Yule-Walker method of estimation is asymptotically 

biased. Ha and Newton (1993) shows that in fact the Yule-Walker estimator is much 

more biased than the least squares estimator. Awang (2005) used the maximum 

likelihood estimates approach to estimate the parameters of the model with some 

modification at the border. Bustos et al. (2009) applied the Yule-Walker, the least 

squares and another version of the maximum likelihood method for estimating the 

parameters of the spatial autoregressive models used in image filtering based.  

 

The asymptotic properties of Yule-Walker estimate have been discussed by 

Tjøstheim (1978), Guyon (1982) and Basu and Reinsel (1992). Guyon (1982) 

illustrated the implementation of the Yule-Walker and the least squares methods to 

estimate the parameter of the first-order spatial unilateral autoregressive model. Ha 

and Newton (1993) estimated the parameters of the first-order spatial autoregressive 

model by Yule-Walker, unbiased version Yule-Walker and least squares method and 

the methods are compared for small and moderate sample by developing simulation 

study. Ten sample sizes representing small to moderate samples, with 500 

realizations each were considered in the study and the measure of biasness was used 

to compare the performance of the methods. The result showed that the Yule-Walker 
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estimator was much more biased than the least squares and unbiased Yule-Walker 

estimators.  

 

In this thesis, the efficiency of the estimators of the spatial unilateral AR(1,1) 

model for small to moderate samples are studied via bootstrapping and the criterion 

used to assess the efficiency of the estimates is the standard error. The standard 

confidence intervals are constructed to indicate the reliability of the parameter 

estimates. To our knowledge, no such study has been done.  

  

1.3 Research Objectives 

 

Specifically, the objectives of this research are as follows. 

1. To evaluate the efficiency of the estimators of the spatial unilateral AR(1,1) 

model by bootstrapping methods. The criteria used are the standard error and 

the standard confidence intervals. 

2. To compare the results obtained from bootstrapping the residual method and 

the block bootstrapping method. 

3. To illustrate the bootstrapping procedures in assessing the efficiency of the 

estimates by fitting the AR(1,1) model to real data set using the methods stated 

in (1). Here, the data used is the yield of wheat grain by Mercer and Hall 

(1911). 
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1.4 Organization of Thesis 

 

Chapter 2 reviews the spatial processes. The discussion begins with 

introduction of the simultaneous autoregressive (SAR) model and continued with the 

conditional autoregressive (CAR) model, the unilateral model, the separable model 

and the first-order spatial unilateral AR model. The estimation methods for the 

spatial unilateral AR (1,1) model, namely the Yule-Walker method, the least squares 

method and the maximum likelihood method are given too. 

 

In Chapter 3, the methods to evaluate the efficiency of the estimators of the 

spatial unilateral AR(1,1) model are explained. The methods used are bootstrapping 

the residual and block bootstrap. Before presents the methods, the methodology of 

bootstrap method for time series models and method of block bootstrap in time series 

models are given. Then, the methodology of bootstrapping the residual and block 

bootstrap for the spatial unilateral AR(1,1) model are proposed and explained in the 

later section. 

 

Chapter 4 evaluates the efficiency of the estimators of the spatial unilateral 

AR(1,1) model for small to moderate sample sizes using the bootstrapping the 

residual method. Here, the discussion is about the estimation of the standard error 

and the construction of standard confidence intervals for the estimate of the spatial 

unilateral AR(1,1) parameters. The estimators used are the Yule-Walker estimator, 

unbiased version Yule-Walker estimator, the least squares estimators and the 

maximum likelihood estimator. 
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Chapter 5 presents the results of the second method used to estimate the 

standard error and the standard confidence intervals of the parameter estimates of the 

spatial unilateral AR(1,1) model, namely the block bootstrap method. 

 

Comparison studies of bootstrapping the residual and block bootstrap 

procedures are presented in Chapter 6. This chapter shows comparison of the 

performance between two procedures to estimate the standard error of the parameter 

estimates of the spatial unilateral AR(1,1) model. 

