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Figure 5.11: The possible reaction mechanism of the photocatalytic- 182
oxidation of phenol.
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PENGOKSIDAAN PEMFOTOMANGKIN KITOSAN DAN TERBITANNYA
DAN FENOL OLEH TiO, TERIMOBILASASI MELALUI SISTEM
SUSUNAN DUA LAPISAN DIBAWAH SINARAN CAHAY A NAMPAK

ABSTRAK

Sistem dwilapisan mudah yang terdiri daripada TiO, sebagai lapisan atas dan
kitosan (CS), rangkai silang kitosan-gluteraldehid (CS-GLA) dan Kkitosan-
epiklorohidrin (CS-ECH) sebagai lapisan bawah telah berjaya dihasilkan dan
dipegunkan pada plat kaca. Sifat-sifat pemendapan dan kelekatan TiO, dapat
diperbaiki dengan menambah pengikat organik seperti getah asli terepoksi (ENRsp)
dan resin fenol-formaldehid (PF) di dalam formulasi penyaduran. Apabila sistem
dwilapisan ini melalui proses sinaran di dalam larutan akueus yang diudarakan di
bawah 45-W lampu pendarfluor telah menyebabkan perubahan yang ketara terhadap
kandungan kedua-dua ENRsy dan PF pada lapisan atas TiO,, selain daripada
perubahan fizik-kimia yang istimewa pada lapisan bawah CS, CS-GLA dan CS-
ECH. Walau bagaimanapun, telah didapati bahawa semasa fotodegradasi sebahagian
daripada ENRsy dan PF telah bertindak sebagai agen pembentukan liang untuk
menghasilkan bukaan liang pada permukaan TiO, seperti yang tunjukkan oleh
analisis SEM, sementara analisis TGA, EDX dan ujian COD pula menunjukkan
secara kuantitatifnya tiada perubahan yang signifikan terhadap kandungan ENRsg
dan PF yang boleh didapati selepas 5 kitaran penggunaan berulangan. Struktur
berongga lapisan TiO; terpegun ini membenarkan penyebaran pencemar dengan
lebih efektif, meningkatkan penembusan cahaya dan memperbaiki sifat optik seperti

yang ditunjukkan oleh analisis spektroskopi fotopendarcahaya (PLS).
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Sementara itu, lapisan bawah CS, CS-GLA dan CS-ECH teroksida secara
perlahan dalam 5 kitaran penggunaan berulangan. Kajian pencirian melalui analisis
unsur, spektroskopi inframerah transformasi fourier (FT-IR), spektroskopi resonans
magnet nukleus keadaan pepejal **C, spektroskopi pemantulan bauran UV-Sinar
nampak (DRS), spektroskopi fotopendarcahaya (PLS) dan ukuran pengembangan
secara lazimnya menunjukkan pembentukan kumpulan karbonil dan penyingkiran
sebahagian daripada kumpulan amino tanpa mengubah sebahagian besar struktur
polimer CS dan terbitan rangkaisilangnya. Dalam semua kes, warna lapisan CS telah
dilihat bertukar menjadi lebih keperangan dan pengambilan air telah berkurangan.
Pembentukan serentak pembukaan liang pada permukaan TiO, dan pengoksidaan
lapisan bawah CS, CS-GLA dan CS-ECH bertanggungjawab terhadap pengurangan
kadar penggabungan semula pasangan lubang elektron di permukaan lapisan atas
TiO,. Akibatnya, berdasarkan pada pemalar kadar tertib pertama seperti yang
diperolehi daripada analisis HPLC, aktiviti pemangkinan foto oleh sistem yang
digunakan untuk penyingkiran fenol mematuhi urutan seperti berikut TiO,/CS-ECH
> TiO,/CS-GLA > TiO,/CS > rampaian TiO, > TiO; lapisan tunggal. Perubahan
yang sama telah diperolehi untuk kecekapan pemangkinan foto dan kadar
mineralisasi bagi fenol dan bahan perantaraannya seperti asid maleik, asid fumarik,
hidrokuinon dan katekol. Kesan penjerapan boleh diabaikan dan kesemua sistem
terpegun ini boleh diguna semula untuk sekurang-kurangnya 10 kitaran tanpa

kehilangan keaktifannya.
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PHOTOCATALYTIC OXIDATION OF CHITOSANAND ITS
DERIVATIVES AND PHENOL BY IMMOBILIZED TiO, BILAYER
ASSEMBLAGE SYSTEMSUNDER VISIBLE LIGHT

