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PENYELESAIAN KESERUPAAN BERBILANG BAGI ALIRAN LAPISAN 

SEMPADAN OLAKAN MANTAP DAN TAK MANTAP  

DALAM BENDALIR LIKAT DAN NANOBENDALIR 

 

ABSTRAK 

 

Dalam kebanyakan masalah kompleks bagi aliran lapisan sempadan dan pemindahan 

haba, penyelesaian berbilang mungkin wujud disebabkan oleh ketaklinearan 

persamaan pembezaan, perubahan parameter geometri atau mekanikal bendalir. 

Adalah sukar untuk menggambarkan kewujudan penyelesaian berbilang secara uji 

kaji dan kerana itu pengiraan bermatematik adalah penting untuk menyediakan 

struktur aliran terperinci dan untuk melihat kewujudan penyelesaian berbilang. Tesis 

ini bertujuan untuk mengkaji penyelesaian keserupaan berbilang yang mungkin 

wujud dalam aliran lapisan sempadan dan pemindahan haba. Ini dilakukan dengan 

mempertimbangkan lima masalah yang berbeza iaitu dua masalah dalam bendalir 

likat, satu masalah dalam nanobendalir dan dua lagi adalah masing-masing dalam 

medium berliang dan dalam medium berliang diisi dengan nanobendalir. Bagi 

masalah dalam bendalir likat dan nanobendalir, situasi berbeza bagi helaian 

mengecut dipertimbangkan. Selebihnya, plat menegak dalam medium berliang dan 

silinder menegak dalam medium berliang yang diisi oleh nanobendalir 

dipertimbangkan. Persamaan-persamaan menakluk asas dalam bentuk persamaan 

terbitan separa bagi setiap masalah dijelmakan kepada persamaan keserupaan dalam 

bentuk persamaan terbitan biasa melalui pendekatan keserupaan. Sistem yang 

terhasil kemudiaannya diselesaikan secara berangka menggunakan teknik tembakan 

dengan bantuan fungsi shootlib dalam perisian Maple. Teknik ini melibatkan kaedah 



 xix 
 

Runge-Kutta bersama-sama dengan pembetulan Newton-Raphson. Untuk 

mengesahkan keputusan berangka yang diperoleh dalam kajian ini, perbandingan 

dengan penyelesaian yang sedia ada dalam kajian lepas bagi kes-kes tertentu telah 

dibuat dan didapati keputusan perbandingan adalah sangat baik. Seterusnya, kesan 

parameter-parameter menakluk yang berbeza ke atas dinamik aliran dan pemindahan 

haba telah diperiksa bagi setiap masalah tertentu. Didapati penyelesaian ganda tiga 

wujud dalam masalah cecair likat, iaitu masalah helaian menegak mengecut secara 

eksponen dan helaian mendatar mengecut secara tak linear. Penyelesaian dual 

didapati wujud bagi masalah dalam nanofluid dan medium berliang yang melibatkan 

helaian mengecut, plat menegak di titik genangan dan silinder menegak. Bagi setiap 

kes yang dipertimbangkan, terdapat juga kawasan yang mempunyai penyelesaian 

unik dan tiada penyelesaian. Kewujudan penyelesaian berbilang sama ada tiga, dua, 

unik atau tiada penyelesaian adalah dipengaruhi oleh parameter yang 

dipertimbangkan. 
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MULTIPLE SIMILARITY SOLUTIONS OF STEADY AND UNSTEADY 

CONVECTION BOUNDARY LAYER FLOWS IN  

VISCOUS FLUIDS AND NANOFLUIDS 

 

ABSTRACT 

 

For many complex problems in convection boundary layer flow and heat transfer, 

multiple solutions may exist due to the nonlinearity of the differential equations, 

variation of geometric or fluid mechanical parameters. It is difficult to visualize the 

occurrence of multiple solutions experimentally, therefore mathematical computation 

is important to provide the details flow structure and to notice the occurrence of 

multiple solutions. This thesis aims to study the possible multiple similarity solutions 

that might exist in boundary layer flows and heat transfer. This is done by 

considering five different problems which are two problems in viscous fluid, one 

problem in nanofluid and the remaining two are in porous medium and in porous 

medium filled with nanofluid, respectively. For the problems in viscous fluid and 

nanofluid, different situations of shrinking sheet have been considered. On the other 

hand, vertical plate in porous medium and vertical cylinder in porous medium filled 

by nanofluid have also been considered. The basic governing equations in partial 

differential equations form for each problem are first transformed into similarity 

equations in nonlinear ordinary differential equations form by similarity approach. 