 

Chapter 7 illustrated the procedure discussed in Chapter 4 and Chapter 5 by 

fitting the spatial unilateral AR(1,1) model to real data set. The data used are wheat 

yield data by Mercer and Hall (1911). 

 

Finally, the summary and conclusion with recommendation for further 

research of the research are given in Chapter 8. 
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CHAPTER 2 

 

 

LITERATURE REVIEW ON SPATIAL MODELS 

 

 This chapter reviews the available models for spatial lattice data. The 

discussion begins with the simultaneous autoregressive (SAR) model in Section 2.1 

and then the conditional autoregressive (CAR) model in Section 2.2. Sections 2.3 

through 2.5 defined the unilateral model, separable model and the first order spatial 

unilateral autoregressive model, respectively. The estimation methods for the spatial 

unilateral AR (1,1) model, namely the Yule-Walker method, the least squares 

method and the maximum likelihood method are discussed in Sections 2.5.1, 2.5.2 

and 2.5.3, respectively. 

 

2.1 The Simultaneous Autoregressive (SAR) model 

 

 The simultaneous autoregressive (SAR) model which first defined by Whittle 

(1954) is given as, 

ijijYBB ε=Φ )( 21 ,    (2.1) 

where ∑∑=Φ
s t

ts

st BBBB 2121 )( α , ( )KK ,2,1,0,1,2,, −−=ts with B1 and B2  are 

translation operators defined by jsiij

s YYB ,1 −= , tjiij

t YYB −= ,2  and ijε  are independent 

variables with 0)( =ijE ε  and ( ) 2Var σε =ij .  
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 From equation (2.1), we have 
),( 21 BB

Y
ij

ij Φ
=

ε
, and the model of equation 

(2.1) can be written as ∑∑ −−=
s t

tjsistijY ,εθ , if only if , ),( 21 zzΦ  is not zero for any 

z1 and z2 which simultaneously satisfy 1,1 21 == zz  .  

 

 Ord (1975) proposed a maximum likelihood method to estimate the 

parameter of SAR model defined as,  

ijij

s t

ts

stij YBBwY ερ +







= ∑∑ 21 ,   (2.2) 

for { }
ijY with zero-mean and ),0(~ 2σε INij for i = 1, 2, …, m; j = 1, 2, …, n. 

{ }stw are a set of nonnegative weights which represent the ‘degree of possible 

interaction’ between locations and 

∑∑ ∑∑ 







−==Φ

s t s t

ts

st

ts

st BBwBBBB 212121 1),( ρα  with 100 =α  and therefore, 

.000 =w  The term in (2.3) can be reformulated in matrix form as 

εWYY += ρ ,                                       (2.3) 

where W is the (N×N) matrix of weights, Y and ε are (N×1) vectors, N =mn, and ρ is 

the parameter to be estimated. From (2.2), we have ε = AY, where, 

A = I −ρW.     (2.4) 

The log-likelihood function for ρ, 2σ , given that Y = y, is, 

( ) ( ) ( ) ( ) AAyAy ln''2/12ln2/, 222 +−−= σπσσρ NL .      (2.5) 

The maximum likelihood estimators are given by, 

N/)()'(ˆ 2 AyAy=σ  

and ρ̂ as that value of ρ which maximizes as, 
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( )N
NL

/222 ˆln)2/(const)ˆ,(
−

−= Aσσρ ,   (2.6) 

where A  is an Nth order polynomial in ρ. When N  is not small, the evaluation of ρ 

becomes time consuming. Whittle (1954) gave a large sample approach based on 

spectral method. Ord (1975) provided the alternative approach to solve the problem 

with computational procedure and defined  

( )∏
=

−=
N

i

i

1

1 ρλA , 

where iλ , i = 1, …, N  are the eigen values of W. The evaluation of { }iλ  will usually 

be a computer job, and the time involved becomes large as N increases. 