ABSTRACT

Simple bilayer systems consisting of TiO, as a top layer and chitosan (CS),
cross-linked chitosan-glutaraldehyde (CS-GLA) and chitosan-epichlorohydrin (CS-
ECH) as sub-layers were successfully fabricated and immobilized onto a glass plate.
The deposition and adhesive properties of TiO, were improved by adding organic
binders like epoxidized natural rubber (ENRsp) and phenol-formaldehyde resin (PF)
in the coating formulation. Exposing these bilayer systems in aerated aqueous
solution to 45-W fluorescent lamp caused significant changes in content of both
ENRsy and PF of TiO, top layer, in addition to the remarkable physico-chemical
changes of CS, CS-GLA and CS-ECH sub-layers. However, it was found that the
ENRso and PF had actually acted as pore-forming agents via their photodegradation
process to create macro pores on the TiO2 surface as shown by SEM analysis, while
TGA, EDX and COD analyses indicated quantitatively that there is no significant
change in ENRso and PF content that can be observed after 5 cycles of repeated
usage. This porous structure of immobilized TiO, layer allows better diffusion of
pollutants, increases the light penetration and improves the optical property as

indicated by photoluminescence spectroscopy (PLS) analysis.

CS, CS-GLA and CS-ECH sub-layers were mildly oxidized within 5 cycles
(Each cycle was equivalent to two hours of irradiation) of repeated usage.
Characterization studies via elemental analysis, Fourier-transform infrared

spectroscopy (FTIR),*3C solid state nuclear magnetic resonance (*C-NMR), UV-
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Visible diffuse reflectance spectroscopy (DRS), photoluminescence spectroscopy
(PLS) analyses and swelling measurement generally indicated the formation of
carbonyl group and partial elimination of some amino groups without altering much
of the whole polymeric structure of CS and its cross-linked derivatives. In all cases,
the visual color of sub-layers of CS and its cross-linked derivatives had converted to
more intense brown and less water uptake was also observed. The simultaneous
generation of macro pores on TiO, surface and oxidation of CS, CS-GLA and CS-
ECH sub-layers are responsible for the reduction in the recombination rate of
electron-hole pair on the surface of TiO, top layer. Consequently, according to the
pseudo first-order rate constant as determined by HPLC analysis shows that the
photocatalytic activity of applied systems for phenol removal followed this order
TiO,/CS-ECH > TiO,/CS-GLA > TiO2/CS > TiO; in slurry > TiO, single layer. The
same trend was observed for photocatalytic efficiency and mineralization rate for
phenol and its intermediates, which were identified to be maleic acid, fumaric acid,
hydroquinone and catechol. In fact, the effect of adsorption was extremely negligible
and all these immobilized systems were reusable at least for up to 10 cycles of

applications without losing their photocatalytic activity.
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CHAPTER ONE

INTRODUCTION

1.1  Photocatalysis

The phenomenon of photocatalysis can be defined as the combination of
photochemistry and catalysis. More precisely, the meaning of “photocatalysis” herein
implies direct interaction between the light and catalyst (Hamal and Klabunde,
2007). Therefore, there is no photoreaction on illumination with light alone. Thus,
reaction usually demands the use of photocatalyst which implies that the photon
assists the generation of catalytically active species (Chatterjee and Dasgupta, 2005).

However, all the knowledge that was acquired during the development of
semiconductor photoelectrochemistry during 1970 and 1980s had significantly
enhanced the development of photocatalysis (Heller, 1981). The application of
photocatalysis, especially photocatalysis using semiconductor particles, is an
emerging new scientific technology. This is especially true after the discovery by
Fujishima and Honda of the photolysis of water into environmentally clean fuels
(hydrogen and oxygen) utilizing an electrode of titanium dioxide (TiOy) in an
electrochemical cell (Fujishima and Honda, 1972). Following this, several works
have been devoted solely towards understanding the essential concept of the
photocatalysis process for enhancing the photocatalytic efficiency as well as
investigating the overall advantages of the photocatalytic process for the
environmental remediation technologies. Hence, several advantages can be
concluded from applying this technology in environmental protection, which are

listed as follows (Kabra et al., 2004):



a. Photocatalysis exhibits an alternative way for the energy-intensive traditional
treatment methods with great capability of harvesting renewable and
pollution- free solar energy.

b. Photocatalysis technology does not require transformation of treated
pollutants from one medium to another, unlike conventional treatments
methods.

c. High capability for destroying a wide range of hazardous compounds in
different wastewater streams.

d. Potentially applicable to aqueous and gaseous-phase treatment, as well as to
some extent solid (soil) phase treatments.

e. The photo-reaction conditions for photocatalysis in general are mild, the
photodegradation time is modest, and less chemical agents input are required.

f. The generated intermediates of treated hazardous compounds are minimal.

g. The photocatalyst (semiconductor) powder is recoverable and reusable for

many cycles of treatment.