The resulting systems are then solved numerically using the shooting technique with 

the aid of shootlib fuction in Maple software. This technique involves Runge-Kutta 

method together with Newton-Raphson correction. To validate the numerical results 

obtained in this study, comparison with existing solutions in literature for specific 



 xxi 
 

cases have been made and it is found to be in very good agreement. Further, the 

impact of different governing parameters on both the flow and heat transfer 

dynamics has been examined for each of the specific problem at hands. It is found 

that triple solutions exist in the viscous fluid problems, i.e the problem of 

exponentially shrinking vertical sheet and nonlinearly shrinking horizontal sheet. 

Dual solutions are found to exist for the problems in nanofluid and porous medium 

which involves shrinking sheet, vertical plate at stagnation point and vertical 

cylinder. For each of the cases considered, there are also regions for unique and no 

solutions. The occurrences of multiple solutions either triple, dual, unique or no 

solutions are influenced by the considered parameter.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Basic Concepts 

1.1.1 Convection 

 

Convection (convective heat transfer) is one of the three different modes of 

heat transfer, besides conduction and radiation. Convection is a process whereby 

energy is transferred from a surface to a fluid flowing over it due to temperature 

difference between the surface and the fluid. Therefore, in convection there is always 

a surface, a fluid flowing relative to this surface, and a temperature difference 

between the surface and the fluid (Oosthuizen and Naylor, 1999) as illustrated in 

Figure 1.1.  

 

 

Figure 1.1 Convection. 

 

Fluid flow –  
Fluid at temperature fT  

Surface at temperature wT  

Convection: 
from surface to fluid or  
from fluid to surface 

w fT T  
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 Convection occurs extensively in practice such as the cooling of the cutting 

tool during machining operation, the cooling of the electronic components in a 

computer, the generation and condensation of steam in a thermal power plant, the 

heating and cooling of buildings, cooking and the thermal control of a re-entering 

spacecraft. Figure 1.2 shows some examples of situations in which convection is 

important. 

 

Figure 1.2 Some situations that involve convection (Oosthuizen and Naylor, 1999). 

 

Convection can be classified into two basic processes, either natural (or free) 

or forced convection. In the case of forced convection, the fluid motion is caused by 

some external means such as fan or pump (Oosthuizen and Naylor, 1999). In the case 

of free convection, the flow is generated by the body forces that occur as a result of 

the density changes arising from the temperature changes in the flow field. These 

body forces are actually generated by pressure gradients imposed on the whole fluid. 

The most common source of this imposed pressure field is gravity and the body 

forces in this case are usually termed buoyancy forces. Another source of imposed 
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pressure gradients which can cause free convection flow are the centrifugal forces 

which arise when there is an overall rotary motion such that exists in a rotating 

machine. In this thesis we consider only buoyancy forces. 

  

In all flows involving heat transfer, the changes of temperature will occur and 

there exist the buoyancy forces arising from the gravitational field. The term “forced 

convection” is only applied to flows in which the effects of these buoyancy forces 

are negligible. In some flows in which a forced velocity exists, the effects of these 

buoyancy forces, will, however, not be negligible and such flows are termed 

combined- or mixed- free and forced convection flows. The various types of 

convection are illustrated in Figure 1.3. Finally, it is worth mentioning that 

convection is also classified as external and internal, depending on whether the fluid 

is forced to flow over a surface or in a pipe (Çengel, 2007). In this study, our concern 

is only on external convection. 

 

Figure 1.3 Forced, free and combined (mixed) convection (Oosthuizen and 
Naylor, 1999) 
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1.1.2 Viscous Fluid, Nanofluid and Porous Medium 

1.1.2 (a) Viscous Fluid 

 

The viscosity of a fluid is a measure of the resistance of a fluid deformed by 

shear stress and is one of the most important natures of fluid (Tanaka et al, 2012). 

Fluid flow can be classified as viscous or inviscid depending on the fluid idealization 

in terms of the presence of viscosity. Viscous fluids or real fluids are those, which 

have viscosity, whereas that having no viscosity is called inviscid fluid (ideal fluid). 

In reality, there is no fluid with zero viscosity, and thus all fluid flows involve 

viscous effects to some degree. Internal friction plays a vital role in viscous fluids 

during the motion of the fluid and viscous fluids are further classified into two 

categories (1) Newtonian fluids (2) Non- Newtonian fluids. A fluid that obeys the 

Newton’s law of viscosity i.e. shear stress increases linearly with strain rate 

(
du

dy
  ;   is constant dynamic viscosity of the fluid) is called a Newtonian fluid 

(Tanaka et al, 2012). Air, water, mercury are some of the examples of Newtonian 

fluids. In contrast, a fluid whose shear - strain rate relationship is not described with 

the Newton’s law of viscosity is called a non-Newtonian fluid. Many important 

industrial fluids are non-Newtonian in their flow characteristics. These include 

paints, coal tar, polymers, lubricants, plastics, printer ink and molecular materials etc.  

