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ALGORITMA PENGENDURAN BERLEBIHAN TERPECUT 

KUMPULAN SELARI BARU BAGI 

PENYELESAIAN PERSAMAAN POISSON 2-MATRA DAN RESAPAN 

 

ABSTRAK 

 

Kaedah beza terhingga biasanya digunakan untuk menyelesaikan persamaan 

pembezaan separa (PPS) yang timbul dalam bidang mekanik bendalir dan 

termodinamik. Namun demikian, pendiskretan PPS ini lazimnya menghasilkan suatu 

sistem persamaan linear yang besar dan jarang di mana skema ini mengambilkan 

masa yang panjang untuk menyelesaikan masalah.  

Pembangunan dalam kaedah lelaran terpecut dan teknologi pengkomputeran 

selari berupaya untuk mengatasi masalah ini. Skema lelaran titik yang berasaskan 

pendiskretan lima titik biasa putaran lazimnya digunakan untuk menyelesaikan 

persamaan Poisson. Selain itu, skema lelaran blok atau berkumpulan, di mana titik-

titik-titik grid dikelompokkan ke dalam blok atau kumpulan, didapati mengurangkan 

bilangan lelaran yang diperlukan dan masa pelaksanaan kerana penyelesaian bagi 

titik-titik grid dikemaskini dalam blok atau kumpulan tetapi bukan titik demi titik. 

Antara skema-skema lelaran berkumpulan, kaedah kumpulan tak tersirat (EG) dan 

kaedah kumpulan nyah pasangan tak tersirat (EDG) telah banyak dikaji dan terbukti 

bahawa menpunyai penumpuan yang lebih cepat berbanding dengan kaedah titik 

titik. Untuk mempercepatkan lagi penumpuan bagi kaedah ini, kaedah pemecutan 

yang biasa seperti kaedah pengenduran berlebihan berturut-turut (Successive 

OverRelaxation, SOR)dan kaedah pengenduran berlebihan terpecut (Accelerated 



xvi 
 

OverRelaxation, AOR) telah diterapkan ke dalam kaedah-kaedah ini dan telah 

mengurangkan bilangan lelaran yang diperlukan. 

Misalnya, Martins et al. (2002) telah merumuskan kaedah kumpulan tak 

tersirat bagi AOR (EG (AOR)) di mana telah mengurangkan bilangan lelaran yang 

diperlukan berbanding dengan kaedah-kaedah lelaran titik AOR. Ali & Lee (2007) 

mengembangkan kaedah kumpulan nyah pasangan tak tersirat bagi AOR (EDG 

(AOR)) dalam penyelesaian persamaan pembezaan separa eliptik dengan 

menggunakan kaedah lima titik putaran. Pengambilan masa penumpuan bagi EDG 

(AOR) telah menunjukkan pengurangan masa pelaksanaan berbandingkan dengan 

EG (AOR) di mana EDG (AOR) memerlukan operasi aritmetik yang lebih rendah 

untuk menyelesaikan masalah. Baru ini, Rakhimov & Othman (2008) 

membangunkan MEG (AOR) (Modified EG (AOG)) pada tahun 2008 di mana hasil 

kaji mereka menunjukkan kemajuan jika berbanding dengan kaedah EDG (AOR). 

Dalam tesis ini, perumusan MEDG (AOR) (Modified EDG (AOR)) akan 

dibentangkan dalam penyelesaian persamaan Poisson dan persamaan resapan 

berperingkat masa. Prestasi bagi ujikaji berangka dan kompleksiti komputer akan 

dibincangkan dan dibandingkan dengan usaha yang sebelum ini. Akhirnya, kaedah-

kaedah ini akan dilaksanakan ke atas gugusan bagi computer ingatan teragih dengan 

menggunakan persekitaran pengaturcaraan antara muka penghantaran mesej 

(Message-Passing Interface programming) untuk menentukan perbandingan bagi 

kecekapan kaedah-kaedah ini dengan menggunakan beberapa jenis saiz grid dan 

bilangan pemproses. Analisis skalabiliti akan juga ditunjukkan untuk 

membandingkan masa yang sebenar dengan masa yang diramalkan.  

 



xvii 
 

NEW PARALLEL GROUP ACCELERATED OVERRELAXATION 

ALGORITHMS FOR THE SOLUTION OF  

2-D POISSON AND DIFFUSION EQUATIONS 

 

ABSTRACT 

 

Finite difference method is commonly used to solve partial differential 

equations (PDEs) which arise from fluid mechanics and thermodynamics problem. 

