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KESAN HINGAR PENSUISAN SERENTAK  

KEPADA KEPEKAAN ISYARAT BAGI USB 2.0 

ABSTRAK 

Hingar pensuisan serentak (SSN) meningkat dengan kadar data I/O yang 

lebih tinggi menyebabkan kawal selia voltan bekalan dalam litar transistor menjadi 

satu cabaran. Voltan bekalan berubah sewajarnya mengikut rekabentuk rangkaian 

agihan kuasa (PDN). Usaha-usaha kejuruteraan lazimnya tertumpu kepada 

bentangan PDN bagi mengurangkan laluan galangan. Walau bagaimanapun, hasrat 

untuk mengecilkan saiz komponen suatu sistem telah memberi cabaran dalam 

menghasilkan rekabentuk PDN yang lebih komprehensif terutamanya dalam 

mengawal kejatuhan voltan. Oleh itu, kajian berhubung kesan hingar bekalan 

terhadap prestasi isyarat adalah diperlukan dalam rekabentuk PDN pada masa 

hadapan. Selain daripada mengoptimumkan PDN, cara yang lain dalam mengukur 

kesan frekuensi voltan bekalan yang berbeza terhadap isyarat keluaran 

diperkenalkan dalam kajian ini. Prestasi isyarat pemancar litar bas sesiri semesta 

(USB) diteroka dalam usaha untuk mengkaji hubungan ini. Isyarat gambarajah mata 

diperiksa selepas menggantikan voltan bekalan DC dengan pelbagai frekuensi voltan 

bekalan AC. Berdasarkan pemerhatian kepada hasil simulasi, pemancar USB 

mempunyai ketahanan yang lebih baik terhadap hingar bekalan pada frekuensi 

operasi 480 MHz dan juga frekuensi-frekuensi harmonik 960 MHz dan 1.44 GHz. 

Hingar bekalan berlebihan pada frekuensi-frekuensi ini tidak menyebabkan 

kegagalan kepada gambarajah mata. Penemuan ini dibuktikan lagi melalui 

pengukuran makmal. Gambarajah mata diukur bagi kes-kes tekanan pensuisan 

serentak yang berbeza. Voltan bekalan diukur dan dianalisis dengan menggunakan 
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kaedah jelmaan Fourier pantas (FFT) bagi mengenalpasti penyumbang frekuensi 

yang utama dalam profil hingar. Isyarat I/O daripada hasil pengukuran menunjukkan 

prestasi yang lebih baik terutamanya apabila hingar bekalan yang diukur berada 

dalam kawasan frekuensi 480 MHz dan 960 MHz. Hingar bekalan berbanding 

gambarajah mata diperhatikan dengan menggabungkan kedua-dua model integriti 

kuasa dan integriti isyarat dalam simulasi transistor USB. Satu cara yang berbeza 

untuk merekabentuk PDN diperkenalkan dengan membuang pemuat nyahgandingan 

atas acuan (Cdie). Daripada analisis, walaupun hingar AC yang berlebihan diaruh di 

dalam rel bekalan (selepas dibuang Cdie), isyarat tersimulasi masih lulus dalam 

ujian gambarajah mata. Berdasarkan kajian ini, kawasan silikon boleh dikurangkan 

lagi sebanyak 10% - 20% dengan mengeluarkan Cdie, yang mana ianya akan 

menyediakan lebih fleksibiliti dalam rekabentuk silikon. Kajian ini menyimpulkan 

bahawa USB menpunyai sensitiviti yang berbeza bagi frekuensi hingar bekalan yang 

berbeza. Di samping itu, penyingkiran Cdie boleh dilaksanakan selepas disahkan 

melalui simulasi transistor USB, bersama-sama dengan model integriti isyarat dan 

integriti kuasa.  
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SIMULTANEOUS SWITCHING NOISE  

IMPACT TO SIGNAL SENSITIVITY ON USB 2.0 

ABSTRACT 

Simultaneous Switching Noise (SSN) is increasing with higher I/O data rate, 

resulting into challenges for regulating supply voltage in typical transistor circuit. 