 

1.1.2 (b) Nanofluid 

 

Nanofluids can be defined as the dilution of nanometer-sized particles 

(smaller than 100nm) in a fluid (Das et al., 2007) as illustrated in Figure 1.4. The 

nanoparticles used in nanofluids are typically made of metals (Al, Cu) oxides (Al2O3, 
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TiO2 and CuO), carbides (SiC), nitrides (AlN, SiN) or nonmetals (graphite, carbon 

nanotubes) and the base fluid is usually a conductive fluid, such as water or ethylene 

glycol (Wang and Mujumdar, 2007). Other base fluids are oil and other lubricants, 

bio-fluids and polymer solutions.  

 

Figure 1.4 Physical model of nanofluid 

 

Choi (1995) made the first attempt to introduce this innovative fluid. The 

mixture of a base fluid and nanoparticles has unique physical and chemical 

properties increases the thermal conductivity and therefore substantially enhances the 

heat transfer characteristics of the nanofluid (Aminossadati, 2009). Since the size of 

nanoparticles are in nanometer-sized, besides behaving similar as liquid molecules, 

they have the ability to flow smoothly through the microchannels easily (Khanafer et 

al., 2003), hence, nanofluids will enhance the thermal conductivity and convective 

heat transfer coefficient compared to the base fluid only (Kakac and 

Pramuanjaroenkij, 2009). 

 

Nanoparticles 

Base fluid 

Nanolayer 
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There are a few of nanofluid models for example Khanafer et al. (2003), 

Buongiorno (2006), Tiwari and Das (2007), Nield and Kuznetsov (2009) and 

Kuznetsov (2010). However, in this study, we only consider the model suggested by 

Tiwari and Das (2007) since we are interested to see how the nanoparticle volume 

fraction and types of nanofluid affected the fluid flow and heat transfer enhancement. 

The model suggested by Tiwari and Das (2007) takes into account the effect of 

nanoparticle volume fraction while the other model didn’t consider this factor. This 

model is a model that uses a single-phase model of Maxwell-Garnet model for 

thermal conductivity and Brinkman (1952) model for viscosity. This model has been 

succesfully applied by many researchers (Oztop and Abu Nada, 2008; 

Muthtamilselvan et al, 2010). These models are restricted to spherical nanoparticles 

where it does not account for other shapes of nanoparticles. 

 

1.1.2 (c) Porous medium 

 

A porous medium (porous material) is a solid which often called frame or 

matrix permeated by an interconnected network of pores (voids) that filled with a 

fluid (liquid or gas). Usually both the solid matrix and the pore network (also known 

as the pore space) are assumed to be continuous, so as to form two interpenetrating 

continua such as in a sponge. Many natural substances such as rocks, soils, biological 

tissues (e.g. bones), and man made materials such as cements, foams and ceramics 

can be considered as porous medium (Oosthuizen and Naylor, 1999; Straughan, 

2008). Some of the well known porous medium can be seen in the Figures 1.5 (a)–(d) 
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Figure 1.5 Some examples of porous medium (a) sandstone (b) wood (Straughan, 
2008) (c) Liapor spheres (d) crushed limestone (Nield and Bejan, 2006) 

 

There are several forms of the momentum equation which is the porous 

medium analog of the Navier-Stokes equations (Nield and Bejan, 2006). In this 

thesis, we use Darcy’s law which states the volume-averaged velocity is proportion 

to the pressure gradient. In the Darcy model of flow through porous medium, it is 

assumed that the flow velocities are low and that the momentum changes and viscous 

forces in the fluid are consequently negligible compared to the drag force on the 

particles (Oosthuizen and Naylor, 1999).  

 

(a) (b) 

(c) (d) 
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1.1.3  Dimensionless Parameters 

1.1.3 (a) Prandtl number 

Prandtl number is a dimensionless parameter defined as (Cengel, 2007): 

momentum diffusivity
Pr

thermal diffusivity
pC

k




    

It is named after Ludwig Prandtl and this parameter describes the relative thickness 

of the velocity/hydrodynamics and the thermal boundary layers. Table 1.1 shows that 

the Prandtl numbers of fluids range from less than 0.01 for liquids metals to more 

than 100, 000 for heavy oils.  