 

For two-dimensional autoregressive model, Whittle (1954) shows that the 

least squares estimator is inconsistent. Ord (1975) removes the lack of consistency 

and gives the solution to the least squares. Unfortunately, the efficiency of such 

estimators relative to the maximum likelihood estimators declines drastically as ρ 

increases. 

 

Whittle (1954) established the unilateral representation of two-dimensional 

process and show that for a given set of autocorrelations of SAR processes, there is a 

unique process  in which Yij can be expressed as an autoregression upon Yit (t < j) and 

Yst (s < i, t unrestricted). The useful of the unilateral representation is that it suggests 

a simplifying change of parameters. Details about the unilateral model will be 

discussed in section 2.3. 
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2.2 The Conditional Autoregressive (CAR) Model 

 

 Barlett (1971) defined that the conditional probability distribution of Yij, given 

all other site values, should depend only upon the values at the four nearest sites to 

(i,j), namely 11,,1,1 and,, +−+− i,jjijiji YYYY . The model can be written as, 

P (Yij | all other site values) = P ( Yij | 11,,1,1 ,,, +−+− i,jjijiji YYYY ). (2.7) 

  

The conditional probability formulation may be said to have rather more 

intuitive appeal, but has disadvantages. Firstly, there is no obvious method of 

deducing the joint probability structure associated with conditional probability 

model. Secondly, the conditional probability structure itself is subject to some 

unobvious and highly restrictive consistency conditions, see Besag (1974). 

 

2.3 The Unilateral Model 

 

 The real usefulness of the unilateral representation is that it suggests a 

simplifying change of parameters (Whittle, 1954). The model can be analysed using 

extensions of time series theory in some special cases and the model is useful in the 

field of digital filtering and systems theory. 

 

 Martin (1996) shows the stationary d-dimensional nearest-neighbour process 

NN (d) is defined as a unilateral quadrant autoregression with dependence on the d 

adjacent preceding neighbour, one in each direction. When d = 2, for AR(1,1), 

Pickard (1980) and Tory and Pickard (1992) considered the process (Pickard 

process) which includes the diagonally adjacent term 
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jijijijiij YYYY ,1,1111,01,110 εααα +++= −−−− .   (2.8) 

The pickard process is stationary if  

110110 1 ααα −<+ ,  110110 1 ααα +<− .        (2.9) 

  

Barlett (1978) gives that if in the equation (2.7) the α11 = 0, it is called a 

nearest neighbour (NN) model. The process (2.7) can be referred to as the first 

quadrant autoregressive (QAR(1,1)) process (Tjøstheim, 1978). The QAR(1,1) 

process with 011011 ααα −=  is called a doubly geometric process (Martin, 1979), that 

is one natural extension to the plane of the one dimensional Markov process. Detail 

about doubly geometric process will be discussed in section 2.4. 

 

 Genton and Koul (2008) state that the unilateral AR processes in equation 

(2.8) have two main important reasons. First, the processes are useful for practical 

modeling because the process include a fairly flexible range of spatial correlation 

structures (see Besag (1972) and Basu and Reinsel (1993)). Secondly, QAR 

processes are the building blocks for inference in SAR models because the process 

can be used as auxiliary models in an indirect inferential procedure (see Luna and 

Genton (2002)). 

 

2.4 The Separable Model 

 

 Linear-by-linear processes are a subclass of the simultaneous schemes and 

are simple extensions to the plane of processes on the plane. This process is regarded 

as separable model. For AR(1,1), the separable model known as doubly geometric 

processes that were (Martin, 1979), defined by, 
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jijijijiij YYYY ,1,101101,01,110 εαααα +++= −−−− .  (2.10) 

The correlation at lag (s,t)  of the separable model have the reflection symmetry, 

tststsst −−−− === ,,, ρρρρ . 