Supply voltage changes accordingly with Power Distribution Network (PDN) design. 

Engineering efforts are focused on PDN layout to minimize the impedance path. 

However, the desire to miniaturize components on a system increases design 

challenges to control voltage drop via comprehensive PDN design. Hence, it is a 

need to study the impact of supply noise to signal performance in future PDN design. 

Instead of optimizing PDN, a different way of quantifying different frequency 

supply voltage impact to output signal is introduced in this research. In order to 

observe this relationship, Universal Serial Bus (USB) transmitter circuit signal 

performance is explored. Signal eye diagram is observed by replacing DC input 

voltage with various frequencies of AC input voltage. From the simulation, USB 

transmitter has better immunity to the supply noise at its operating frequency of 480 

MHz, and also its harmonic frequencies of 960 MHz and 1.44 GHz. Excessive 

amount of supply noises at these frequencies are not causing signal eye diagram to 

fail. This finding is further verified by lab measurement. Eye diagram is measured 

by different simultaneous switching stress test cases. The supply voltage is captured 

and analyzed using Fast Fourier Transform (FFT) to identify the major frequency 

contributors in the noise profile. From the measurement result, signal has better 

performance especially when the measured supply noise falls in the frequency 

regions of 480 MHz and 960 MHz. Consequently, supply noise versus eye diagram 
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is observed by including both power integrity and signal integrity model in USB 

transistor simulation. A different way of designing PDN is proposed by removing 

on-die decoupling capacitor (Cdie). From analysis, although excessive AC noise is 

induced in the supply rail after removing Cdie, the simulated signal passes the eye 

diagram compliance requirement. Based on this finding, silicon area can be reduced 

by 10% to 20% after removing Cdie, which provides better flexibility in silicon 

design. This research concludes that USB has different sensitivity to different 

frequency of supply noise. In addition, Cdie removal can be implemented, which is 

verified by USB transistor level simulation, together with signal integrity and power 

integrity models.  
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CHAPTER 1    

INTRODUCTION 

1.1 Overview 

Transistor size shrinks every generation to obtain higher data rate and clock 

speed. Operating voltage is scaled down, trending toward low power consumption in 

line with transistor’s size reduction. Supply voltage’s design target is tightening 

because of lower supply noise margin, after scaling down the operating voltage. 

In contrary with supply noise margin, most chipmakers desire to increase the 

number of I/O in every new generation chip to accommodate higher user needs. 

Design engineers constantly need to keep pace with higher design complexity with 

I/O current drawn increase, which in turn will induce higher Simultaneous 

Switching Noise (SSN) on a given interconnect. Interconnect parasitic such as 

resistance and inductance contribute to non-ideal supply voltage characteristic. 

Resistance increase DC IR drop and lowering nominal voltage; while inductance 

induces AC voltage fluctuation when interacting with transient current of the 

operating I/O (Kumar et al., 2010). The amount of DC voltage drop and AC voltage 

fluctuation increases when multiple circuits draw current from the same power 

supply rail. This voltage noise is interpreted as SSN which directly impact circuit 

performance in timing and signal quality. 

In order to reduce SSN resulted from supply voltage drop, Power 

Distribution Network (PDN) has to be designed optimally. PDN consists of supply 

voltage routing from voltage regulator on board into transistor circuit on die. It is 

optimized by reducing effective resistance and inductance of the routing. Ideally, 
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PDN routing is implemented with larger width and area to reduce the overall 

resistance and inductance path. Moving ground plane next to a power plane also 

provides good return path referencing. 

At the same time, signal performance is analyzed apart with power delivery. 

Analysis for signal performance considers only DC voltage change in typical cases. 

However, supply voltage changes with time due to non-ideal characteristic of PDN. 