Table 1.1 Prandtl number of different fluids (Cengel, 2007) 

 

  

The Prandtl numbers of gases are about 1, which indicates that both 

momentum and heat dissipate through the fluid at about the same rate. Heat diffuses 

very quickly in liquid metals ( Pr 1 ) and very slowly in oils ( Pr 1 ) relative to 

momentum. Consequently the thermal boundary layer is much thicker for liquid 

metals and much thinner for oils relative to the velocity boundary layer. 

 

1.1.3 (b) Nusselt number 

The Nusselt number is named after Wilhelm Nusselt, and it is viewed as the 

dimensionless convection heat transfer coefficient. The Nusselt number is defined as 

heat flux in convection

heat flux in conduction

hL h T
Nu

k k T L


  


 

Fluid Pr 
Liquid metals 0.004 – 0.030 
Gases 0.7 – 1.0 
Water 1.7 – 13.7 
Light organic fluids 5 – 50  
Oils 50 – 100, 000 
Glycerin 2000 – 100, 000  
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where h is heat transfer coefficient, k is the thermal conductivity of the fluid and L is 

the characteristic length. Heat transfer through fluid layer is by convection when the 

fluid involves some motion and by conduction when the fluid layer is motionless 

(Cengel, 2007). Therefore, the Nusselt number represents the enhancement of heat 

transfer through a fluid layer as a result of convection relative to conduction across 

the same fluid. The larger the Nusselt number, the more effective the convection. A 

Nusselt number of Nu = 1 for a fluid layer represents heat transfer across the layer by 

pure conduction (Cengel, 2007). 

 

1.1.3 (c) Reynolds number 

The transition from laminar to turbulent flow depends on the surface 

geometry, surface roughness, flow velocity, surface temperature and type of fluid, 

among other things (Cengel, 2007). In the 1880s, Osborn Reynolds discovered that 

the flow regime depends mainly on the ratio of the inertia forces to viscous forces in 

the fluid. This ratio is called the Reynolds number, which is a dimensionless 

quantity, and is expressed for external flow as (Cengel, 2007; Tanaka, 2012): 

Inertia forces
Re

Viscous forces

VL VL
 

    

where V is the upstream velocity (equivalent to the free-stream velocity for a flat 

plate), L is the characteristic length of the geometry, and     is the kinematic 

viscosity of the fluid. At large Reynolds numbers, the inertia forces, which are 

proportional to the density and the velocity of the fluid, are large relative to the 

viscous forces, and thus the viscous forces cannot prevent the random and rapid 

fluctuations of the fluid. At small or moderate Reynolds numbers, however, the 

viscous forces are large enough to suppress these fluctuations and keep the fluid “in 

line”. Thus the flow is turbulent in the first case and laminar in the second. 
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1.1.3 (d) Grashof Number 

The Grashof number Gr , is the dimensionless parameter represents the 

natural convection effects. The Grashof number is defined as 

  3

2

wg T T L
Gr





  

where g is the gravitational acceleration,   is coefficient of volume expansion, wT  is 

temperature of the surface, T  the temperature of the fluid sufficiently far from the 

surface, L  is characteristic length of the geometry and   is kinematic viscosity of 

the fluid. 

The flow regime in natural/free convection is governed by the dimensionless 

Grashof number, which represents the ratio of buoyancy force to the viscous force 

acting on the fluid. Grashof number provides the main criterion in determining 

whether the fluid flow is laminar or turbulent in natural convection.  

When the surface is subjected to external flow, the problem involves both 

natural and forced convection. The relative importance of each mode of heat transfer 

is determined by the value of the coefficient 2ReGr . Natural convection effects are 

negligible if 2Re 1Gr  , free convection dominates and the forced convection 

effects are negligible if 2Re 1Gr  , and both effects are significant and must be 

considered if 2Re 1Gr  . 

 

1.1.3 (e) Eckert number 

The Eckert number, Ec  is a dimensionless quantity useful in determining the 

relative importance in a heat transfer situation of the kinetic energy of a flow. It is the 
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ratio of the kinetic energy to the enthalpy (or the dynamic temperature to the 

temperature) driving force for heat transfer 

 
2

p w

U
Ec

C T T




 

where U is an appropriate fluid velocity (e.g., outside the boundary layer or along the 

centerline of a duct), pC  is the specific heat at constant pressure and wT T  is the 

driving force for heat transfer (e.g., wall temperature minus free stream temperature). 

For small Eckert number ( 1Ec ) the terms in the energy equation describing the 

effects of pressure changes, viscous dissipation, and body forces on the energy 

balance can be neglected and the equation reduces to a balance between conduction 

and convection.  

