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FABRIKASI DAN PENCIRIAN ALOI PIUTER BEBAS PLUMBUM 

 

ABSTRAK 

 

Aloi piuter bebas plumbum dengan pelbagai komposisi aloi binari Sn-(1-3%wt)Cu, 

Sn-(1-3%wt)Al dan aloi ternari Sn-(1-3%wt)Cu-(5-7%wt)Sb disediakan melalui 

proses pencampuran bahan mentah,peleburan, penghomogenan dan penuangan ke 

dalam acuan keluli lembut. Fasa yang hadir bagi sampel aloi dicirikan melalui 

analisis pembelaun sinar-X (XRD) dan sifat terma pula melalui kalorimeter imbasan 

kebezaan (DSC). Mikrostruktur aloi dikaji menggunakan mikroskop optik (OM), 

mikroskop imbasan elektron pancaran medan (FESEM) dan analisis sebaran tenaga 

sinar-X (EDX). Sifat mekanikal dan fizikal aloi piuter bebas plumbum dicirikan 

melalui ujian ketumpatan, kekerasan, tegangan, kebolehtuangan dan pemerhatian 

terhadap permukaan aloi terhasil. Perbandingan dilakukan menggunakan aloi piuter 

komersial (CPA). Analisis XRD, FESEM dan EDX terhadap aloi mendapati 

pembentukan fasa antara logam mempengaruhi sifat kekerasan aloi berasaskan Sn. 

Kewujudan kompaun antara logam Cu6Sn5 telah meningkatkan kekerasan aloi piuter 

S-Cu. Selain itu, pembentukan kompaun fasa antara logam Cu6Sb5 dan SbSn telah 

meningkatkan kekerasan aloi piuter Sn-Cu-Sb. Walaubagaimanapun, kewujudan fasa 

antara logam ini telah merosotkan pemanjangan aloi piuter. Analisis DSC, FESEM 

dan EDX terhadap aloi piuter Sn-Al telah menunjukkan pembentukan fasa eutektik 

struktur Al+βSn membawa peningkatan kekerasan dan kekuatan aloi tetapi secara 

telah merendahkan sifat kemulurannya. Kandungan Sn yang tinggi di dalam aloi 

pewter bebas plumbum meningkatkan jarak kebendaliran sementara penambahan Cu 

dan Sb telah meninggikan kecerahan aloi terhasil. Aloi piuter bebas plumbum 92Sn-

3Cu-5Sb memberikan nilai kekerasan dan kekuatan paling tinggi berbanding 
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komposisi aloi piuter bebas plumbum yang lain. Aloi ini lebih sesuai untuk 

penghasilan objek bersaiz besar yang memerlukan kekuatan dan kekerasan yang 

tinggi untuk menampung beban ketika digunakan. Secara normal, objek kecil 

memerlukan sifat kebolehtuangan yang tinggi bagi menghasilkan bentuk kompleks. 

Oleh sebab itu, aloi 99Sn-1Cu dan 99Sn-1Al didapati lebih sesuai bagi penghasilan 

objek kecil kerana sifat kebolehtuangannya yang tinggi berbanding aloi lain. 
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FABRICATION AND CHARACTERIZATION OF LEAD FREE PEWTER 

ALLOY 

 
ABSTACT 

  
 

Lead free pewter alloys with various composition Sn-(1-3%wt)Cu and Sn-(1-

3%wt)Al binary alloys and Sn-(1-3%wt)Cu-(5-7%wt)Sb ternary alloys were 

prepared by mixing raw materials, melting, homogenizing, and casting in a mild steel 

die. The alloy samples were characterized for phase identification via X-ray 

diffraction (XRD) analysis, and thermal behaviour via differential scanning 

calorimetry (DSC). Microstructures of the alloys were studied by using optical 

microscope (OM), field emission scanning electron microscopy (FESEM) and 

energy dispersive X-ray (EDX) analysis. The mechanical and physical properties of 

lead free pewter alloys were characterized via density test, hardness test, tensile test, 

castability test and surface appearance observation. A comparison was made by 

using commercial pewter alloy (CPA). XRD, FESEM, and EDX analysis of the 

alloys indicated the formation of intermetallic phase which may be responsible for 

the required hardening of Sn-based alloys. The intermetallic compound of Cu6Sn5 

found in Sn-Cu pewter alloys resulted in higher hardness. On the other hand, 

formation of intermetallic compound of Cu6Sb5 and SbSn increase the hardness of 

Sn-Cu-Sb pewter alloys. However, these intermetallic compounds were found to 

deteriorate elongation of pewter alloys. DSC, FESEM, and EDX analysis of Sn-Al 

pewter alloys showed the formation of eutectic structure of Al+βSn led to an increase 