Supply voltage varies in time domain with the function of inductance, current 

amplitude and its slew rate. The variation of supply voltage is amplified especially 

when multiple current travel through high inductance path of power supply rail 

(Mikhail, 2007). Thus, running signal analysis without consider PDN is insufficient 

to model the impact of input voltage to output signal. Design mismatch might occur 

due to lack of correlation between PDN model and signal model. 

  Moreover, silicon and package size shrink is reducing resources available to 

both signal integrity and power integrity design (Mikhail, 2007). Continuously 

suppressing the supply noise by optimizing PDN is not an effective design. Extra 

resources are required to design PDN, which in turn lead to larger silicon and 

package size. Furthermore, extra decoupling capacitors are placed on silicon, 

package and board to meet the AC voltage droop design target. It defeats the 

purpose of shrinking transistor size to acquire better circuit performance. 

Hence, PDN design should be correlated with signal performance. Forcing 

PDN design to meet the target impedance criteria at all frequencies is not applicable 

in chipset I/O design. Signal sensitivity to supply noise is the parameter to 

investigate because it is the key to determine the performance of I/O. In this research, 

Universal Serial Bus 2.0 (USB 2.0) is used as high speed I/O to be studied. 
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1.2 Problem Statement 

Supply noise budget is scaled inversely proportional to the I/O data rate. 

Voltage noise margin allowed for integrated circuit becomes tighter as data rate 

increases with generation. Design challenge for PDN increases in this competitive 

electronic product market. User is looking for cheaper and multifunction product 

instead of higher performance CPU. Electronic manufacturer reduces the cost to 

design and manufacture to enable product affordable by end user.  

Therefore, resources available in designing PDN reduced significantly. 

Silicon size, package size, and number of decoupling capacitors are the resources to 

design a PDN. Silicon size and package size reduction directly increase the 

resistance and inductance path of voltage routing. Decoupling capacitors are 

removed due to process or area limitation. Supply voltage droop varies proportional 

to resistance, inductance and current drawn from integrated circuit. The design goal 

for PDN is to maintain impedance as low as possible. Excessive supply noise will be 

induced whenever PDN impedance is not controlled (Priest et al., 2009).   

By foreseeing the limitation in PDN design, power integrity design by 

optimizing through PDN without looking into output signal resulted by the supply 

noise is insufficient. Correlation between power integrity and signal integrity is 

needed as both designs are impacting each other in the circuit operation. Instead of 

suppressing noise with limited resources in PDN, supply noise impact to signal 

performance should be further explored. 
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1.3 Research Objectives 

The main objectives of this research are: 

(i) To investigate the impact of SSN at possible frequency range to signal 

performance by using USB. 

(ii) To measure and correlate the supply noise with signal performance using 

existing USB chipset.  

(iii) To develop the way of integrating power integrity model and signal 

integrity model together with transistor level circuit by using USB. 

(iv) To exploit the possible PDN design method for USB by conducting 

signal sensitivity analysis. 

 

1.4 Research Scopes 

This research will focus on the following scopes: 

(i) Obtain signal integrity channel model and connect with the USB 

transmitter in transistor level simulation. 

(ii) Inject supply voltage in sinusoidal waveform, from low frequency to 

high frequency and observe the changes in signal eye diagram. 

(iii) Compare the difference between input DC voltage and input AC voltage 

to signal eye diagram. 

(iv) Measure SSN with existing USB chipset by enabling all the USB through 

different methods and inspect the eye diagram resulted from the SSN. 
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(v) Connect PDN with previous USB transmitter circuit to form a complete 

circuit model. 

(vi) Maximize SSN in simulation by enabling 14 USB transmitters while 

examine the supply noise and eye diagram changes. 

(vii) Explore the possible way of designing PDN based on summarized signal 

sensitivity analysis through early simulation and measurement.  

 

1.5 Research Target Contribution 

In this research, a method of combining power integrity and signal integrity 

model together into transistor level circuit simulation is going to be introduced. 