1.1.3 (f) Peclet number 

The combination of the Reynolds and Prandtl number gives another 

dimensionless group called the Peclet number (Janna, 2009). Peclet number 

represents the ratio of heat transfer by motion of a fluid to heat transfer by thermal 

conduction.  

Re Pr
UL

Pe
k

    

where u is fluid velocity, L is a characteristic dimension, and k is thermal diffusivity 

of the fluid. Re is Reynolds Number and Pr is Prandtl Number. Heat transported by 

the fluid per unit area is proportional to pC  where   is density and pC  is specific 
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heat capacity, while heat conducted per unit area is proportional to L  where  is 

thermal conductivity. Hence  

heat transported

heat conducted
p

p

C L L

L C k

  
  

    

1.1.3 (g) Rayleigh number 

Rayleigh number, Ra, is a dimensionless term used in the calculation of 

natural convection 

 
  3

Ra Gr Prwg T T L



    

where g is acceleration due to gravity,   is coefficient of thermal expansion of the 

fluid, wT T  is temperature difference, x is length,   is kinematic viscosity and k is 

thermal diffusivity of the fluid. Gr is the Grashof Number and Pr is the Prandtl 

Number. The magnitude of the Rayleigh number is also an indication as to whether 

the natural convection boundary layer is laminar or turbulent (Das et al, 2008).  

 

1.1.4 Boundary Layer Theory 

 

The Navier-Stokes equations are basic equations in fluid mechanics and 

analytical treatment of the Navier-Stokes equations presents great difficulties. The 

boundary layer concept, first introduced by Ludwig Prandtl in 1904, provides major 

simplifications of the Navier-Stokes equation. Ludwig Prandtl showed that the flow 

past a body can be divided into two regions as depicted in Figure 1.6 (Jiji, 2009): 
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(1) A very thin layer close to the body where the viscosity is important. This thin 

layer where friction effects cannot be ignored is called the boundary layer. 

(2) the remaining region outside this layer where the viscosity can be neglected. The 

flow in this region is considered inviscid (Çengel, 2007). 

 

Figure 1.6 The flow of an originally uniform fluid stream over a surface, the regions 
of viscous flow (next to the surface) and inviscid flow (away from the plate).  

 

According to Prandtl, it might be sufficient in an analysis of a flow field to 

consider action of viscosity within boundary layer, whereas the flow outside the 

boundary layer may be considered inviscid. Prandtl then derived the so-called 

boundary layer equations by simplifying the conservation equation using scale 

analysis applied to the terms in the conservation equations (Eckert and Drake, 1972). 

The boundary layer itself can be divided into two types (Cebeci, 2002) as shown in 

Figure 1.7 for a simple flow configuration over a flat surface: 

 

(1) velocity boundary layer which is also known as hydrodynamic or momentum 

boundary layer.  

 Interaction between the fluid and the surface will produce a region in the 

fluid where the x-component velocity u rises from zero at the surface (no 

slip condition) to an asymptotic value equal to U . This region of large 

inviscid 
flow region 

inviscid 
flow region 

viscous flow 
region 

x

y 
U 
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velocity gradient is called the velocity boundary layer. This layer is 

characterized by the velocity gradient and the shear stress (Cebeci, 2002). 

 

(2) thermal boundary layer or temperature boundary layer.  

 Due to temperature difference between the fluid and the surface leads to the 

formation of a region in the fluid where the temperature also varies rapidly 

with y near the surface, changing from temperature at the wall wT  to 

external flow value T . This region with large temperature gradient is called 

the thermal boundary layer. This thermal boundary layer is characterized by 

the temperature gradient and the heat transfer (Cebeci, 2002). 

 

 

Figure 1.7 Velocity and thermal/temperature boundary layers 

 

In boundary layer concept, under special conditions, certain terms in the 

governing equations are very small compare to others and therefore can be neglected. 

The boundary layer equations can be obtained by boundary layer approximations. 

The intuitive arguments of boundary layer approximation are: velocity component, 

T  

U  

wT  

x 

y 

  
T  

Velocity boundary layer 

Thermal  
boundary layer 

External flow -  inviscid 
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u v ; velocity gradients, , ,
u u v v

y x x y

   
   
  and temperature gradients, 

T T

y x

 
 
  

(Çengel, 2007). It is worth to highlight that we assume x  and y – axes respectively 

parallel and perpendicular to the surface. Therefore u and v are velocity components 

along and perpendicular to x and y axes respectively. In Chapter 2 of this thesis we 

will further discuss the scale analysis of boundary layer approximations which is a 

preferred procedure by many authors.  