in hardness and strength of these alloys but deteriorates the ductility. A higher 

amount of Sn in lead free pewter alloys tends to increase the fluidity length while the 

addition of Cu and Sb in alloy increases its brightness. The lead free pewter alloy of 
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92Sn-3Cu-5Sb has higher hardness and strength than others. Hence, this alloy is 

more suitable to produce large objects that require higher strength and hardness to 

sustain loading during handling and use. Normally, small object requires high 

castability to produce a complex shape. Thus, 99Sn-1Cu and 99Sn-1Al alloys are 

more suitable to produce small objects since they have a higher castability than that 

of other alloys.  
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Introduction 

Tin is the primary element in pewter. According to the yearbook of 

Malaysian Chamber of Mines (2006) and Habashi (1997), the largest tin mines are 

mostly in Asia. The most important ore-supplying countries in the Asia are 

Indonesia, Malaysia and followed by China and only Indonesia and China after about 

1994. Currently, the Malaysian Smelting Corporation (MSC) group is one of the 

largest integrated producers of tin metal and tin-based products in the world.  In 

ASEAN countries for instance, the major consumption of tin metal is for producing 

tin solders, tin cans and pewter. 

Pewter is an alloy containing over 90 per cent tin and it is widely used for 

utensils, such as tankards and goblets, or decorative items like plates and 

candlesticks or costume jewellery. Pewter is known to have been used extensively in 

Roman times and it is reported that Pliny, writing in the first century AD, stated that 

a tin vessel improved the taste of wine. Originally, the term of ‘pewter’ was applied 

to any metal with a high proportion of tin, especially a tin-lead alloy.  

The history of pewter can be traced, especially from ecclesiastical artefacts, 

till the fourteenth century when pewter began to replace pottery and wooden items 

for tableware and other household purpose. To protect the craft secrets and to 

maintain high production standards, the Worshipful Company of Pewterers was 

established in London in 1348. In the eighteenth, century a new version of pewter 
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known as Britannia metal was developed. This Britannia metal had a bright finish 

and contained a small amount of antimony but no lead. The behaviour property of 

Britannia metal is harder than common pewter and since it contained no lead it did 

not tarnish with age (Barry and Thwaites, 1983). 

A European pewter sheet would contain 92% tin, 2% copper, and 6% 

antimony. Asian pewter, produced mostly in Malaysia, Singapore, and Thailand, 

contains a higher percentage of tin, usually 97.5% tin, 1% copper, and 1.5% 

antimony. This makes the alloy slightly softer (Hull, 1992). 

1.2 Problem Statement 

Lead is a non-essential element that occurs naturally in the environment. 

Many of its physical and chemical properties such as softness, malleability, poor 

conductibility, ductility, and resistance to corrosion, have favoured that man uses 

lead and lead compounds since ancient times for a great variety of applications 

(García-Lestón et al., 2010). 

In the past, pewter alloys were mixed with varying amounts of lead, but now 

lead content in pewter is strictly limited, principally on health grounds. Health 

hazards of lead have led modern pewter to contain little or no lead, which has been 

replaced with antimony. Old pewters with higher lead content are tarnish faster, 

heavier, and oxidation gives them a darker silver-grey colour which is usually 

undesirable (Young and Shane, 1985). According to Lewis et al., (1960), although 

until recent times the usual hardener for tin was lead, the alloy so produced has the 

disadvantage that it rather rapidly loses its brilliant luster and goes grey or black and 

it also suffers from being too susceptible to corrosion.   
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Besides the issue of toxicity, lead containing pewter alloys which are used for 

solder would cause reliability problems. According to Shen et al., (2006), 

considerations on the environment protection and health hazards of Sn-Pb solders 

used in electronic packaging have promoted the development for lead-free solder 

alternative in electronic industry. The present of lead in solder is considered world 

wide to be very dangerous for the environment due to the huge number of printed 

circuits and electronic devices needing to be recycled for dumps (Tao, 2008). 

Since the use of lead has been proven a major hazard to the environment and 

human health, the only possible solution is the elimination of lead from the existing 

composition of pewter alloy. As such, not only is it important to develop a lead free 

pewter alloy, but also to determine the effect of absence of lead in future pewter 

alloy compositions. 

Modern pewter is composed of about 92 per cent tin with normally about 6 to 7 

per cent antimony and 1 to 2 per cent copper (Barry and Thwaites, 1983).  

Table 1 shows the compositions of the chemical composition of pewter alloys 

covered in BS 5140. In commercial alloys, some bismuth and silver or other 

elements may also be present. 