However, the discretization of these PDEs oftenly lead to large sparse linear systems 

which require large amount of execution times to solve. 

The development in accelerated iterative techniques and parallel computing 

technologies can be utilized to surmount this problem. Point iterative schemes which 

are based on the standard five point discretization and the rotated five point 

discretization are commonly used to solve the Poisson equation. In addition, block or 

group iterative schemes where the mesh points are grouped into block have been 

shown to reduce the number of iterations and execution timings because the solution 

at the mesh points can be updated in groups or blocks instead of pointwise. Among 

these group iterative schemes, the Explicit Group (EG) method (Yousif and Evans, 

1986) and Explicit Decoupled Group (EDG) method (Abdullah, 1990) have been 

extensively researched and have been shown to converge faster than their pointwise 

counterparts. In order to improve the rate of convergence of these methods, the 

common accelerated methods such as Successive OverRelaxation (SOR) method and 

Accelerated OverRelaxation (AOR) method may be applied to these methods and 

have been shown to reduce the number of iterations.   
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Martins et al. (2002) for example, formulated the Explicit Group AOR (EG 

(AOR)) method which was shown to decrease the number of iterations if compared 

with the point AOR iterative schemes. Ali and Lee (2007) developed the Explicit 

Decoupled AOR (EDG (AOR)) method in solving the elliptic partial differential 

equations by using the rotated 5-point AOR method. The gains in timings of EDG 

(AOR) method show lesser execution timings over the EG (AOR) method since 

required lower arithmetic operation to solve the problem. Recently, Rakhimov & 

Othman (2009) developed Modified EG (AOR) (MEG (AOR)) in 2009 where their 

experimental results show an improvement if compared with EDG (AOR) method.  

In this thesis, the formulation of the Modified EDG (AOR) (MEDG (AOR)) 

method is presented in solving the Poisson and the time-dependent diffusion 

equation. The performance of the numerical experiments and the computation 

complexity will be discussed and compared with the previous works. Finally, these 

methods will be implemented on a cluster of distributed memory computer using 

Message-Passing interface programming environment to establish the comparison for 

the efficiency of these methods using several grid size and number of processors. 

The scalability analysis will also be presented to compare the actual timings with the 

predicted timings of these methods. 
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CHAPTER TWO 

PRELIMINARIES 

 

2.1 Classification Of PDEs 

An ordinary differential equations (ODEs) is a mathematical equation for an 

unknown function which consists of function of only one independent variable that 

relates the values of the function itself whereas PDEs consists of derivatives of function 

that involves an unknown function (or functions) of two or more independent variables 

and their partial derivatives with respect to those variables. A PDEs for the function 

),,( zyxu  is the form of 
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(2.1) 

PDEs are used to formulate the solution of problems involving functions of 

several variables for most of the physical problems. The general form of PDEs of 

second order in two independent variables can be shown as 
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(2.2) 

where FEDCBA ,,,,, and G are constant or independent of u. Therefore, the equation is 

homogeneous if ),( yxG is zero for all values x and y. 

The linear PDEs can be classified into three categories, 

a) Elliptic PDEs if B2 – 4 AC < 0. The best known elliptic equations are  



8 

i. Poisson equation: ),(2
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ii. Laplace equation: 02
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b) Parabolic PDEs if B2 – 4 AC = 0. The best known parabolic equations are  

i. Heat equation: 2

2
2

x
u

t
u

∂
∂

=
∂
∂

α   where 2α  is a constant, and 

ii. Convection-diffusion equation:
x
u

x
u
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∂
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−
∂
∂

=
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βα 2

2
2  where 2α  and β  

are constants. 

c) Hyperbolic PDEs if B2 – 4 AC > 0. The best known hyperbolic equations are  

i. Wave equation: 02

2
2

2

2

x
u

t
u

∂
∂

=
∂
∂

β  where 2β  is a constant. 

The solutions of the same category of PDEs have the same characteristic and 

solving method. Therefore, we will need to justify the type of the PDEs before using the 

correct numerical method. 

The boundary of elliptic PDEs are normally composed in certain condition. For 

example, Figure 2.1 shows that the boundary conditions are specified around a closed 

region in a rectangle shape. 
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Figure 2.1:  Domain for an elliptic PDEs. 