 

1.1.5 Similarity solutions 

 

The system of equations for boundary layer flow problems is in the form 

partial differential equations (PDE) and often difficult to be solved (Ali and Hafez, 

2012). The term “similarity solution” was introduced in 1908 by Blasius to solve 

Prandtl’s boundary layer equations (Ishak, 2010) and nowadays these solutions have 

been extensively studied by a number of researchers such as Nazar and Pop (2006), 

Layek et al. (2007), Fang et al. (2009), Ahmad and Pop (2010), Ishak (2010), Ahmad 

et al. (2011), Arifin et al. (2011), Lok and Pop (2011), Lok et al. (2011), Ali and 

Hafez (2012), Hamad and Ferdows (2012), Uddin et al. (2012), Bachok et al. (2013), 

Mohamed et al. (2013) and many others.  

 

Similarity solutions to PDEs are solutions which depend on certain groupings 

of the independent variables, rather than on each variable separately. The idea of 

similarity solution is to simplify the governing equations by reducing the number of 

independent variables, using a coordinate transformation. The transformation is 

called similarity transformation and the independent variables x and y in a PDE is 

combined appropriately as a new independent variable ( , )x y  which is known as 
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“similarity variable.” By employing an appropriate similarity transformation, the 

partial differential equations are reduced to similarity equations in the form ordinary 

differential equations and are much easier to be solved. From the physical point of 

view, the meaning of similarity solutions is that the velocity and temperature profiles 

of the flow remains geometrically similar in each transversal section of the surface 

(Nazar and Pop, 2006). 

 

Similarity solutions of the boundary layer equations in fluid mechanics and 

heat transfer theory proved to be very useful in the interpretation of certain flow and 

heat transfer characteristics. Although, exact solutions represent highly specialized 

situations, they do give clues concerning the nature of more realistic behaviour. 

According to Weidman et al. (2008), a good understanding of the flow physics under 

consideration usually can be gained from the information of new problems that are 

using similarity solution. Moreover, when applying similarity results to specific 

engineering applications, the information can also provide the benchmarks against 

which numerical codes may be tested (Weidman et al. 2008). 

 

However, not all problems admit similarity solutions, since they depend on 

various factors, such as the surface geometries, boundary conditions, and the surface 

heating conditions. According to Wang (2011), similarity solutions exist for flows 

which show certain symmetries and group properties. In this study, we consider only 

the problems that admit similarity solutions.  
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1.2 Research Background 

 

The Navier-Stokes equations consist of a set of nonlinear partial differential 

equations with very few exact solutions. Similarity transformation renders the 

Navier-Stokes equations into a set of ordinary differential equations and retains the 

nonlinearity of the equations. Due to this, similarity solutions might demonstrate 

nonlinear phenomena such as non-existence and non-uniqueness (Wang, 2011). 

Dealing with mechanics of nonlinear fluids is a great challenge to physicists, 

engineers and mathematicians (Layek et al., 2007). According to Mishra and 

DebRoy (2005), multiple solutions exist for many complex problems in convective 

heat transfer due to highly non-linear problems. Further, as reported in a book by 

Schlichting (1979), the nonlinearity of the differential equations, variation of 

geometric or fluid mechanical parameters can lead to bifurcations in the solution and 

thus to multiple solutions.  

 

There are significant numbers of studies reporting on multiple solutions in 

boundary layer flow (Gelfgat and Bar-Yoseph, 2004). In this respect, we mention 

just the following papers by Ramachandran et al. (1988), Ma and Hui (1990), Aly et 

al. (2003), Gelfgat and Bar-Yoseph (2004), Liao (2005), Guedda (2006), Lu (2007), 

Weidman et al. (2008), Fang et al. (2009), Ishak et al. (2009), Yao (2009), Ahmad 

and Pop (2010), Ishak (2010), Ahmad et al. (2011), Arifin et al. (2011), Lok and Pop 

(2011), Lok et al. (2011), Turkyilmazoglu (2011), Rohni et al. (2011).  

 

The physical situation described in such situations shows that the studies on 

multiple similarity solutions are theoretically and practically important. An improved 
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understanding of multiple solutions in boundary layer flows and heat transfer and the 

applications of the knowledge on these solutions to new design techniques should 

provide substantial amendments in cost, reliability and performance of many fluid 

dynamics and heat transfer devices. 

 

1.3 Problem statement 

 

Similarity solutions are often used to take a first look at different problems 

encountered in Newtonian (viscous), porous media and non-Newtonian flows, just to 

name a few of direct engineering interest (Wang, 2011). Over the past several 

decades a number of studies have shown the existence of multiple solutions of 

boundary layer flows driven by moving surfaces or by buoyancy forces (free and 

mixed convection boundary layers).  