1.2  Fundamental mechanism of photocatalysis

Unlike metals which already have a continuum of electronic state,
semiconductors posses a void energy region without energy levels that are available
to promote the recombination of an electron and hole generated by photoactivation in
the solid semiconductors. The void region that centered between the top of the filled
valence band (VB) and the bottom of the vacant conduction band (CB) is called
energy band gap (Eng) (Linsebigler et al., 1995). The process of semiconductors
photocatalysis basically includes the following steps. If the energy of the incident

photon is equal or exceed the band gap energy (Eng) of the semiconductors/



photocatalyst, absorption of the photonic energy (hv) by the semiconducting solids
leads to excitation of an electeron (e”) from the valence band to the conduction band
of the semiconductor and a positive hole (h*) would be left in the valence band.
Ultraviolet (UV) or near-UV photons are typically needed for this type of

photoreaction (Mills and Hunte, 1997).

hv>Eyg

Semiconductor ——>2—>h" + e (1.1)
Thus, the generated pair (e-h") immediately migrates to the
semiconductor/photocatalyst surface where they either recombine, producing wasted-
thermal energy or take place in subsequent reduction and oxidation (redox) processes
with any compound, which might be adsorbed on the photocatalyst surface to give
the necessary end-products (Chatterjee and Dasgupta, 2005; Kabra et al., 2004). The
overall mechanism of the photo-induced semiconductor/photocatalyst is illustrated in

Figure 1.1 (Mills and Hunte, 1997).

hv

Figure 1.1: lllustration of the main processes occurring on a semiconductor particle
following the electronic excitation. Electron-hole pair recombination can
occur at the surface (reaction (a)) or in the bulk (reaction (b)) of the
semiconductors. At the surface of the particle, photogenerated electrons can
reduce an electron accepter A (reaction (c)) and photogenerated holes can
oxidize an electron donor D (reaction (d)). The combination of reaction (c)
and (d) presents the semiconductor sensitization of the general redox
reactions (Mills and Hunte, 1997).
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Several types of semiconductor catalyst such as TiO,, ZnO, ZnS, CdS, Fe,03
and GaP have been tested as photocatalysts for the degradation of a wide range of
ambiguous refractory organic pollutants into harmless biodegradable compounds,
and finally mineralize them to CO,, H,O and other mineral acids. Among all of the
semiconductors catalysts, titanium dioxide, TiO,, is close to being an ideal bench
mark photocatalyst in the environmental photocatalysis applications (Chong et al.,
2010).

The various applications of TiO; in the photocatalysis technology include
selective synthesis of organic compound (Pillai and Endalkachew, 2002),
photokilling of pathogenic organism (Sichel et al.,, 2007), cancer treatment
(Fujishima et al., 2000), self-cleaning and anti-fogging (Fujishima and Zhang, 2006),
air cleaning (Sun et al., 2003), detoxification and remediation of water (Dominguez
et al., 2005), degradation of hazardous inorganic compounds (Kim et al., 1998),
decontamination of soil (Hamerski et al., 1999) and treatment of heavy metals (Eliet
and Bidoglio, 1998). In addition to the unique characteristic of TiO, in the wide
range of applications mentioned above, it also offers unlimited applications by the
presence of photoinduced phenomenon which is depicted in Figure 1.2 (Carp et al.,

2004).

1.3  TiO,assemiconductor photocatalyst
1.3.1 General remarksof TiO,

Titanium dioxide (TiO,) is one of the members of transition metal oxides. In
the beginning of the 20th century, titanium dioxide was used intensively in industrial
products in order to replace the older toxic lead oxides as pigments for white paint.

Recently, the yearly production of TiO, passed 4 million tons. This pigment has been



widely used in various applications involving paint, plastics, rubber, inks, papers and
textile, in addition to the considerable amount of the global production used in food

and pharmaceuticals products (Carp et al., 2004).