     Table 1. 1: Chemical composition of pewter (BS 5140, 1973) 

Tin Antimony Copper Lead Cadmium 

  min.(%) max.(%) min.(%) max.(%) max.(%) max.(%) 

Balance but not less than 91% 5.0 7.0 1.0 2.5 0.5 0.05 

Balance but not less than 93% 3.0 5.0 1.0 2.5 0.5 0.05 
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1.3 Objective 

In this work, an attempt was made to develop and characterize properties of 

lead free pewter alloys with various compositions in order to meet their high 

performance requirements. The objectives can be briefed as the following:  

• Fabrication of lead free pewter alloys with various compositions of Sn-

(1-3%wt)Cu, Sn-(1-3%wt)Al, and Sn-(1-3%wt)Cu-(5-7%wt)Sb in 

order to get the appropriate properties that can be applicable in various 

applications by using stir casting route.  

•  Characterization of the morphology, microstructures, physical 

properties and mechanical properties of lead free pewter alloys with 

different compositions of Sn-(1-3%wt)Cu, Sn-(1-3%wt)Al, and Sn-(1-

3%wt)Cu-(5-7%wt)Sb. 

• To compare results against that of commercial pewter alloy.  

1.4 Scope of Research 

In this project, the commercial pewter alloys were characterized by using x-

ray fluorescence (XRF) analysis technique to determine their compositions. Melting 

temperature of commercial pewter alloys was measured by using differential 

scanning calorimetry (DSC). Hardness of commercial pewter alloys was determined 

by using Vickers microhardness tester. Castability test was conducted to observe 

fluidity of pewter alloys. Surface appearance of commercial pewter alloys was 

observed as well.  

Lead free pewter alloy samples were fabricated with various ratios of raw 

materials, Sn-(1-3%wt)Cu, Sn-(1-3%wt)Al, and Sn-(1-3%wt)Cu-(1-7%wt)Sb, in 
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order to get the desired properties that can be applicable in various applications by 

using stir casting route. These compositions were chosen based on BS 5140 pewter 

alloys as shown in Table 1.1.  

The solid lead free pewter alloy samples were characterized through X-rays 

diffraction (XRD) for phase identification, the melting temperature of binary and 

ternary lead free pewter alloys was measured by using differential scanning 

calorimetry (DSC), optical micrograph (OM) for morphology, and scanning electron 

microscope (SEM) for morphology and microstructure analysis. The mechanical and 

physical properties of lead free pewter alloys were evaluated. Density of each lead 

free pewter alloy samples was measured by using digital density meter. Hardness of 

lead free pewter alloys was determined by using Vickers microhardness tester, 

tensile test was conducted to determine strength, modulus, and ductile of lead free 

pewter alloys. Castability test was done to observe fluidity of lead free pewter alloys, 

and surface appearance was observed.  

The properties of lead free pewter alloys were then compared against the 

properties of commercial pewter alloys. 
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CHAPTER TWO  

LITERATURE REVIEW 

 
 
 

2.1 Introduction 

In this chapter, pewter alloy is introduced with its history and development. 

The review of fundamental of metals and alloys will be discussed, including their 

physical and mechanical properties. Then, the strengthening mechanism in metal 

alloys and phase diagram of pewter alloy are also explained.  Lastly, the applications 

of pewter alloys will also be described.   

2.2 Introduction to Pewter Alloys 

Pewter is a malleable metal alloy, traditionally 85–99% tin, with the 

remainder consisting of copper, antimony, and lead. Copper and antimony act as 

hardeners while lead is common in the lower grades of pewter, which have a bluish 

tint (Campbell, 2006). Pewter contained lead will become very dark with age. While 

this appeals to some, many others prefer the bright appearance attainable with 

modern pewter, in which tin is mixed with antimony and copper (Hedges, 1960).  

2.2.1 History and Previous Work of Pewter Alloys  

Pewter is known to have been used extensively in Roman times. It is reported 

that Pliny, writing in the first century AD, stated that a tin vessel improved the taste 

of wine. Originally, the term of ‘pewter’ was applied to any metal with a high 

proportion of tin, particularly a tin-lead alloy (Barry and Thwaites, 1983).   

Before fifteen century, pewter was made by mixing of tin and lead. The idea 

of mixing these mixtures was combining the brightness, lightness, and rigidity of tin 
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with the greater toughness and malleability of lead in order to obtain excellent and 

desirable properties of pewter alloys that can be applicable in vessels of Roman, dish, 

bowl, candlestick, communion cup, spice box, and so on (Bell, 2008). 