  

The multiplicity of solutions in fluid dynamics and heat transfer is important 

to be able to be computed since solutions arising from bifurcations often interact with 

one another producing otherwise inexplicable phenomena (Cliffe et al., 2000). The 

transition process provides valuable information of flow evolution and transition to 

multiple solutions acts as a starting point to turbulence or chaos (Gelfgat and Bar-

Yoseph, 2004). In heat transfer engineering, the flow multiplicity may significantly 

affect the structure and quality of the final product in material processing (Mishra 

and DebRoy, 2005). An improved understanding of the development of flow states 

multiplicity can stimulate innovations and lead to enhancement of performance and 

reliability as well as reducing the costs of various practical flow problems such as 

rotating machines and crystal growth processes (Gelfgat and Bar-Yoseph, 2004).  



 19

 

Nowadays, it is widely understood that the computational modelling of 

bifurcation as well as multiplicity of fluid flows are important, but the computation 

of all possible multiple solutions, still remain a challenge (Gelfgat and Bar-Yoseph, 

2004). In real situation, multiple solutions that may exist in boundary layer flow are 

difficult to visualize. This can cause researchers fail to notice the multiple solutions 

that might exist within the flows, which is an important aspect of fluid mechanics 

(Yao, 2009). Therefore, a mathematical computation and analysis are required to 

determine the existence of multiple solutions. The significance of computational 

modelling of bifurcation as well as multiplicity of fluid flows as highlighted above 

leads us to the objective of the present study as given in the following section. 

 

1.4 Objectives and Scope 

 

The objectives of this study are to construct mathematical model, to carry out 

mathematical formulations and analyses, to obtain the numerical results and to 

examine the occurrence of multiple similarity solutions in convection boundary layer 

flows for the following problems: 

 

(1) Steady mixed convection boundary layer flow over an exponentially shrinking 

vertical sheet with suction.  

(2) Steady free convection boundary layer flow over a non-linearly horizontal 

shrinking sheet with suction and viscous dissipation: Cortell’s model. 

(3) Unsteady free convection boundary layer flow over a horizontal shrinking sheet 

with suction in nanofluids. 
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(4) Unsteady mixed convection boundary layer flow with suction and temperature 

slip effects near the stagnation-point on a vertical permeable surface embedded 

in a porous medium. 

(5) Steady mixed convection boundary layer flow along a vertical cylinder 

embedded in a porous medium filled by a nanofluid. 

 

The scope of this study is restricted to two-dimensional, steady or unsteady 

incompressible laminar boundary layer flows, towards vertical or horizontal 

shrinking sheets with suction in viscous fluids or nanofluid, vertical plate near 

stagnation point in porous medium and vertical cylinder in porous medium filled by 

nanofluid. The governing equations for each problem considered are transformed to 

similarity equations using similarity transformation. The resulting similarity 

equations are then solved numerically via shooting technique. All of the problems 

considered in this thesis are restricted to two-dimensional flows for the purpose of 

simplicity. However, three-dimensional flows are also can be done in future research 

as suggested in the last chapter of this thesis. 

 

1.5 Research Methodology 

 

The studies in this thesis undertake the following research methodology: 

1.5.1 Problem Formulation 

The full boundary layer equations are derived and a mathematical model of 

every problem mentioned in Section 1.4 is developed.  
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1.5.2 Mathematical Analysis 

An appropriate similarity transformation cited in the literature is employed 

and the governing equations in the form of partial differential equations are 

transformed into ordinary differential equations which is easier to be solved.   

1.5.3 Numerical Computation 

The resulting ordinary differential equations are nonlinear and in a system of 

boundary value problem. The equations are then solved numerically using a 

shooting method implemented in Maple program.  

 

1.6 Shooting Method and Maple Implementation 

 

The system of nonlinear ordinary differential equations that governs the 

boundary layer flows in this thesis is the system of two-point boundary value 

problem. It is known that a number of methods exist for solving boundary value 

problem including the shooting, collocation and finite difference methods. Among 

these, finite difference and the shooting methods are commonly the only competitive 

methods judging from the viewpoint of efficiency. However, shooting method has 

many advantages such as easy to programme in a general form, less storage required, 

suitability for automatic procedures and it also can reveal more detailed flow 

structures (Yao, 2009).  

 

It has been reported that, shooting method has been successfully used by 

previous researchers to solve boundary layer problems involving multiple solutions. 