For the parabolic PDEs, initial values or initial boundary values are provided. 

For example, Figure 2.2 shows that the boundary conditions are specified on the side of 

the open region. The solutions will move forward towards the open side. 

 

Figure 2.2:  Domain for a parabolic PDEs. 

Generally, the initial condition and boundary condition can be specified in 

three ways: 

a) Dirichlet boundary condition, where the unknown values of function u are given 

on each point of boundary for the domain. 
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b) Neumann boundary condition, where the values of normal derivative are given 

on boundary for the domain. 

1
),0( K

x
tu

=
∂

∂ ,                                           2
),( K

x
tLu

=
∂

∂ . 

c) Robin’s boundary condition, which is the combination of Dirichlet  boundary 

condition and  Neumann boundary condition where the values of function u  and 

normal derivative are given on boundary for the domain. 

1),0( Ktu = ,                                           2),( KtLu = . 

d) Cauchy initial condition, where the values of function u and its derivative are 

given from the beginning.  

1)0,( Kxu = ,                                           2
)0,( K

t
xu

=
∂

∂ . 

 

2.2 Finite Difference method 

Most of the PDEs are too complicated to be solved analytically. Therefore, finite 

difference method is used to replace partial derivative of PDEs to transform PDEs  to 

algebraic equation system. The first step of the finite difference method is to divide 

domain solution into discrete grid. For example, the solution domain with square-

shaped is divided to discrete grid as shown below: 
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Figure 2.3:  Discretized solution domain with square-shaped. 

Each intersection point of these lines is naming as mesh point or grid. Here, the 

square-shaped domain involves 2)1( −n internal mesh points. The values of x and y for 

each point are represented as xixi ∆=∆  and yjy j ∆=∆  where 1,1 −≤≤ nji . The value 

of u of the (i,j)th node will be written as jiu , . 

For example,  

jiji uyjxiuyxu ,),(),( =∆∆= , 

jijiji uyjxiuyxxuyxu ,11 ),)1((),(),( ++ =∆∆+=∆+= . 

Taylor series expansion is the most suitable method in order to obtain the 

approach used for the finite difference equations. The Taylor series of a function f  in a 

neighbourhood of 0x  can be written as  
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0
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xfxf

−
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−
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−
+=  

LL +
−

++ )(
!

)(
0

)(0 xf
n
xx n

n

, 

where function f  and its derivatives are continuous on the closed interval [a,b]. This 

series will be called as Maclaurin series if 0x =0. 

By expanding Taylor series with two variables like ),( 1+ji yxu  on the point

),( ji yx , which is shown as below:  

L+
∂

∂∆
+

∂

∂∆
+

∂

∂∆
+=∆+ 3

33

2

22 ),(
!3
)(),(

!2
)(),(

!1
),(),(

y
yxuy

y
yxuy

y
yxuyyxuyyxu jijiji

jiji

 

L+
∂

∂∆
+

∂

∂∆
+

∂

∂∆
+=+ 3

33

2

22

,1,

),(
!3
)(),(

!2
)(),(

!1 y
yxuy

y
yxuy

y
yxuyuu jijiji

jiji .              (2.3) 

Rearrange equation (2.3), we obtain  

L4

44

3

33

2

22
,1, ),(

!4
)(),(

!3
)(),(

!2
)(),(

y
yxuy

y
yxuy

y
yxuy

y
uu

y
yxu jijijijijiji

∂

∂∆
−

∂

∂∆
−

∂

∂∆
−

∆

−
=

∂

∂ +

 

     )(,1, y
y

uu jiji ∆Ο+
∆

−
= + ,          (2.4) 

where )( y∆Ο denotes term containing higher powers of y∆ . Assuming that )( y∆Ο is 

negligible if compared with lower powers of y∆ , 

y
uu

y
yxu jijiji

∆

−
≈

∂

∂ + ,1,),(
.           (2.5) 

Equation (2.5) is called the forward difference formula.  
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Substitute y∆ with y∆−  in equation (2.3), another new equation can be formed as  

L+
∂

∂∆−
+

∂

∂∆−
+

∂

∂∆−
+=∆−

3

33

2

22 ),(
!3

)(),(
!2
)(),(

!1
),(),(

y
yxuy

y
yxuy

y
yxuyyxuyyxu jijiji

jiji

or 

L+
∂

∂∆−
+

∂

∂∆−
+

∂

∂∆−
+=− 3

33

2

22

,1,

),(
!3

)(),(
!2
)(),(

!1 y
yxuy

y
yxuy

y
yxuyuu jijiji

jiji .    (2.6) 