Most of the thirty-six pewter items were found to have been made from high 

quality tin-rich alloys with low lead content, hardened with a small amount (0.5–

3.0%) of copper; these were thought to be from the later part of 13th to 16th. Three 

items, one with the highest copper content of all the alloys, were thought to be from 

the earlier part of 13th to 16th. Five items with up to 2% of copper hardener but with 

lead levels up to 26.5% were thought to be of English 13th-16th century pewter 

flatware (Brownsword and Pitt, 1984). 

From 1780 to1880, pewter objects played an important role in everyday life 

at virtually every level of society. Millions upon millions of items of pewter were 

fabricated for eating, drinking, lighting, and other uses until the second half of the 

nineteenth century.  

Pewter was made in different grades, some of which, like Roman pewter, had 

an unhealthy lead content. Consumers in the eighteenth and early nineteenth century 

observed London pewter as the best in the world (Witkowski, 1994).  

2.2.2 Lead Free Pewter Alloys 

 In Greece, tin-copper-lead bronze alloys were quite common during the 

Archaic, Classical and Hellenistic periods. The lead concentrations varied, with the 

Hellenistic average lead content being over 13%, although in specific up to 30% lead 

has been found. Tin-lead solder alloy is used for sealing and joining metals. The 

different uses of the alloy define the composition, which is ranges from 38 to 98% 

lead. Another type of tin-lead alloy is pewter. The variable composition of tin-lead 
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pewter alloy was influenced, among other factors, by the relative prices and the 

availability of the two metals and also by the usual practice of remelting old pieces.  

Modern pewters must contain at least 90% tin and be alloyed with copper, 

antimony, or bismuth to be considered a pewter. Lead is commonly no longer 

permitted to be an alloying element. Older pewters with higher lead content are 

heavier, tarnish faster, and oxidation gives them a darker silver-grey color. A typical 

European casting alloy contained 94% tin, 1% copper, and 5% antimony. A 

European pewter sheet would contain 92% tin, 2% copper, and 6% antimony. Asian 

pewter, produced mostly in Malaysia, Singapore, and Thailand, contains a higher 

percentage of tin, usually 97.5% tin, 1% copper, and 1.5% antimony. This makes the 

alloy slightly softer (Hull, 2008). 

2.2.3 Raw Materials of Pewter and Their Properties 

In this project, pewter is made from mixtures of tin with copper, tin with copper and 

antimony, and tin with aluminium. Thus raw materials of pewter are tin, copper, 

antimony and aluminium.  

Tin is one of the most important constituents of low-melting nonferrous alloys. 

As a metal its most important characteristics are low melting point, the ability to 

form alloys with most other metals, non-toxicity and resistance to corrosion, allied 

with good appearance. In its applications as a metal, tin is almost always used in 

partnership with other metals, either as a coating or alloying element. This is because 

its intrinsic softness prevents it from being used as a structural material unless 

strengthened by the addition of alloying elements (Barry and Thwaites, 1983).  

Antimony is a silvery, lustrous gray metal. It is usually used as a coating for 

decorative and protective coating on steel. Excellent fusibility of antimony ensures 
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that it combines readily with other metals to produce alloys. It is useful in alloys 

because it improves the alloy capacity to reproduce details and it hardens soft metals 

such as tin. Furthermore, it provides hardness and expansion on solidification. As 

reported by Suraski and Seelig (2001), antimony also has been known to improve 

thermal fatigue properties of an alloy. Furthermore, the addition of antimony as a 

dopant in the Sn-Ag-Cu alloys reduces the melting temperature and refines the grain 

structure marginally. In pewter tableware, commonly used in the preparation of food, 

Sb often is found at levels of 7% to 9%. In addition, the Sb-doped alloy will not 

leach Ag or Cu into ground water (Suraski and Seelig, 2001). 

Copper is a ductile metal, with very high thermal and electrical conductivity. 

Pure copper is rather soft and malleable, and a freshly exposed surface has a reddish-

orange colour (Smith and Hashemi, 2003). About 98% of all copper is used as the 

metal, taking advantage of distinctive physical properties being malleable and 

ductile, a good conductor of both heat and electricity, and being resistant to 

corrosion. Copper is often too soft for its applications, so it is incorporated in 

numerous alloys. For example, brass is a copper-zinc alloy, and bronze is a copper-

tin alloy (Gupta, 2009). 

Aluminum is a soft, durable, lightweight, ductile and malleable metal with 

appearance ranging from silvery to dull gray, depending on the surface roughness. 