Light-activated
TiO,

Photoinduced Photocatalysis [ Photovoltaics }
superhydrophilicity

— )

Special

Degradation of Organic
pollutants reactions

synthesis

Photosplitting of
water to produce
hydrogen

Photoreduction of
CO, to organic
compounds

Photofixation of
nitrogen

Partial and total oxidation of organic
compounds

Disinfection: destruction of
biological materials

Detoxification of inorganics and
removal of ions

Figure 1.2:  Photoinduced processes on TiO, (Carp et al., 2004).



In fact, there are two possible ways to manufacture the commercial TiO,
pigments, either by sulfate or chloride processes. The sulfate process involves direct
reaction between the TiO, ore and sulfuric acid; then the product is hydrolyzed to
produce a hydrate oxide, which is followed by calcination process at 900 °C to obtain
pigmentary TiO, (Delgado-Vargas and Paredes-Lopez, 2003). The chloride process
was improved in 1920 but not commercially applicable until the late 1950s. In this
process, TiO, ore reacts with gaseous chlorine in the presence of coke to produce
liquid titanium tetrachloride. The product is distilled and oxidized in the vapor phase

to obtain pigmentary TiO, (Blakey and Hall, 1988).

1.3.2 Crystallographic structureof TiO,

In nature, TiO, crystallizes in three crystalline forms: anatase (its name is
derived from the Greek word ‘anatasis’ meaning ‘extension’), rutile (its name is
derived from the Latin word ‘rutilus’ meaning ‘red’) and brookite (its name is named
in honor of the English mineralogist, H.J. Brooke). These crystal structures are
classified based on the TiO,> octahedral unit (Carp et al., 2004).

However, anatase type TiO, has a crystalline structure that matches the
tetragonal system (with dipyramidal habit) and is employed basically as a
photocatalyst in UV light region. The rutile type TiO, has a tetrahedral symmetry
structure (with prismatic habit) which is mainly utilized as whitening pigment of
paint. As for brookite type TiO,, it has an orthorhombic crystalline structure. All the

crystalline forms of TiO, are depicted in Figure 1.3 (Bokhimia et al., 2001).
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Figure 1.3: Crystal structures of (a) anatase, (b) rutile (b), and (c) brookite
(Bokhimia et al., 2001).

1.4  Heterogeneous TiO; photocatalysis

Among many different types of advanced oxidation processes (AOPs) are
UV, VUV, 0s/UV, O0s/V-UV, H,0./UV, Fenton (Fe*/H,0,), Fenton-like
(Fe**/H,0,), photo-Fenton reactions and heterogeneous photocatalysis TiO/UV,
TiO,/UV/H,0, andTiO,/UV/O3 (Dominguez et al.,, 2005). Heterogeneous
photocatalyst using TiO, as one of the advance oxidation processes (AOPSs) has
received great attention from the environmental standpoint in comparison with other
AOPs as well as the conventional wastewater technologies. The conventional and
AOPs technologies are summarized in Figure 1.4 (Chen et al., 2000). However, the
heterogeneous photocatalyst is potentially applicable for destruction of a wide
spectrum of organic and inorganic water contaminants at ambient pressure and
temperature in a relatively short time period without production of polycyclic
products. It is also capable of oxidizing pollutants in ppb ranges and only requires
oxygen as an oxidizing agent (Carp et al., 2004).
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Figure 1.4:  Various wastewater treatment technologies in environmental
engineering (Chen et al., 2000).



As generally observed, TiO; is close to being an ideal photocatalyst and well-
researched material in the environmental photocatalysis applications because of its

many desirable properties such as follows (Mills and Hunte, 1997):

a. Inexpensive and readily available.

b. Biologically and chemically inert.

c. Having broad spectral absorption response in the UV-C (220-290 nm), UV-B
(290-320 nm) and UV-A (320-400 nm) with high absorption coefficient.

d. Photoactive.

e. Photostable (i.e. not liable to photoanodic corrosion for instance).