Rearrange equation (2.6) in term of 
y

yxu ji

∂

∂ ),(
. Same as the forward difference formula, 

we assume that )( y∆Ο is negligible if compared with lower powers of y∆ .The backward 

difference formula can be written as 

y
uu

y
yxu jijiji

∆

−
≈

∂

∂ −1,,),(
.           (2.7) 

By subtracting equation (2.7) from equation (2.5), we get  

L+
∂

∂∆
+

∂

∂∆
=∆−−∆+ 3

33 ),(
!3
)(2),(

!1
2

),(),(
y

yxuy
y

yxuyyyxuyyxu jiji
jiji  

or 

L+
∂

∂∆
+

∂
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=− −+ 3

33

1,1,

),(
!3
)(2),(

!1
2

y
yxuy

y
yxuyuu jiji

jiji .       (2.8) 

Rearrange equation (2.8) in term of 
y

yxu ji

∂

∂ ),(
, 

L+
∂

∂∆
+

∆

−
=

∂

∂ −+

3

33
1,1, ),(

6
)(

2
),(

y
yxuy

y
uu

y
yxu jijijiji  

         )(
2

21,1, y
y
uu jiji ∆Ο+

∆

−
= −+ .          (2.9) 
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Similarly, we assume that )( 2y∆Ο is negligible if compared with lower powers 

of y∆ .The central difference formula can be written as 

y
uu

y
yxu jijiji

∆

−
≈

∂

∂ −+

2
),( 1,1, .                     (2.10) 

Forward difference formula, backward difference formula and central difference 

formula for
x

yxu ji

∂

∂ ),(
can be obtained by using same method. 

)(
),( ,1, x

x
uu

x
yxu jijiji ∆Ο+

∆

−
=

∂

∂ + ,  forward difference formula.   (2.11) 

)(
),( 1,, x

x
uu

x
yxu jijiji ∆Ο+

∆

−
=

∂

∂ − ,  backward difference formula.   (2.12) 

)(
2

),( 21,1, x
x
uu

x
yxu jijiji ∆Ο+

∆

−
=

∂

∂ −+ ,  central difference formula.   (2.13) 

 

By adding equation (2.5) with equation (2.7), we can obtain, 

)(
2),( 2

2
1,,1,

2

2

x
x

uuu
x

yxu jijijiji ∆Ο+
∆

+−
=

∂

∂ −+ .       (2.14) 

Equation (2.14) is called central difference formula for the second order partial 

derivative 2

2 ),(
x

yxu ji

∂

∂
. 

With the same method, central difference formula for the second order partial derivative

2

2 ),(
y

yxu ji

∂

∂
 can be written as, 

)(
2),( 2

2
1,,1,

2

2

y
y

uuu
y

yxu jijijiji ∆Ο+
∆

+−
=

∂

∂ −+ .       (2.15) 
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2.3 Point iterative method 

We use stationary iterative methods to solve the linear equation, 

                                                      bxA = ,                                                (2.16) 

where A is a given matrix and b is a given vector. Stationary iterative methods can be 

written as 

gxGx kk +=+ )()1( ,       (2.17) 

where neither G nor g  depends upon the iteration count k. We decompose the matrix A 

into 

ULDA −−= ,     (2.18) 

where D is a block diagonal matrix, L is a lower triangular matrix and U is an upper 

triangular matrix obtained from the matrix A. 

Three types of stationary iterative methods will be introduced in the next section. 

For Jacobi method, equation (2.16) can be rewritten as 

bxULxD ++= )( .      (2.19) 

By assuming 1−D  exist, multiplying both sides of (2.19) by 1−D , 

bDxULDx 11 )( −− ++= .     (2.20) 

The Jacobi iterative method can be defined as 

gxGx kk +=+ )()1( ,      (2.21) 
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where  

)(1 ULDG += −  and bDg 1−= .        (2.22) 

For Gauss-Seidel (GS) method, each the updated values will be used as they are 

available. Hence, equation (2.16) can be rewritten as 

bxUxLD +=− )( .      (2.23) 

The GS method is defined as 

bxULxD kkk ++= ++ )()1()1( .     (2.24) 