The characteristics of its alloys relatively low density (2.7 g/cm3 as compared to 7.9 

g/cm3 for steel), high electrical and thermal conductivities, and a resistance to 

corrosion in some common environments, including the ambient atmosphere and its 

melting temperature of 660 Co. The mechanical strength of aluminum is enhanced by 

cold work and alloying, however, both process tend to diminish resistance to 

corrosion (Callister, 2007). The development of applications for aluminum and its 
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alloys, as well as the sustained rise in consumption can be attributed to several of its 

properties which are decisive criteria in user’s choice of metals, especially in the 

fields of transport, building, electrical engineering and packaging (Vargel, 2004). 

2.2.4  Mechanical and Physical Properties of Pewter 

Normally, the products of solely Sn are too soft for most practical purposes, 

so the metal is hardened by alloying with small amount of other metals (Lewis, 

1960). Pewter is an alloy consisting of primarily Sn with small amounts of Cu, Sn, 

and occasionally Bi. It traditionally consists between 85 and 99 percent Sn, with the 

remainder consisting of copper and antimony, acting as hardeners. However, in the 

past, pewter alloys were adulterated with varying amounts of Pb, but now Pb content 

in pewter is strictly limited, principally on health grounds (Young and Shane, 1985). 

According to Witkowski (1994), pewter is an alloy of tin. Since tin is a soft, 

brittle substance, varying proportions of lead, copper, antimony and bismuth are added to 

improve durability and malleability. Pewter has a lower melting point than such harder 

metals as brass, bronze, silver, and gold. Easily cut and soldered, it resists oxidation and 

the action of almost all acids.  

According to Jacobs and Kildulf (1997); physically, if not identical, pewter is a 

bright, shiny alloy that is very similar in appearance to silver. Like silver, pewter will 

also tarnish to a dull gray appearance over time if left untreated. Pewter is a very 

malleable alloy, being soft enough to carve with hand tools, and it also takes good 

impressions from punches or presses. Because of this inherent softness and 

malleability, however, pewter cannot be used to make tools itself. Some types of 

pewter pieces, such as candlesticks, would be turned on a metal lathe. Pewter has a 
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low melting point of around 225-240°C (437-464°F) depending on the exact mixture 

of metals. Duplication by casting will give excellent results. 

Pewter alloys are used mostly because of their ease of fabrication into the 

required shape and little importance on the final strength properties. Since tin alloys, 

including pewter, work-softened during rolling or spinning, cast pewterware is 

mechanically stronger than items fabricated from sheet. However, if about 2 per cent 

bismuth or 0.1 per cent silver is present in the tin-antimony-copper alloy and the 

fabricated material is heat-treated at about 150 oC, it develops a hardness value 

somewhat similar to that of cast pewter (Table 2.1). 

Table 2. 1: Hardness of pewter alloys after working and heat treatment (Barry and 
Thwaites, 1983) 

Nominal composition (%) Vickers Hardness Value (HV) 

Sn Sb Cu Others As cast Rolled 90% Rolled + 1 h/200oC 

Bal. 6.0 1.5 --- 23 13 19 

Bal. 6.0 1.5 0.1 Ag 26 13 24 

Bal. 6.0 1.5 2.0 Bi 30 15 28 

 
 
2.3 Fundamental of Metal Alloys   

2.3.1 Definition of alloys and the mode of alloying 

When two or more metals are dissolved together in a solid solution, the new 

material is known as an alloy (Brandt and Warner, 2005).  

In many applicationss, pure metals with a single component are unable to fulfill 

certain requirements. Thus, this statement is particularly valid considering the 

dynamic development of recent years and the consequent changes.  In many cases 

special alloys are needed to match the increasing requirements special materials. The 
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purpose of alloying is to establish such definite physical, mechanical, chemical or 

special properties that cannot be achieved with pure metals. By melting the 

components in liquid state, the production of alloys is most frequently achieved. 

Since most metals dissolve each other without limitations in the liquid state, melting 

method is the most obvious and simplest way of alloying. Thus, in the simplest way 

by melting, the homogeneous structure and important from the point of view of 

alloys can be ensured (Tisza, 2001). 

2.3.2 Phase Diagram of Metal Alloys 

A region that differs in composition and/or structure from another region is called a 

phase in a material. Graphical representations of what phases are present in materials 

system at various temperatures, pressures, and compositions are phase diagrams. 

Mostly, phase diagrams are constructed by using equilibrium conditions and are used 

by engineers and scientists to understand and predict many aspects of the behaviour 

of materials.  