 

 Scaccia and Martin (2004) provided separable (and axially symmetric) 

processes are used to simulate the null distribution of tests for separability (and axial 

symmetric), while non-separable (and non-axially symmetric) processes were used to 

simulate the distribution of the tests under alternative hypothesis. 

 

2.5 The First-order Spatial Unilateral AR Model 

 

For the unilateral models, the spatial unilateral autoregressive model received 

much attention. This model is denoted as AR (p1,1) and is defined by, 

ijjpipjpipjijijiij YYYYYY εααααα ++++++= −−−−−−− 1,1,,01,1111,01,110 1111
L .      (2.11) 

 

Many procedures have been developed to estimate the parameters of this 

model. Tjøstheim (1978) discussed about the extension of the Yule-Walker method 

in time series analysis to spatial series. However, Guyon (1982), Basu and Reinsel 

(1992) and Ha and Newton (1993) showed that the autocovariance function used in 

the Yule-Walker estimate is asymptotically biased and they proposed the unbiased 

version of the estimate. Whittle (1954) discussed about the correct equations for the 

least squares estimates in two dimensional case. Awang (2005) introduced an 

alternative method using the maximum likelihood method with certain modification 

at the border to obtain the estimate of the parameters of the AR(p1,1) model.  
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The first-order spatial unilateral AR model is defined as, 

ijjijijiij YYYY εααα +++= −−−− 1,1111,01,110 .   (2.12) 

Basu and Reinsel (1993) showed that this model is stationary if it follows the below 

conditions 

1. ,1,, 110110 <ααα  

2. ( ) ( ) ,041
2

110110

22

11

2

01

2

10 >+−−−+ αααααα  

3. .1 110110

2

01 αααα +>−  

The convergent representation of this model is presented by 

( )
)(

!!!

!
,110110

0 0 0

rljrki

rlk

k l r

ij
rlk

rlk
Y −−−−

∞

=

∞

=

∞

=
∑∑∑

++
= εααα .  (2.13) 

 

Basu and Reinsel (1992) obtained the asymptotic distribution of the spatial 

Yule-Walker estimator and showed that the spatial Yule-Walker estimator is 

asymptotically biased. The Yule-Walker estimators from the first-order spatial AR 

model are compared with the exact maximum likelihood estimators. In the next 

subsections, the available methods to estimate the parameters of the first-order 

spatial unilateral AR are presented. 

 

2.5.1 Yule-Walker Method 

 

Tjøstheim (1978) considered Yule-Walker estimators to estimate the 

parameters of the spatial unilateral ( )21 ,AR pp  models. The biased sample 

autocovariance function at lag (s,t) and (s,-t) for s ≥ 0 and t ≥ 0 is defined by  

                         ∑∑
−

=

−

=
++=

sm

i

tn

j

tjsiijYY
mn

tsR
1 1

,

1
),(ˆ             (2.14a) 
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and 

                           ∑ ∑
−

= +=
−+=−

sm

i

n

tj

tjsiijYY
mn

tsR
1 1

.,

1
),(ˆ                                    (2.14b)   

 

For a spatial unilateral ( )21 ,AR pp  model, the spatial analogue of the one-

dimensional Yule-Walker equation as in time series is given as, 

∑∑
= =

−−=
1 2

0 0

),(),(
p

k

p

l

kl ltksRtsR α  )0,0( ≥≥ ts .                        (2.15) 

If we define ,)',,,,,,,,(
21211 ,,01,010,10 ppppp αααααα KKKK=α  

 ( )'),(,),,0(,),1,(,),1,0(),0,(,),0,1( 21211 ppRpRpRRpRR KKKK=r , 

and 



















−−

−−

−−

=

)0,0(),2(),1(

),2()0,0()0,1(

),1()0,1()0,0(

2121

21

21

RppRppR

ppRRR

ppRRR

L

MLMM

L

L

R , 

then, the spatial Yule-Walker estimator of α is simplified by  

  rR'α
1ˆ −= .                          (2.16) 

 

The Yule-Walker equations are then solved with the R̂ s replacing the R’s. 