The process of photocatalytic reaction by TiO, takes place by the absorption
of ultraviolet (UV) or near-ultraviolet photons (hv) that is equal or exceed the band
gap energy (Eng) value for anatase 3.2 eV, or 3.0 eV for rutile onto its surface. An
electron would be photoexcited from the valence band (VB) to the empty conduction
band (CB) of the TiO, and a positive hole would be left in the valence band in
femtoseconds. Subsequently, a series of reductive and oxidative reactions will be
induced on the TiO, surface. The overall mechanism of the electron-hole pair
formation as well as the redox reactions involving various compounds adsorbed on
the photocatalyst surface when TiO, is irradiated with adequate hv is depicted in
Figure 1.5 (Chong et al., 2010). The series of chain oxidative-reductive reactions
(Equations (1.2) — (1.12)) that take place at the photoinduced TiO, surface was

generally proposed as follows (Chong et al., 2010):
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H® + OH'
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Figure 1.5: Illustration of the photo-induced formation mechanism of electron-
hole pair in a semiconductor TiO, particle with the presence of water
pollutant (P) and dissolved oxygen (Chong et al., 2010).

Photoexcitation :

TiO2+hy — e +h” (1.2)
Charge-carrier trapping of e :

€cs = Err (1.3)
Charge-carrier trapping of h* :

hie = Nie (1.4)
Electron-hole recombination:

err +hyg(h™r) > ez +heat (1.5)
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Photoexcited e- scavenging:

(O2)ews + - -0
Oxidation of hydroxyls:

OH +h" — OH"
Photodegradation by OH" :

R-H+OH" — R’ + H:0
Direct photoholes:
R+ h" — R" — Intermediate (s)/Final Degradation Products

Protonation of superoxides:

0} + OH" — HOO"

Co-scavenging of e :
HOO" + e — HO,
Formation of H202 :

HOO + H" —H:0:

The e;; and h;; in Equation 1.4 represent the surface trapped valence band

electron and conduction band hole respectively. In this regard, it was found that these
trapped carriers are usually bound to the TiO, surface and do not recombine
immediately after photo excitation (Furube et al., 2001). The absence of the electron
scavengers leads to direct recombination between the photoexcited electron and the
valence band hole in nanosecond with simultaneous release of heat energy
(Equation 1.5). On the other hand, the presence of electron scavengers like oxygen is

important for prolonging the recombination rate and successful functioning of

11
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photocatalytic performance. Equation 1.6 shows how necessary the presence of

oxygen is in preventing the direct recombination of electron-hole pair, while

allowing the formation of superoxides radical (O; ). This O; radical would be

further protonated to produce the hydroperoxyl radical (HO;") and subsequently
producing hydrogen peroxide (H,O;) as presented in Equations 1.10 and 1.11
respectively.

However, all these occurrences in photocatalysis reactions are dependant
totally on the presence of both dissolved oxygen and water molecules. In fact,
without the presence of water molecules, the highly reactive hydroxyl radicals (OH")
could not be generated and impede the photocatalytic reaction of liquid phase
organic pollutants (Chong et al., 2010). In other words, the fundamental task of the
heterogenous photocatalyst is to generate free radicals in the solution, mainly the
highly reactive hydroxyl radical (OH"), which is traditionally responsible for
oxidizing almost all organic pollutants to CO,, H,O and simple mineral acids
because of its high standard reduction potential of 2.8 V vs. NHE, being exceeded
only by fluorine (Carp et al., 2004). Thus, during the heterogeneous photocatalytic
reactions, the dissolved organic pollutants are degraded to its corresponding
intermediates and subsequently mineralized to carbon dioxide and water, if the

photo-treatment time is extended (Equation 1.13) (Chong et al., 2010).

TiO,/h
Organic Contaminants — Intermediate(s) — CO2 + H20 (1.13)

The overall photocatalysis reaction as depicted by Equation 1.13 can be divided into
five individual steps, which are depicted in Figure 1.6 and detailed out as follows
(Fogler, 1999):
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a. Movement of the organic pollutant(s) (e.g. A) from the aqueous solution to the
TiO; surface.

b. Adsorption process of the organic pollutant(s) onto the photoinduced TiO;
surface (i.e. surface activation by absorption photonic energy occurs
simultaneously in this step).

c. Photocatalysis reaction for the adsorbed phase of organic pollutant(s) on the
TiO, surface (e.g. A — B).

d. Desorption of the intermediate(s) (e.g. B) from the TiO; surface.

e. Movement of the intermediate(s) (e.g. B) from the interface region to the bulk

fluid.

External
Diffusion

Internal
Diffusion

A B
Photocatalyst Surface

Figure 1.6: Basic steps that occur on the photocatalytic surface in
heterogeneous catalytic reaction (Fogler, 1999).