Examples may be found in Lu (2007), Fang et al. (2009), Bhattacharyya (2011), 

Bhattacharrya and Vajravelu (2011) and many others. In shooting technique, the 
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systems of boundary value problem (BVP) are first converted to initial value 

problem (IVP). This well-known technique is an iterative algorithm which attempts 

to identify appropriate initial conditions for a related IVP that provides the solution 

to the original BVP. The details of shooting method can be found in the book for 

example by Na (1979) and Jaluria and Torrance (2003). Nowadays, there are 

available package of shooting technique with Maple implementation, shoot (Meade 

et al., 1996) which has been successfully used by many researchers, such as Ahmad 

and Pop (2010), Ali et al. (2011), Remeli et al. (2011), Ariffin et al. (2011), Ahmad 

et al. (2011), Mat et al. (2012), Mohamed et al. (2013) to solve problems involving 

multiple similarity solutions.  

 

All problems in this thesis have been solved via the shooting technique with 

Maple implementation, shoot. In this package, they used shooting technique 

involving fourth order Runge – Kutta method (RK4) to solve initial value problem 

and Newton Raphson method for correction scheme. The details of shooting method 

with Maple implementation shoot, has been described in paper by Meade et al. 

(1996). A general formula of RK4 and Newton Raphson method are also provided in 

Appendix B in this thesis. Basically, the idea of shooting method is to reformulate 

the BVP to be IVP. This method involves the following steps: 

 

(1) The boundary value problem subject to the related boundary conditions is 

converted into an equivalent initial value problem. 

(2) Using trial and error or some scientific approach, a suitable guess values for the 

initial values are made so that the calculated values fulfill the actual boundary 

conditions. 
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(3) If these boundary conditions are not satisfied to the desired accuracy, the 

process is repeated with a new set of initial conditions until the desired accuracy 

is achieved or an iteration limit is reached (Meade et al., 1996). 

 

This procedure for specific problem considered in this thesis is given in details in 

each chapter of the problem and the Maple program used to solve one of the 

problems considered is given in Appendix D. 

 

1.7 Thesis Organization 

 

The multiplicity of similarity solutions of boundary layer flows in five 

different convection situations are presented in this thesis. It comprises nine chapters 

where Chapter 1 is the introduction chapter which gives a picture and an idea of the 

whole thesis. The literature reviews related to the problems considered in this thesis 

are discussed in Chapter 2. Then, Chapter 3 is the derivation of boundary layer 

equations related to the problems considered in this thesis. Further, Chapter 4 to 

Chapter 8, respectively, explained in detail each of the five problems considered and 

finally, this thesis ends with Chapter 9 that is the conclusion part. 

 

In Chapter 1, a basic concept of convection, viscous fluid, nanofluid, porous 

medium, boundary layer theory, dimensionless numbers and similarity solutions are 

described in Section 1.1. A brief description about convection itself and the types of 

convection i.e. free, forced and mixed convection are discussed. Subtopic on viscous 

fluid, nanofluid, porous medium and dimensionless parameters are also included in 

Section 1.1. As the present study is on similarity solutions in boundary layer, 
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therefore the boundary layer theory and similarity solutions are also described. 

Research background related to multiplicity of solutions in boundary layer is 

highlighted in Section 1.2 and the problem statement is stated in Section 1.3. 

Realizing the importance of multiplicity of solutions in boundary layer flow and heat 

transfer leads to the objectives and scope of this study which is listed in Section 1.4. 

Basically, the main objective of this study is to solve five separate boundary layer 

problems that admit similarity solutions. The research methodology used to solve the 

problems is discussed in Section 1.6. All problems considered in this thesis are 

solved numerically using shooting technique with the aid of Maple software, 

therefore a specific section on shooting method and Maple implementation, shoot 

is provided in Section 1.7. Finally, thesis outline which gives the overview of thesis 

is provided in this section 1.8 which is the last section of Chapter 1.  

 

We then discussed the literature reviews of the previous and related studies to 

the problem considered in this thesis in Chapter 2. This Chapter has been divided 

into six subsections where the first section is an introduction to the Chapter. In 

Section 2.2, 2.3, 2.4, 2.5 and 2.6, we discussed literature reviews related to the first, 

second, third, forth and fifth problem, respectively. 

 

The derivations of boundary layer equations related to the problems 

considered are given in Chapter 3. The Boussinesq and boundary layer 

approximations are highlighted in this chapter. Chapter 3 consists of four subsections 

including introduction to chapter. In this chapter, we derive the general boundary 

layer equations for two dimensional incompressible viscous flows over vertical plate, 

two dimensional incompressible flows along vertical plate in porous media and two 
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