Typical power integrity and signal integrity analyses are carried out separately. By 

combining both models together with transistor level circuit, it has the highest 

accuracy by compensating the simulation time. Direct impact of supply noise to 

signal performance can be observed in the simulation. 

Besides, this research aims to verify signal has distinct sensitivity level to 

different frequencies of noise. Signal sensitivity will be studied in both simulation 

and measurement. Once signal sensitivity to supply noise is known, PDN design can 

be changed and manipulated by focusing only to specific frequency regions. A better 

way of designing PDN is targeted; which reduce the size of silicon or packaging. It 

may save manufacturing cost and provide more spaces to accommodate extra 

circuitry for better functionality.  
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1.6 Overall Research Flow 

 

 

 

 

 

 

 

 

As shown in Figure 1.1, the overall research starts with identifying research 

area, which is decided to focus in power integrity. Next, topic is chosen as 

Simultaneous Switching Noise Impact to Signal Sensitivity on High Speed I/O. 

Problem statements and research objective are scoped based on project title and area 

of interest. 

Next, project continues with literature review according to previous 

researches. Background review and comparison study is done in power integrity and 

signal integrity related researches. After literature review, project methodology flow 

is established. Simulation and measurement test cases are determined accordingly. 

After project methodology flow is setup, results are collected from 

simulation and measurement. Discussion is elaborated based on the results extracted. 

Finally, research ends by concluding the overall project results and outcomes.  

Identify research area 

Identify research topic 

Identify problem statement / 

research objectives 

Literature review / 

background study 

Establish overall project 

methodology 

Conclusion 

Simulation Results and 

discussions 

Measurement Results and 

discussions 

Figure 1.1: Overall research flowchart 
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1.7 Thesis Outline 

The overall thesis consists of five chapters. Chapter one introduces the 

background and the problem statement. Other than that, the objectives, scopes and 

contributions of this research are stated. 

Chapter two elaborates the background review on power integrity and signal 

integrity. PDN induces supply noise is introduced in this section and ways to 

improve power integrity are discussed. Besides, signal transmission line results 

channel losses and ways to enhance signal integrity are illustrated.  

Chapter three demonstrates the methodology to carry out this research. It 

includes the simulation setup and measurement setup to obtain supply noise together 

with signal eye diagram. Furthermore, research limitations in simulation and 

measurement are discussed in this section. 

Chapter four presents the results and discussions. Simulation results using 

SPICE together with measurement data are displayed in this section. Signal 

sensitivity to supply noise is disclosed. By referring to signal sensitivity study, a 

new way of designing PDN is introduced. 

Finally, chapter five concludes this research and future recommendations are 

suggested.   
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CHAPTER 2   

BACKGROUND REVIEW 

2.1 Introduction 

Current product is trending toward higher data rate but lower power 

consumption for battery efficiency. Low supply voltage and low current drawn are 

designed to meet low power consumption requirement. Input supply voltage is 

scaled down together with transistor sizing to increase speed and efficiency. In high 

speed device, digital signal slowly lose its advantage over analog signal. Transistor 

drive strength reduces significantly due to voltage decrement; results into weak 

signal transmission. Signal distortion happens in transmission line because the signal 

strength is not strong enough to transfer through transmission line. Moreover, supply 

voltage droop and channel losses are interrupting the operation of typical I/O signal 

transmission (Choi et al., 2008). In order to control supply voltage noise and signal 

losses, power integrity (Wang et al., 2010; Nabeshima et al., 2011) and signal 

integrity (Shen et al., 2008; Huang et al., 2010) are playing important roles.  

 

2.2 Power Integrity 

Power integrity (PI) (Thierauf, 2011) is the parameter to determine the 

quality of supply voltage going into integrated circuit. In high speed digital circuit, 

supplying a clean voltage is important to drive and operate the transistor circuit. 