However, it must be noted that the anatase form is the most active allotropic
form. For instance, rutile is thermodynamically more stable than anatase, but anatase

formation is kinetically preferable at temperature conditions lower than 600 °C.
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Consequently, this lower temperature could offer higher surface area and higher
surface density of active sites for pollutants adsorption and for catalytic process
(Herrmann, 1999). In fact, rutile type TiO, possess a relatively lower band gap
energy value of 3.0 eV as opposed to 3.2 eV for anatase and the spectral absorption
response of light can also extend to the visible light region, but anatase TiO, shows
better photocatalytic performance with maximum quantum yield better than the rutile
TiO, due to its conduction band position which demonstrates stronger reduction
power as compared to the rutile TiO, (Puma et al., 2008).

In spite of the various advantages obtained from photocatalysis based on
TiO,, heterogeneous photocatalysis for water treatment is still in the developmental
stages as some significant challenges remain to be solved before effective
applications can even be contemplated. Thus, in order to develop this technology into
a cost-effective treatment and as a viable alternative to the current technologies, more
fundamental research is needed in order to broaden the spectral response of TiO, to
visible or solar spectrum and also to solve the post-treatment catalyst powder

recovery (Chong et al., 2010).

1.5 Immoabilization of TiO, photocatalyst

In heterogeneous photocatalyst technology, there are two major designs of
heterogeneous photoreactor systems, one in which the TiO, powder is used in the
suspension or slurry mode and another in which it is immobilized on an appropriate
solid support or on the inner wall of a photoreactor. The majority of the early
photoreactors have used TiO, powder suspended in contaminated water, since it
presents high surface area for the photocatalytic reaction to take place and provides

almost no mass transfer limitation (Damodar and Swaminathan, 2008).
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In fact, the slurry systems normally pose several practical problems of post-
treatment catalyst recovering step. This final step is normally a very difficult, costly,
energy and time consuming process. The TiO, suspended particles have great
tendency to aggregate especially at high concentrations. The particles may also
cause the scattering of incident UV light resulting in serious difficulty in applying it
to the continuous flow system (Andronic and Duta, 2008; Zhang et al., 2007).

Thus, immobilization of TiO, powder on solid supports is an alternative and
convenient method to solve these problems. Even though the photocatalytic
efficiency of the immobilized TiO, system may be less than that of the slurry system
due to the reduced surface area accessible for photocatalytic reaction as well as low
porosity of the supported catalyst layer (Mascolo et al., 2007), but the catalyst can be
used for long-term applications without lowering much of its photocatalytic
efficiency (Dionysiou et al., 2000; Fabiyi and Skelton, 2000). The summary of some
of the supporting materials as well as some deposition methods that are reported in
the literatures are shown in Table 1.1.

In order to avoid the cracking and fast peeling off of catalyst layer after short
period of usage (Gelover et al., 2004), various deliberate steps should be taken into
account in a careful selection of the catalyst deposition parameters that may yield
high quality immobilized catalyst in terms of high adhesion properties, and high
photocatalytic performance due to high porosity of the immobilized catalyst surface
(Andronic and Duta, 2008). The catalyst support should be chemically inert in order
to avoid any additional source of water pollution coming from the leaching of the
metals ions into the treated solution, in case of using metal substrates as the
supporting materials. The same environmental problems would be faced when

inorganic adhesives are used as binders for the photocatalyst powder.
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Table 1.1

References

Pollutant degraded

Deposition method

Photocatalytic processes of immobilized TiO, under UV light

Support material

Uddin et al.,
2007

Methylene blue

Sol-gel

Cellulose fiber

Tryba, 2008

Phenol

Manual pasted with
a brush

Cotton material

Andronic and
Duta, 2008

Methyl orange

Doctor blade

Microscopy glass
substrate

Zhang et al.,
2007

Phenol

Vapor hydrolysis
method

Tetrapod-like ZnO

Tashihi et al.,
2007

Phenol

Sol-gel

Glass beads, silica
gel, and quartz
sand

Nikolaki et al.,
2006

1,3-dichloro-2-
propanol

Spray technique
using pippeting

Reactor tubular
wall

Horikoshi et
al., 2002

Nonylphenol
polyethoxylate
surfactant

Dip-coating

Fiberglass cloth

Chen and
Dionysiou,
2006

4-chlorobenzoic acid

Modified sol—gel

Stainless steel

Lietal., 2008

Methyl orange

Dropping TiO;
solution onto zeolite

Zeolite

Hosseini et al.,
2007

Phenol

Direct mixing

Perlite

Kansal et al.,
2008

Lignin

Spray gun

Pumice stone

Chenetal.,
2006

Benzene

Plasma
sprayed

Aluminum

Fabiyi and
Skelton, 2000

Methylene blue

Thermal treatment

Polystyrene beads

Watts and
Cooper, 2008

4-chorophenol

Direct mixing
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Table 1.1: Continued