The important information obtained from phase diagram is (Smith, 1986): 

1. Showing phases at different compositions and temperatures under slow 

cooling (equilibrium) conditions 

2. Indication of the equilibrium solid solubility of one element or compound 

in another 

3.  Indication of the temperature at which an alloy cooled under equilibrium 

conditions starts to solidify and the temperature range over which 

solidification occurs 

4. Indication of the temperature at which different phases start to melt 
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2.3.3. Phase Diagram of Pewter Alloys  

a. Binary Sn-Cu Alloy System 

Binary alloy is a mixture of two metals. Figure 2.1 shows the binary phase diagram 

of the Sn-Cu system. According to this phase diagram, the temperature increases 

with increasing the percentage of Cu and decreasing the percentage of Sn. The 

melting temperature of pure Sn is 232 oC and the melting temperature of Sn-(1-

3%Cu) is about 290 oC. Thus, to produce binary pewter alloys of Sn-(1-3%Cu), the 

temperature of 300 oC is sufficient to melt this pewter alloy. According to Barry and 

Thwaites, (1983), the intermetallic compound of Cu6Sn5 inevitably forms when 

liquid Sn is brought to contact with Cu. Thus, the intermetallic compound of Cu6Sn5 

is expected to be present in this research project.  

 
Figure 2. 1: Sn-Cu binary alloy phase diagram (Saunders and Miodownik, 1990) 

97Sn-3Cu 

280°C 
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b. Binary Sn-Al Alloy System 

Figure 2.2 shows the Sn-Al phase diagram. In this system, binary eutectic forms at 

the end of this system and the liquid line increases steeply with increasing 

temperature and aluminium concentration. According to this phase diagram, the 

melting point is about 300 oC. Thus the temperature of 380 oC is sufficient to melt 

Sn-(1-3%Al). According to Elliott and Shunk (1980), the eutectic composition of Sn-

Al alloys was placed at 99.5 wt%Sn, 99.42 wt% Sn, 98.7 wt% Sn, and 97.63 wt% 

Sn. Thus, the eutectic structure of Al+(βSn) should be observed easily in these 

alloys.  

 

Figure 2. 2: Sn-Al binary alloy phase diagram (McAlister and Kahan, 1983) 

 
 
 
 
 

97Sn-3Al 
280°C 
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c. Ternary Sn-Sb-Cu Alloy 

Ternary phase diagrams are three component systems. The ternary phase diagram of 

Sn-Cu-Sb is shown in Figure 2.3 and 2.4. Figure 2.3 shows the composition base of a 

ternary phase diagram of a ternary metal alloy (pewter) consisting of pure Sn, pure 

Sb, and pure Cu at each corner end of the triangle. The binary alloy compositions in 

Sn-Sb, Sb-Cu, and Sn-Cu are represented on the three edges of the triangle. Figure 

2.4 shows the liquidus surface of Sn corner for Sn-Sb-Cu ternary phase diagram. As 

shown in the figures mentioned, the marginal temperature used is estimated to be less 

than 320°C in order to produce pewter alloys with composition of Sn-Cu(1-3%)-

Sb(5-7%). Thus, using temperature of 400 oC is sufficient to melt these ternary 

pewter alloys. 

Figure 2. 3: Cu-Sb-Sn ternary phase diagram (Ghosh, 2007). 



16 
 

 

Figure 2. 4: Sn-Sb-Cu ternary phase diagram- liquidus surface of Sn corner (Ghosh, 
2007) 

 
2.3.4 Properties of Metal Alloys 

2.3.4.1 Mechanical Properties of Metal Alloys 

The three properties discussed most often in metallurgy are hardness, ductility and 

strength. These properties are related to one another. Generally, ductility decreases 

and the material become more brittle when its strength and hardness increase. As a 

material becomes more ductile, its strength and hardness are reduced. Normally, 

strength, hardness and ductility are desirable properties in metal. Generally, a bad 

characteristic of metal is brittleness (the opposite of ductility). Thus, a main goal of 
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metallurgy science is to find ways to increase the hardness and strength without 

reducing its ductility (Brandt and Warner, 2005). 

a. Hardness of metal alloys 

The definition of hardness refer to the resistant of a metal surface to be damaged, 

dented, worn a way, or deteriorated in any way as a result of a force or pressure 

against it.  

Since hardness relates to several other key properties of metal, especially strength, 

brittleness and ductility, it is the most important property of metals during studying 

metallurgy. By measuring the hardness of metal; its strength, brittleness and ductility 

can be indirectly measured. Hardness and strength can be improved without 

significantly decrease the ductility when certain alloys are added to metal. 

Manufacturers often attempt to develop metals that have high hardness and strength 

without losing too much of the ductility.  