Multiplying both sides of equation (2.24) by 1)( −− LD  

bLDxULDx kk 1)(1)1( )()( −−+ −+−= .   (2.25) 

Equation (2.25) can be defined as 

rxGx kk +=+ )()1( ,      (2.26) 

where  

ULDG 1)( −−=  and bLDr 1)( −−= .         (2.27) 

 

The Successive OverRelaxation (SOR) method is a modified version of GS 

method where an acceleration parameter ω is used to accelerate the rate of the 

convergence. Let )1( +kx be the vector obtained from the GS method,  

bDxUDLDx kkk 1)(1)1(1)1( −−+−+ ++= .       (2.28) 



17 

The extrapolation factor ω  are introduced into equation (2.28), 

)()1()1( )1( kkk xxx ωω −+=
++ .         (2.29) 

Substitute 
)1( +k

x from equation (2.24) into equation (2.29) and we get 

)()()1()1( )1()( kkkk xDbxULxD ωω −+++= ++ .      (2.30) 

Equation (2.30) can be rewritten as 

bDxIUDxLDI kk 1)(1)1(1 ))1(()( −−+− +−+=− ωωωω .     (2.31) 

Multiplying both sides of equation (2.31) by 11 )( −−− LDI ω  since LDI 1−− ω  is non-

singular for any choice of ω , 

bDLDIxLx k
w

k 111)()1( )( −−−+ −+= ωω ,       (2.32) 

where  

))1(()( 111 IUDLDILw ωωω −+−= −−− .        (2.33) 

and wL  is the SOR iteration matrix. 

When 1=ω , GS method will be obtained. 

As we mention in Chapter 1.2, the five point iterative scheme is the foundation 

of other finite difference iterative methods. Therefore, we will concentrated on standard 

five point iterative method and rotated five point iterative method in this thesis for the 

point iterative method. 
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2.3.1 Standard five point (SOR) iterative method for elliptic PDEs  

Consider the second order elliptic equation which is the Poisson equation, 

),(2

2

2

2

yxf
y
U

x
U

=
∂
∂

+
∂
∂ ,       (2.34) 

with Dirichlet boundary conditions and function f  are given. Here, we assume that the 

domain is the unit square. Assume that the grid spacing nh 1= with ihxi =  and  

jhy j =  where ),,2,1,0,( nji L= . Equation (2.34) can be approximated at the point 

),( ji yx  based on (2.14) and (2.15). We get 

ji
jijijijijiji f

h
uuu

h
uuu

,2
1,,1 - ,

2
,1,,1 22

≈
+−

+
+− +−+ .    (2.35) 

 

Simplify (2.35) will get 

)-(
4
1

,
2

,1,11,1 - ,, jijijijijiji fhuuuuu −++ +++≈ ,    (2.36) 

which is known as standard five point iterative scheme and is the most common used in 

solving Poisson equation. 

By applying the SOR iterative scheme (2.29) into equation (2.36), we get 

standard five point (SOR) iterative method for elliptic PDEs, 

)-(
4

)-1( ,
2)(

1,
)1(

1,
)(
,1

)1(
,1

)(
,

)1(
, ji

k
ji

k
ji

k
ji

k
ji

k
ji

k
ji fhuuuuuu +

+
−+

+
−

+ ++++=
ω

ω .    (2.37) 
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2.3.2 Rotated five point (SOR) iterative method for elliptic PDEs 

By rotating the i-plane axis and the j-plane axis clockwise by 45
o 

which 

surrounds the point, the computational molecule will becomes as Figure 2.4. 

 

Figure 2.4:  The computational molecule by rotating the i-plane axis  
    and the j-plane axis clockwise by 45

o
. 

 

The transformations are shown as below, 

• 1, ±ji  is taken place by 1,1 ±± ji , 

• ji ,1±  is taken place by 1,1 mji ± , 

and  h  is taken place by h2 . 