Damodar and
Swaminathan, Azo dye Smooth paint brush PVC tube
2008

Phenol and methyl

Yao etal., 2010
orange

Sol—-gel-adsorption | Activated carbon

Mascolo et al.,

2007 Methyl red Rotary evaporating | Cylindrical glass

Drop into catalyst
formulation

Kim et al.,

2005 Chitosan beads

S. choleraesuis subsp

Wang et al., Trichloroethane Chemical vapor

2002 deposition (CVD) Pyrex glass tube

Dionysiou et | Chlorinated phenols Stainless steel

Sol-gel

al., 2000 and pesticides rotating disk

Fretwell and

Doglas, 2001 4-Chlorophenol Dip or spin-coating Quartz or glass

Brezova et al.,

1997 Phenol Sol-gel Glass fibers

1.6  Organicbinders
1.6.1 Epoxidized natural rubber (ENR)

Natural rubber (NR) has been commonly used as an economic adhesive
material for various products such as tires, products under the car bonnet, gloves,
balloons, rubber bands, ets, due to its unique physico-chemical characteristics such
as elasticity, stickiness and resilience. However, the great limitations of NR is due to
its chemical structure (cis 1,4-polyisoprene) as shown in Figure 1.7, which exhibits
low stability to heat, sunlight and oxygen (Yoksan, 2008). The chemical
modification of NR is one of the promising ways to modify a part of the carbon-
carbon double bonds on the molecular structure of NR into the polar epoxy group

and eventually producing epoxidized natural rubber (ENR). The epoxidation process
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leads to the reduction of the molecular weight of NR with an increase in the density
of the ENR produced. The resultant ENR offers excellent air impermeability, oil and
organic solvent proof, wet road grip performance and wide spread applications
(Yoksan, 2008; Yu et al., 2008). In general, the preparation of ENR is usually
performed by the epoxidation of NR with peracetic, perbenzoic and perpthallic acids
in solution (Hong and Chan, 2004). However, the epoxidation process utilizes an in-
situ technique based on hydrogen peroxide and formic acid in order to epoxidize NR
latex. The preparation steps are depicted in Figure 1.7 (Yoksan, 2008). The
Malaysian Rubber Board presently provides two types of ENR, which are namely
ENR2s and ENRsp. The number in each of their name indicates the degree of
epoxidation with 25 and 50 mol % of epoxide group’s in the ENR molecules. Thus,
the properties of glass transition temperature (Tg), oil resistance and melt viscosity
increased when the epoxide content of ENR increased as well (Thongnuanchan et al.,

2007).

CH3
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CH,—C=CH—CH

Natural rubber, NR

c
k=l
IS
=l
o) S
I oy
H-—C—-O—-0OH|o
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| |
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@)
Epoxidized natural rubber, ENR

Figure 1.7:  Preparation of ENR by performic epoxidation (Yoksan, 2008).
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In heterogeneous photocatalyst technology, ENRsy had been successfully
used as a good emulsifier with PVC in order to improve the distribution of catalyst in
the coating formulation and therefore, enhancing the coating properties of TiO,
photocatalyst on the solid substrate for the photocatalytic degradation of methylene
blue (Shin, 2010). Furthermore, ENRs had also acted as adhesives to strengthen the
coating conditions of the immobilized TiO, in the presence of phenol-formaldehyde
resin on various solid supports for photocatalytic degradation of methylene blue and
cibacron brilliant red dyes (Amar, 2006). Finally, addition of ENRsp into
immobilizing solution had improved the adhesiveness and robustness of the coated
TiO, as well as significantly speeded up the immobilization process of TiO, on the
aluminum plate by electrophoretic deposition technique for the photocatalytic

degradation of phenol (Nawi et al., 2003).