Since Vickers microhardness has many advantages for testing the pewter alloys 

sample, it is used to study in this project to measure hardness. The advantages of the 

Vickers hardness test are that extremely accurate readings can be taken, and just one 

type of indenter is used for all types of metals and surface treatments. The Vickers 

method is capable of testing the softest and hardest of materials, under varying loads 

(Brandt and Warner, 2005). 
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b. Tensile Strength 

Tensile strength can be defined as the resistance of a material to a slowly applied 

force. Usually the tension samples are machined into form of a dog bone shape (Levi 

et al., 1995). The tensile strength of metals and alloys can be evaluated by using 

tensile test. In this test, a metal sample is pulled to failure in a relatively short time at 

a constant rate. The force data obtained can be converted to engineering stress data 

and a plot of engineering stress versus engineering strain can be created. The 

mechanical properties of metals and alloys that can be obtained from the engineering 

tensile test are (Smith and Hashemi, 2004):  

1. Modulus of elasticity 

2. Yield strength at 0.2 percent offset 

3. Ultimate tensile strength  

4. Percent elongation at fracture 

5. Percent reduction in area at fracture 

2.3.4.2 Physical Properties of Metal Alloys 

The main interests to scientists and engineer are the ways in which any material 

interacts and responds to various form of energy. This provides the essential base for 

design and innovation. The force fields (gravitational, electric, magnetic), 

electromagnetic radiation (heat, light, X-rays), and high-energy particles are the 

energy acting on a material. Generally, the responses of a material referred to as its 

physical properties, are governed by the structural arrangement of 

atoms/ions/molecules in the material. In this project, the physical properties of 

pewter alloys will be focused on their densities and melting point behaviors. The 
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densities will be measured by using digital density meter. The melting point will be 

measured by using differential scanning calorimetry analysis (DSC).   

a. Density 

Density, r , defined as the mass per unit volume and, for solids, is usually expressed 

in g/cm3 or lb/ft3. 

MassDensity,
Volume

r =    (Campbell, 2008) 

Density clearly depends on the mass of the atoms, their size and the way they are 

packed. Metals are dense because they have heavy atoms and close packing. 

Furthermore, this property increases with increasing atomic numbers in each 

subgroup of the periodic table.  

On alloying, because the mass of solute atoms differs from that of solvent, and also 

because the lattice parameter changes on alloying, the density of metal changes. The 

parameter change may often be deduced from Vegard’s law, which assumes that the 

lattice parameter of a solid solution varies linearly with atomic concentration, but 

numerous deviations from this ideal behavior do exist (Smallman and Ngan, 2007). 

b. Melting Point Behaviors of Metal Alloys 

The melting temperature (Tm) is a physical property which can be measured by 

differential scanning calorimetry analysis (DSC) (El-Daly et al., 2009). As the 

melting point increases, the activation energy for self-diffusion also increases. This 

relationship exists because the higher-melting-temperature metals tend to have 

stronger bonding between their atoms (Campbell, 2008). 
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2.3.5 Strengthening Mechanism in Metal Alloys 

The mechanism of both crystalline and amorphous materials such as yield 

strength, ductility, and toughness can be strengthened by strain (work) hardening, 

grain-boundary strengthening, solid solution strengthening, precipitation hardening, 

and dispersion strengthening. These mechanisms of strengthening restrict dislocation 

motion that makes the material stronger.  The ability of a metal to deform depends on 

the ability of dislocations to move (Hertzberg, 1996).  

The strengthening mechanism plays an important role to realize the function 

of intermetallic compound and eutectic structure in lead free pewter alloys.  

According to Buschow (1977), intermetallic compounds are chemical 

compounds of metals with each other. Intermetallic compounds are produced by 

direct reaction of their components upon heating or by double decomposition 

reactions. The formation of intermetallic compounds is observed during the 

separation of an excess of a component from metallic solid solutions or as a result of 

positional ordering of the atoms of the components in solid solutions.  

According to Vnuk et al., (1980), the Sn-rich matrix in broken-lamellar 

eutectic appears to contribute significantly in solid solution strengthening. Thus, the 

solid solution strengthening plays an important role to mechanical properties 

improvement of lead free pewter alloys.  

In this chapter; since the pewter alloys were produced by casting, only three 

strengthening mechanisms, grain-boundary strengthening, solid solution 

strengthening and strain hardening will be described.  
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2.3.5.1 Grain-Boundary Strengthening 

The yield stress of the polycrystals increased linearly with increasing misorientation 

across the grain boundary. The result state that a simple grain boundary has little 

inherent strength and that the strengthening due to grain boundaries results from 

mutual interference to slip within the grains. 

 A general relationship between yield stress and grain size was proposed by Hall and 

by Petch.  