The resulting estimators, denoted by α̂ , are called the Yule-Walker estimator. Guyon 

(1982) compared ),(ˆ tsR  with the unbiased estimator of ),(),( , tjsiijYYEts ++=γ  R(s,t) 

))(/(),(ˆ tnsmtsRmn −−= , and claimed that the unbiased estimator was preferred.  
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To illustrate the Yule-Walker method in AR models with 11 =p  and 12 =p , 

let choose a spatial data on regular grid of (5×5) grid size. The biased sample 

autocovariance function at lag (s, t) and ),( ts − for s ≥ 0 and t ≥ 0 is defined by  

∑∑
−

=

−

=
++=

s

i

t

j

tjsiijYYtsR
5

1

5

1

,
)5)(5(

1
),(ˆ  

and 

∑ ∑
−

= +=
−+=−

s

i tj

tjsiijYYtsR
5

1

5

1

.,
)5)(5(

1
),(ˆ  

The sample autocovariance model can be compute as, 

( )∑∑
= =

=
5

1

5

1

2

25

1
)0,0(ˆ

i j

ijyR  

23232222212115151414131312121111(
25

1
yyyyyyyyyyyyyyyy +++++++=  

 41413535343433333232313125252424 yyyyyyyyyyyyyyyy ++++++++  

54545353525251514545444443434242 yyyyyyyyyyyyyyyy ++++++++  

)5555 yy+ . 

 

∑∑
= =

++=
4

1

5

1

,
25

1
)0,1(ˆ

i j

tjsiij yyR  

32222515241423132212413131212111(
25

1
yyyyyyyyyyyyyyyy +++++++=  

52424535443443334232352534243323 yyyyyyyyyyyyyyyy ++++++++  

)554554445343 yyyyyy +++ . 
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∑∑
= =

++=
5

1

4

1

,
25

1
)1,0(ˆ

i j

tjsiij yyR  

15141413131252514241323122211211(
25

1
yyyyyyyyyyyyyyyy +++++++=  

44434342353434333332252424232322 yyyyyyyyyyyyyyyy ++++++++  

)545353524544 yyyyyy +++ . 

 

∑∑
= =

++=
4

1

4

1

,
25

1
)1,1(ˆ

i j

tjsiij yyR  

33222514241323125241423132212211(
25

1
yyyyyyyyyyyyyyyy +++++++=  

)55445443534245344433433235243423 yyyyyyyyyyyyyyyy ++++++++ . 

 

∑∑
= =

−+=−
4

1

5

1

,
25

1
)1,1(ˆ

i j

tjsiij yyR  

34253324322331222415231422132112(
25

1
yyyyyyyyyyyyyyyy +++++++=  

)54455344524351424435433442334132 yyyyyyyyyyyyyyyy ++++++++ . 

 

The Yule-Walker equation for AR(1,1) model is given as, 

∑∑
= =

−−=
1

0

1

0

),(),(
k l

kl ltksRtsR α , 

then 

)1,0(ˆ)1,1(ˆ)0,0(ˆ)0,1(ˆ
110110 RRRR ααα +−+=  

)0,1(ˆ)0,0(ˆ)1,1(ˆ)1,0(ˆ
110110 RRRR ααα ++−=  

)0,0(ˆ)1,0(ˆ)1,0(ˆ)1,1(ˆ
110110 RRRR ααα ++=  
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The matrix can be written as, 

































−

−

=

















11

01

10

)0,0(ˆ)0,1(ˆ)1,0(ˆ

)0,1(ˆ)0,0(ˆ)1,1(ˆ

)1,0(ˆ)1,1(ˆ)0,0(ˆ

)1,1(

)1,0(

)0,1(

α
α
α

RRR

RRR

RRR

R

R

R

. 