Excessive noise in supply voltage will induce extra jitter in sensitive circuit such as 

Phase-Locked Loops (PLL) (Chan et al., 2007). I/O is unable to transmit and receive 
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signal at the desired signal rate whenever timing disturbance happens in clock 

circuitry. Moreover, supply noise will further reduce the transmitted signal strength 

and decrease the eye margin of signal (Choi et al., 2008).  

Supply noise increases significantly especially when the data rate and 

number of devices continue to increase throughout generation to accommodate user 

needs. It results into challenge in power integrity due to SSN appears in wide 

bandwidth for high speed digital circuit. Reducing impedance in PDN becomes a 

major task in power integrity design to reduce the overall noise; specifically at 

resonance of PDN. Decoupling capacitors are widely used on package and silicon to 

lower down the effective impedance of PDN and reduce the SSN in typical I/O 

circuit (Okumura et al., 2010). 

 

2.2.1 Power Distribution Network (PDN) 

Figure 2.1 shows one of the examples to model PDN for typical chipset 

(Mahajan et al., 2004). In chipset family, PDN is analyzed starting from Voltage 

Regulator Module (VRM). VRM is the component on motherboard to provide a 

chipset the appropriate supply voltage. It regulates voltage from main power supply 

(+5V or +12V) and converts it into a much lower voltage required by chipset.  

Voltage coming out from the VRM will be the starting point of power 

integrity path. Supply voltage penetrates into intermediate layer of routing within 

motherboard through vias before it is delivered into package. A typical PDN supply 

voltage is routed within the printed circuit board (PCB). Top layer of PCB is usually 

reserved for signal microstrip traces.  
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Figure 2.1: Example of PDN model (Mahajan et al., 2004) 

From motherboard, supply voltage goes into package through Ball Grid 

Array (BGA) (Chen et al., 2012). BGA is one of the surface-mount packaging used 

for integrated circuit such as microprocessors and chipsets. Within package, voltage 

is routed through multiple high-density vias and Plated Through-Hole (PTH) before 

it reach top layer of packaging. These vias and PTHs contain high inductance and 

resistance path, which contribute to supply voltage droop as current flow through.  

Finally, supply voltage is delivered into silicon through C4 bump or flip chip 

(Chen et al., 2012). Flip chip is used for interconnecting semiconductor devices, 

such as integrated circuit chips to external package with solder bumps. In past 

analysis, power integrity covered up to C4 bumps without considering on-die 

interconnects. However, on-die interconnect contributes significant resistance path 

due to its high density layout. Hence, on-die power grid is taking into consideration 

in PDN analysis due to its impact in DC voltage drop. 
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2.2.1(a) Current Flow in PDN 

In a PDN, all the voltage routing, vias, BGAs, PTHs contain inductance and 

resistance. Transistor draws current from supply voltage when there is switching 

activities happen. Current travels through the PDN impedance path will induce IR 

drop together with AC voltage fluctuation in supply voltage. Supply voltage drop 

increases especially when large current is needed by transistor; while voltage 

regulator cannot supply sufficient amount of current to the circuit.  

 

Figure 2.2: Current flow in CMOS transistor (Soman, 2006) 

Figure 2.2 shows a typical current loop as transistor switches in a circuit. 

Model on the left represents the PDN; whereas model on the right illustrates the 

signal traces. When PMOS is turned on, current flows through red color line which 

induces supply voltage droop and ground bounce. When NMOS is turned on, current 

is discharged through the blue color line. Ideally digital circuit as in Figure 2.2 does 

not induce voltage droop since no current flow through PDN. However, there is still 

leakage current flow through transistor due to its non-ideality. 
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2.2.1(b) PDN Lumped Model 

Current flow through PDN can be simplified in a lumped model. Voltage 

routing, BGAs, vias, PTHs are replaced by resistance and inductance in the lumped 

model as shown in Figure 2.3. 

 

Figure 2.3: Current flow in simplified PDN model 

V1 – Input voltage from voltage regulator. 

V3 – Output voltage going into transistor.  