1/2
o 1 kD-s = s +   (2.1) 

 

Where  os : the yield stress 

1s : the “friction stress”, or resistance of crystal lattice to dislocation 

movement 

k : the “locking parameter”, which measure the relative hardening 

contribution of the grain boundaries 

D: grain diameter 

The Hall-Petch equation was applied on yield-point measurement in low-carbon 

steel. This expresses the grain-size dependence of the flow stress at any plastic strain 

out to ductile fracture and also to express the variation of brittle fracture stress with 

grain size and the dependence of fatigue strength on grain size. This equation also 

was based on the concept that grain boundaries act as barriers to dislocation motion 

(Dieter, 1988). According to CALLISTER (2007), a fine-grained material (one that 

has small grains) is harder and stronger than one that is coarse grained, since the 

former has a greater total grain boundary area to impede dislocation motion. It 
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should also be mentioned that grain size reduction improves not only strength, but 

also the toughness of many alloys. 

2.3.5.2 Solid Solution Hardening 

A solid solution forms when, as the solute atoms are added to the host material, the 

crystal structure is maintained, and no new structures are formed (Callister, 2007).  

There are two types of solid solution formation; substitutional and interstitial solid 

solution. For substitutional solid solutions, the solute and solvent atoms are nearly 

the same size, and the solute atoms simply substitute for solvent atoms on the 

crystalline lattice. For interstitial solid solutions, the solute atoms size are much 

smaller than those of solvent atoms and fit within the spaces between the existing 

solvent atoms on the crystalline structure. The presenc of the substitutional and 

interstitial alloying elements strains the crystalline lattice of the host solvent structure 

(Figure 2.2). This increases in strain and distortion creating barriers to dislocation 

movement. The solid solution hardening is due to some hardening and strengthening 

of the alloys by the distortion energy. A moving dislocation is either attracted or 

repelled by the solute; however, both situations result in a strength increment. When  

the dislocation is attracted to a solute,  additional force required to pull the 

dislocation away from it is the cause of added strength. Otherwise, if the dislocation 

is repelled by a solute, additional force is required to push the dislocation past the 

solute atom.  

Studies of solid-solution hardening indicate that the hardening depend on the 

differences in elastic stiffness and atomic size between the solvent and solute. In 

general, larger differences result in greater hardening but the larger difference in size 

between solute and solvent atoms, the more restricted is their mutual solubilities. The 
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solvent phase becomes saturated with the solute atoms and reaches its limit of 

homogeneity when the distortion energy reaches a critical value determined by the 

thermodynamics of the system (Campbell, 2008).   

 

 

 

 

 

Figure 2. 5: Lattice distortion caused by solute additions (Campbell, 2008). 

 

2.3.5.3 Strain Hardening 

Strain hardening (also referred to as work hardening or cold working) is the 

strengthening of a metal by plastic deformation. This strengthening occurs because 

of dislocation movements within the crystal structure of the material (Degarmo et al., 

2003). Any material with a reasonably high melting point such as metals and alloys 

can be strengthened in this fashion. Some materials cannot be work-hardened at 

normal ambient temperatures, such as indium, however others can only be 

strengthened via work hardening, such as pure copper and aluminum (Smith and 

Hashemi, 2006).  The reason for strain hardening is the increase of dislocation 

density with plastic deformation. The average distance between dislocations 

decreases and dislocations start blocking the motion of each other. Ductile metals 

become stronger when they are deformed plastically at temperatures well below the 

melting point.  

Interstitial atom Small substitutional atom Large substitutional atom 
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The percent of cold work (%CW) is often used to express the degree of plastic 

deformation.  

0 d

0

A A%CW 100
A

æ ö- ÷ç ÷= ´ç ÷ç ÷çè ø
  (2.2) 

Where A0 is the original cross-section area, Ad is the area after deformation 

 
2.4 Application of Pewter 

Pewter is a bright, shiny alloy that is very similar, if not identical, in 

appearance to silver. The low melting point of pewter and its excellent flowing and 

mould-filling properties make pewter casting easy. Pewter possesses high fluidity at 

casting temperatures and can be cast easily by gravity, and centrifugal, or press die 

casting techniques, as well as by the lost wax process. Pewter was used in many 

applications because of these properties.   

The main use of pewter is for domestic decorative items such as candlesticks 

and plaque or for drinking vessels like tankards and goblets. A wide variety of such 

articles is available, some exhibiting modern art forms characteristic of their country 

of origin, others copying historical articles of pewterware. Similar alloys are used for 

centrifugal casting of figures such as knights, soldiers or jewellery in rubber moulds. 

2.4.1 Pewter Drinking Vessels 

Tankards and mugs for quaffing of beer and ale constitute the most important 

category of pewter drinking vessels. They are already represented by a large number 

of examples dating from the 1670s to the 1820s. During this date, pewter drinking 

vessels were not used only in taverns, but also occasionally in homes. When not used 
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