If we define 

( ) ( )''

110110 )1,1(),1,0(),0,1(,,, RRR== rα ααα  and 

















−

−

=

)0,0()0,1()1,0(

)0,1()0,0()1,1(

)1,0()1,1()0,0(

RRR

RRR

RRR

R , 

 

the spatial Yule-Walker estimator of α is given by 

rRα
1'ˆ −= . 

 

Ha and Newton (1993) provided the asymptotic distribution of Yule-Walker 

and least squares estimators for two-dimensional causal autoregressive processes 

observed on a rectangular part of a lattice. They showed that the Yule-Walker 

estimate is asymptotically biased. The unbiased Yule-Walker and the least squares 

estimators have the same asymptotic properties as the Yule-Walker estimator except 

that the asymptotic bias is zero. By simulation studies, they compare the performance 

of the Yule-Walker, the unbiased Yule-Walker and the least squares in small and 

moderate samples with simulation of 500 realizations for each of ten sample sizes 

(8×8), (20×20), (8×10), (16×20), (15×25), (6×10), (6×15), (12×30), (5×20), (10×40) 

for each of three AR(1,1) model, having coefficients ),2.0,3.0,2.0(=α'  

),1.0,5.0,1.0(=α'  )6.0,8.0,7.0( −=α' . The numerical results are not given, but they 

conclude that the Yule-Walker estimators are much more biased than the least 

squares and unbiased Yule-Walker estimators and that the bias conforms very closely 
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to the theoretical bias given in theorem. The performance of the least squares and 

unbiased Yule-Walker estimators are remarkably similar. 

 

2.5.2 Least Squares Method 

 

This section discusses two types of conditional least squares estimation 

procedure to estimate the parameters of the spatial unilateral AR model. In the first 

type estimation, for estimating the parameters of the AR(1,1) model, (we may then 

call it as Type 1), we assume that the unobserved border values are all zeros, that is  

( ) 0Yb == −− 010000,10,1 ,,,,,,,,' mnn YYYYYY KKK   

( )',,,,,,,,,,,, 212222111211 mnmmnn YYYYYYYYY KKKK=Y  

then 

11110,0110,1011,01011 εεααα =+++= YYYY  

121,101121,0111,1012,01012 εαεααα +=+++= YYYYY  

M  

nnnnnnn YYYYY 11,10111,0111,101,0101 εαεααα +=+++= −−−  

211,110210,1110,2011,11021 εαεααα +=+++= YYYYY  

221,1111,2012,11022 εααα +++= YYYY  

M  

nnnnn YYYY 21,1111,201,1102 εααα +++= −−  

M  

11,11010,1110,011,1101 mmmmmmm YYYYY εαεααα +=+++= −−−  

21,1111,012,1102 mmmmm YYYY εααα +++= −−  
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M  

mnnmnmnmmn YYYY εααα +++= −−−− 1,1111,01,110  

 

In matrix form 

[ ]














































+

































































=















































−−−−

−−

−

−−

−

mn

m

m

n

n

nmnmnm

mmm

m

nnn

n

mn

m

m

n

n

YYY

YYY

Y

YYY

YYY

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

ε

ε
ε

ε

ε
ε
ε

ε
ε

α
α
α

M

M

M

M

MMM

MMM

MMM

MMM

M

M

M

M

2

1

2

22

21

1

12

11

11

01

10

1,11,,1

1,11,2,1

1,1

1,11,21

112112

11

1,1

11

2

1

2

22

21

1

12

11

00

00

00

00

000

. 

The least squares estimate of ( )110110 ,, ααα=α'  is given as, 

( ) YX'XX''α
1−=ˆ ,                              (2.17) 

where  

( )',,,,,,,,,,,, 212222111211 mnmmnn YYYYYYYYY KKKK=Y .  (2.18) 

and X is a matrix of dimension (mn) ×3 given as, 



 21

.