In ideal case, there is no inductance and resistance exists in path: 

                                                                                 

In reality, inductance and resistance exist in PDN: 
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In order to reduce voltage droop in PDN, decoupling capacitor is added to 

PDN as shown in Figure 2.4. Decoupling capacitor typically comes with Equivalent 

Series Resistance (ESR) and Equivalent Series Inductance (ESL). It is resulted from 

manufacturing which reduces the efficiency of the decoupling capacitor. 

 

Figure 2.4: Simplified lumped model of PDN with decoupling capacitor 

As power supply turned on, decoupling capacitor will be charged up. 

Capacitor is the first to supply AC current required by transistor as it turns on. It 

reduces slew rate of current across the PDN. Hence, the capacitor must be placed as 

near as possible to the load to increase the decoupling efficiency. 

The full lumped model of PDN is displayed in Figure 2.5. It is split into 4 

regions: voltage regulator, motherboard, package and die (silicon). Each region 

consists of inductance and resistance in series that contribute to voltage droop. 

Different decoupling capacitors are connected at these regions. Each capacitor in 

PDN serves its own function in filtering supply noise from low to high frequency.  

The reason of SSN increases with later generation of chipset can be 

explained from the lumped model. Voltage droop relies mainly on current amplitude, 
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current slew rate and impedance of PDN. Current amplitude increases together with 

the number of I/O in integrated circuit, which contributes to both DC and AC 

voltage droop. Next, current slew rate increases proportionally with higher data rate; 

results into excessive AC voltage fluctuation. Besides, challenges in reducing PDN 

inductance and resistance increase after silicon and package size shrink. These 

factors contribute to the supply noise significantly, causing excessive SSN in supply 

voltage in typical integrated circuit.  

 

Figure 2.5: PDN full lumped modeling 

2.2.2 Impedance Profile 

PDN can be analyzed in time domain and frequency domain (Watkins et al., 

2012). Simulation in time domain by using transistor circuit model, together with 

package model extraction has the highest accuracy, but may require a huge 

computing resource. Hence, estimation of SSN by using frequency domain of 

impedance is introduced in PDN design (Kim, 2011). It saves the long simulation 
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time with frequency domain analysis. Effective impedance of PDN can be simulated 

in frequency domain, containing the PDN resonance peak frequency information. 

Although it cannot predict the exact amplitude of supply noise as in transient 

simulation, but it can identify the maximum supply noise frequency by observing 

through PDN resonance frequency. 

 

Figure 2.6: Impedance profile connection in frequency domain analysis 

Way of obtaining impedance profile of a PDN in frequency domain is shown 

in Figure 2.6. By replacing the load current with AC current of 1.0 A, impedance of 

PDN is simulated by probing on Vout as illustrated. From the ohm’s law equation, 

    , impedance, Z of PDN is equal to the output voltage, V by setting output 

current, I to 1.0 A. An example of impedance profile is shown in Figure 2.7. 

 

Figure 2.7: Example of PDN impedance in frequency domain (Kim, 2011) 
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2.2.2(a) Target Impedance 

From the impedance profile in frequency domain, PDN can be designed to 

meet the voltage droop across whole frequency range. Once the target voltage droop 

is known, PDN design target impedance can be obtained by using maximum current 

drawn by the integrated circuit. The AC noise, VACN is a function of PDN impedance 

PDN and current, ICC flowing through (Soman, 2006).  

                                                                                           

As long as AC noise target,         and maximum current drawn,        are 

known, PDN can be designed to meet maximum target impedance,     . Target 

impedance profile is the maximum PDN impedance to meet at every frequency. 

With such approach, worst case voltage droop can be controlled within the design 

specification throughout every frequency. 