Therefore, equation (2.34) can be derived from the rotated five point finite 

difference approximation (Dahlquist and Bjorck 1974), 

ji
jijijijijiji f

h
uuu

h
uuu

,2
1,1,1 - ,1

2
1,1,1,1

2
2

2
2

≈
+−

+
+− ++++−−− ,      (2.38) 

and we obtain 

)2-(
4
1

,
2

1,11 -,11,11- ,1 -, jijijijijiji fhuuuuu ++++− +++≈ .     (2.39) 

 

 

1,1 +− ji 1,1 ++ ji

ji,

1,1 −+ ji1,1 −− ji
h2
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By applying the SOR iterative scheme (2.29) into Equation (2.39), we get 

rotated five point (SOR) iterative method for elliptic PDEs, 

)2-(
4

)-1( ,
2)(

1,1
)1(

1,1
)(

1,1
)1(

1,1
)(

,
)1(

, ji
k

ji
k

ji
k

ji
k

ji
k
ji

k
ji fhuuuuuu ++

+
−++−

+
−−

+ ++++=
ω

ω .   (2.40) 

 

 

2.4   Block Iterative method 

Block iterative methods involve the update of the values for a block of points at 

a time which are different with point iterative methods.  Therefore, a block of equation 

system has to be solved at a time.  

Consider the linear equation bxA =  can be written as  
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22221

11211

,         (2.41) 

where A  is a square matrix of order n . ijA is submatrix of order 

)( 21 nnnnnn qji =+++× L .  iX and iB  are the subvectors of order in . 

Matrix A can be decomposed into  

)( ULDA +−= ,                                  (2.42) 

where D is a block diagonal matrix, -L is a lower triangular matrix and -U is an upper 

triangular matrix obtained from the matrix A. 
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Therefore, the block Jacobi  iterative method can be defined as 

∑
≠
=

+ +−=
q

ij
i

i
k
jij

k
iii BXAXA

1

)()1( , qi ≤≤1 ,      (2.44) 

or 

 ∑
≠
=

+ +=
q

ij
i

i
k
jij

k
i CXGX

1

)()1( ,  qi ≤≤1 ,         (2.45) 

where  

=ijG     
,0

,1
ijij AA−−  

if
if

ji
ji

=
≠

, 

and 

 jiji BAC 1−= ,   qi ≤≤1 .         (2.46) 

Equation (2.44) can be rewritten in general form as, 

    )()()()1( ππ CXGX kk +=+ ,            (2.47) 
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where ][)( )()(1)()( ππππ ULDG += −  is the block Jacobian matrix and BDC 1)()( )( −= ππ ,

)()(
)( AdiagD π

π =  .                   (2.48) 

The block GS iterative method can be written as 

 i

q

ij

k
jij

i

j

k
jij

k
iii BXAXAXA +−−= ∑∑

+=

−

=

++

1

)(
1

1

)1()1( , qi ≤≤1 ,               (2.49) 

or 

 i

q

ij

k
jij

i

ij

k
jij

k
i CXGXGX ++= ∑∑

+=

−

=

++

1

)(
1

1

)1()1( ,  qi ≤≤1 ,               (2.50) 

where ijG and iC  are as given in (2.46). 

Equation (2.50) can be rewritten in general form as, 

BLDXGX kk 1)()()()()1( )( −+ −+= πππ ,              (2.51) 

where )(1)()()( )( ππππ ULDG −−=  is the block GS matrix.            (2.52) 

 

For the block SOR iterative method, we get 

 )(1)()()()1( )( πππ
ω ωω CGIXLX kk −+ −+= ,            (2.53) 

where ])1()([])([ )(1)(1)(1)()( IwUDLDIL −+−= −−− πππππ
ω ωω  is the block GS matrix , 

BDC 1)()( )( −= ππ , and ω is the relaxation parameter.     
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For the block iterative method, it can be extended to blocks of one line or more 

lines (or groups) which contain a group of mesh points. The block iterative methods 

which are constructed with group by group are called as group iterative method. The EG 

method and EDG method are the most common four point group iterative method 

recently which are introduced as alternative numerical methods for the solution of 

elliptic PDEs because of the high rate of convergence and the satisfying computation 

complexity. 

 

 

2.4.1 Explicit group SOR (EG(SOR)) method for elliptic PDEs 

Consider Equation (2.34) as model problem, we assume that any group of four 

points in solving a domain by using standard five point iterative scheme (2.36). A (4x4) 

system of equation is produced which is shown as: 
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This 4x4 matrix in equation (2.54) can be inverted to 
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The EG method is then defined as, 
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,         (2.56) 

where 

 ,    (2.57) 

which was developed by Yousif and Evans (1986). 

 

By applying the SOR iterative scheme (2.29) into equation (2.56) until (2.57), 

we get EG (SOR) method which is shown as below: 
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