00

00

00

00

00

000

1,11,,1

1,11,2,1

1,1

1,21,32

213122

21

1,11,21

112112

11

1,1

11





























































=

−−−−

−−

−

−−

−−

−

nmnmnm

mmm

m

nnn

nnn

n

YYY

YYY

Y

YYY

YYY

Y

YYY

YYY

Y

Y

Y

MMM

MMM

MMM

MMM

MMM

X

 

 

In the second type, Type 2, the conditional least squares estimate is obtained 

by conditioning on the given observed border, 

( )',,,,,,,, 2111211

'

mnmmn YYYYYY KKK=oY .  

For AR(1,1) model, 

2211112101121022 εααα +++= YYYY  

M  

nnnnn YYYY 21,1111,201,1102 εααα +++= −−  

3221113101221032 εααα +++= YYYY  

M  

nnnnn YYYY 31,2111,3012103 εααα +++= −−  

M  

2,11,2111,1012,2102,1 −−−−− +++= mmmmm YYYY εααα  



 22

M  

mnnmnmnmmn YYYY εααα +++= −−−− 1,1111,01,110  

 

In matrix form 
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The estimator is given as, 

( ) ( )1o

1

ooo Y'XX'Xα
−=ˆ  ,                            (2.19) 

where ( ) ),,,,,,,,,( 2332222 mnmnn YYYYYY KKKK='

1Y and 0X  is a matrix of dimension 

3)1)(1( ×−− nm defined as, 
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2.5.3 Maximum Likelihood Method 

 

The parameters of the spatial autoregressive models can be estimated by the 

method of maximum likelihood (see Awang, 2005). For AR(p1,1) model defined by 

(2.10), the unobserved values is given as, 

( ) ( )'

21

'

212222111211 ,,,,,,,,,,,,,,, mYYYY LLLLL == mnmmnn YYYYYYYYY , 

where  ( ) miYYY iniii ,,2,1,,,,
'

21 LL ==Y  and the error vector 

( ) ( )'

21

'

212222111211 ,,,,,,,,.,,,,,, mεεεε LLLLL == mnmmnnε εεεεεεεε  , 

where ( ) miiniii ,,2,1,,,,
'

21 LL == εεεε  the matrix form for equation (2.10) can be 

defined as,  
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



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,   (2.20) 

where jΦ ’s are n×n matrices defined as, 
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The compact form is, 

εΦYY += . 

If the Φ  is decomposed into 12 1 +p  matrices such that it isolate different 

parameters, Y can be written as, 

( ) εYWWWWWY ++++++= 1100111101011010 1111 pppp ααααα L ,         (2.21) 
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where 1100111101011010 1111 pppp WWWWWΦ ααααα +++++= L  and  

Wjk, 1,,2,1 pj K=  ; k = 0,1 are N×N lower triangular weight matrices with elements 

ones and zeroes. 

To estimate the parameter of AR )1,( 1p model, equation (2.20) can be written as, 

( )( ) εWWWWWIY ++++++= −1

1100111101011010 1111 pppp ααααα L  (2.22) 

or 

( ) εΦΙY
1−−= ,    (2.23) 

where I is a N×N identity matrix. 

The covariance matrix of Y, V is defined as, 

( )'112 )()( −− −−= ΦIΦIV σ     (2.24) 

and the determinant of equation (2.24) is defined as, 

 ( ) ( ) 12/22/1 −−= ΦIV
N

σ .    (2.25) 

Since ( )ΦΙ −  is the lower triangular matrix with diagonal elements 1, ( ) 1−− ΦI =1, 

equation (2.24) can be written as, 

( ) 2/22/1 N
σ=V .    (2.26) 

By assuming the normality of  ε ,  the likelihood function is defined as,  







−= −

YVY
V

1'

2/12/ 2

1
exp

)2(

1

N
l

π
 

( ) ( )[ ]






 −−−=

−−−−
YΦIΦIY

111'

2

2/22/

2

1
exp)()2(

σ
σπ NN  

( )( )






 −−−= −

YΦIΦIY
'

2

2/22/

2

1
exp)()2(

σ
σπ NN , 

and thus, the log likelihood function is formed as, 
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