 

2.2.3 Supply Noise 

It is very pessimistic to use the method in frequency domain to meet target 

impedance at the whole frequency range (Soman, 2006). It may lead to design 

bottleneck or overdesign in PDN to fulfill the design requirement. Other than 

analyzing the PDN in frequency domain, methodology used in current chipset PDN 

design is time domain simulation. Ideally, supply noise is simulated by connecting 

PDN together with integrated circuit. It has the highest accuracy in getting supply 

noise by using transistor circuit; with compensation of long simulation time. An 

alternative way of simulating supply noise is by using current profile generated from 

integrated circuit to represent to the I/O activities.  
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2.2.3(a) Current Profile 

Current profile is used to replace complicated transistor model circuit in 

SPICE simulation. Worst case current profile is generated from simulation by setting 

the temperature and process corner to produce highest current slew rate. High slew 

rate current profile usually includes the highest frequency data transition pattern. 

Supply noise simulated by worse case current profile in time domain is then used as 

supply noise design target (Tan, 2009). This current profile is placed right after the 

PDN in simulation to obtain supply voltage in time domain. 

Current profile can be generated separately from different buffer to be 

connected in distributed model; or integrated all current profile together in a single 

lumped model. Separated current profile is preferred for better accuracy and 

flexibility in PDN analysis. On-die power grid is needed to distinguish current 

profile’s connection from each buffer. The way of obtaining current profile by 

simulation is demonstrated as example in Figure 2.8. 

 

Figure 2.8: Current profile probing point in typical differential I/O (Soman, 2006) 
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2.2.4 Simultaneous Switching Noise 

As discussed in Section 2.2.1(b), supply voltage droop is a function of 

current, resistance, inductance, and slew rate of current (Smith, 1999). When there is 

only one lane of I/O active as shown in Figure 2.9, the current drawn is insignificant 

and the resulted supply noise can be controlled easily. However, current amplitude 

increases when there are multiple I/O switching events happen at the same time 

(refer to Figure 2.10). The slew rate of current is amplified especially if these I/O 

operate in phase with each other as displayed in Figure 2.11. The current of these 

I/O overlap and result into excessive voltage droop in PDN (refer to Figure 2.12). 

This phenomenon is interpreted as SSN. 

 

Figure 2.9: Example – One I/O switching (current profile) 

 

Figure 2.10: Example of 10 buffers simultaneous switching 
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Figure 2.11: Example – 14 I/O switching (current profile) 

 

Figure 2.12: Supply noise and current profile due to simultaneous switching 

(Oikawa et al., 2010) 

Signal degradation happens when SSN exists in supply rail, in which reduces 

the timing margin and voltage margin of signal. The impact of SSN to signal is 

further emphasized when signal channel model is included in the simulation 

(Oikawa et al., 2010).  The continuously increase in data rates lead to higher SSN 

and further degrades the signal performance. Impact of higher data rate to supply 

noise and signal performance can be observed in the previous research by using 

graphic memory systems (Kim et al., 2007), as shown in Figure 2.14. 
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Figure 2.13: Eye diagram resulted by different frequency of SSN (Kim et al., 2007) 

 

Figure 2.14: SSN impact to eye diagram at different data rate (Kim et al., 2007) 

2.2.5 Power Integrity Improvement Methods 

Power integrity is affected by both current and impedance of PDN. 

Throughout generation, engineering efforts are focusing in optimizing PDN either in 

packaging or board routing. The main objective of PDN design is trying to control 

the impedance as low as possible and keep the voltage droop to minimum level. 

Furthermore, a better power integrity model is always desired to improve the 

accuracy and efficiency in simulation (Kulali et al., 2007; Yang et al., 2010). This 

section will introduce the example of efforts done to improve the PDN design. 
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2.2.5(a) Decoupling Capacitor 

Decoupling capacitor is introduced in PDN to decouple one part of an 

electrical circuit from another. A switching event in one sub circuit may cause 

fluctuation in the power supply. In order to prevent other sub circuit to be affected 

by the noise, a decoupling capacitor is used. Noise induced by other circuit elements 

is shunted through the capacitor, reducing the effect of the noise on the other part of 

circuit (Thierauf, 2004).  

Besides, capacitor also works as the circuit’s local charge storage. It doesn’t 

act as DC current supplier to circuit. It is charged up as soon as the power supply is 

turned on without serving other purpose. When a load is applied to a voltage source, 

certain amount of current is drawn. Voltage regulator has to supply this amount of 

current drawn with smallest change in supply voltage. However, voltage regulator 

can only supply low frequency current to keep the output voltage constant. The 

instantaneous current change as circuit start up in turn affects the transient voltage 

levels due to inductance in typical PDN. In this case, capacitor behaves as an 

instantaneous current supplier to the load. It effectively maintains stability of the 

power supply voltage. 

The example of decoupling capacitors used in typical PDN in chipset is 

shown as below: 

Voltage regulator – Bulk Capacitor 

Motherboard – Edge Capacitor (EC), Back Side Capacitor (BSC) 

Package – Die Side Capacitor (DSC), Land Side Capacitor (LSC) 

Silicon / Die – Device Capacitor (Cdie), Mim Capacitor 
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Each type of capacitor serves its own purpose in controlling supply noise in 

PDN. Bulk capacitor is the nearest capacitor to voltage regulator. It can store large 

amount of charge and respond to lowest frequency of transient current change in 

circuit. The next capacitor is Edge Capacitor (EC) or Back-side Capacitor (BSC). 

These on-board capacitors normally placed as near as possible to package and 

responded to low and middle frequency of current change. On-package capacitors 

come after on-board capacitors. The example of on-package capacitors are Die-side 

Capacitor (DSC) or Land-side Capacitor (LSC). These capacitors are again mounted 

as near as possible to die for better efficiency. They are supplying charge to middle 

and high frequency of current drawn. The last decoupling capacitors are On-die 

Capacitors (Cdie), such as device capacitor and mim capacitor. These capacitors are 

the nearest to the transistor circuit and have the highest efficiency; playing a role in 

supplying highest frequency transient current change. The only limitation of these 

capacitors is their values are usually much smaller as compared with other 

capacitors. In addition, area constraint in silicon is limiting Cdie value to be 

increased further. Figure 2.15 shows some example capacitors used in PDN. 

 

Figure 2.15: Example – Different decoupling capacitor placement (Nabeshima et al., 

2011) 
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Other than that, capacitor works as counter resonance to inductance in 

typical impedance profile plot of PDN as illustrated in Figure 2.16. Inductance 

results to high impedance in PDN especially when frequency goes up to MHz or 

GHz regions. High frequency impedance is suppressed by adding decoupling 

capacitor in PDN, by leaving only smaller resonance peak at middle frequency. The 

examples of power supply noise with and without decoupling capacitor are shown in 

Figure 2.17 and Figure 2.18. 

 

Figure 2.16: Impedance profile by different decoupling capacitors (Lin et al., 2012) 

 

Figure 2.17: Power supply noise without on-die capacitor (Nabeshima et al., 2011) 
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Figure 2.18: Power supply noise with on-die capacitor (Nabeshima et al., 2011) 

2.2.5(b) Layout Design 

On top of decoupling capacitor, PDN layout is one of the keys parameter to 

be improved. Better package design reduces the effective inductance and resistance 

of PDN. Larger power plane in PDN is preferable in typical design. Ground plane is 

placed as close as possible to supply voltage to reduce the return path current loop. 

Reasonable number of vias and pins are placed to decrease the PDN resistance.  

Besides, newer methodology in packaging is introduced as effort in 

optimizing PDN design. For example, silicon through-via (STV) (refer to Figure 

2.19) is recommended in past research to decrease inductive impedance of PDN and 

suppressing SSN in 3-D stacked chip package. Significant reduction of inductive 

PDN impedance can be achieved by replacing the conventional bonding wires in 

multiple-stacked chip package by STV connections as shown in Figure 2.20. With 

such design methodology, high frequency SSN is reduced by 80% in the STV 

interconnects (Ryu et al., 2007).  