1.6.2 Phenol-formaldehyde (PF) resin

Phenol-formaldehyde (PF) resin is one of the oldest synthetic polymers
synthesized in 1907 from the chemical reaction of phenol with formaldehyde. It is
also considered the first true thermosetting synthetic polymer and presents many
desirable properties such as the resistance of heat, corrosion, wear and the excellent
mechanics adhesive capacity (Wanga et al., 2009). However, there are mainly two
types of phenol-formaldehyde resins that had been synthesized with different
formaldehyde/phenol ratios, namely Novolac and Resol. The phenolic resin
composition depends on monomer ratio, catalyst, reaction conditions, and residual
free monomers. Furthermore, the temperature and pH conditions play a significant
role in the reaction of phenols with formaldehyde and eventually determine the

profile and characteristics of the Novolac or Resol resin. Thus, phenol-formaldehyde
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resin of novolac type is produced in acidic pH whereas Resol type is produced in
alkaline conditions with an excess molar ratio of formaldehyde (1<
formaldehyde/phenol < 3) (Poljansek and Krajnc, 2005). The Novolac resin is a
linear chain condensation product, which normally produces a nonporous dense
layer. The typical chemical structure of novolac phenol-formaldehyde resin is
depicted in Figure 1.8 (Wei et al., 2007). In recent years, huge amounts of PF has
been consumed in the wood industry in USA, Japan, China and some European
countries due to its high bonding strength, excellent water resistance and chemical
stability (Jin et al., 2010). Moreover, a combination of PF and ENRs proved to be an
excellent coating formulation of TiO, powder in heterogeneous photocatalyst

technology (Amar, 2006).

OH OH OH

Figure 1.8:  Chemical structure of Novolac phenol-formaldehyde resins
(Wei et al., 2007).

1.7  Modification of TiO, by conventional methods

Several attempts have been made in order to solve one of the major
challenges related to the relatively wide band gap of TiO, which absorbs only 3-4 %
energy of the solar spectrum and restricts its applications due to the need of an UV

excitation source (Hamal and Klabunde, 2007). Therefore, further development of
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TiO, should consider meeting the requirements of large-scale applications of TiO, by
harvesting more solar energy or increasing its spectral sensitivity towards visible
light region. Enhancing the photocatalytic performance of the TiO, has been

achieved by several conventional approaches as discussed below.

1.7.1 Sdf-sensitization by using colored pollutants

Organic dyestuffs with visible light absorbing chromophores are responsible
for photosensitizing TiO, photocatalyst in the field of treating textile wastewater. By
this means, the irradiation of adsorbed dye on the TiO, surface by visible light leads
to the ejection of an electron from the photo-excited dye to the conduction band of
TiO, photocatalyst. Consequently, the presence of electron scavengers like oxygen
leads to the formation of superoxide radical anion, which attacks the dye repeatedly
to mineralize it to non-toxic harmless end product(s) (Bauer et al., 2001). The
disadvantages of this method come from its limitation for the dyestuff or textile dyes
only. The photocatalytic activity that depends basically on the adsorption rate of dyes
which is an irreversible process that could cause blocking of the active sites on the
catalyst surface and higher photocatalytic performance that demands for the nano-

scale TiO, particles (Nagaveni et al., 2004).

1.7.2 Dyesmadifying TiO>

Dye sensitization approach depends basically on the anchoring of pigments
on the surface of TiO, photocatalyst which follows the same concept of self-
sensitization mentioned in Section 1.7.1. The high photocatalytic performance of the
modified TiO, photocatalyst is attributed to the photoinjection of an electron from

the conduction band of the excited pigment anchored on the photocatalyst particles to
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the conduction band of the TiO, support. Consequently, the quantum yield of the

redox process would be increased due to the additional formation of superoxides

radical O, generated on the TiO, conduction band (lliev, 2002). However, the

photocatalytic efficiency of the dyes doping system to the TiO, photocatalyst
depends on many factors such as the conduction band edge of the semiconductor, the
LUMO (lowest unoccupied molecular orbital) of the dye, population of the low lying
ligand fields, and the presence of the adsorbates such as water vapor and oxygen

(Ozcan et al., 2007).

1.7.3 Doping of TiO, with metal ions

Doping of TiO; lattice with a series of metal ions such as V, Cr, Mn, Fe, Ni,
etc., causes a red shift in the absorption pattern of TiO, photocatalyst. This
phenomenon is basically due to the creation of local energy levels of metal ions
within the band gap of the TiO, photocatalyst. Thus, the electronic properties of the
TiO, become modified to a large extent and the photocatalyst shows clear response in
the visible light region (Anpo and Takeuchi, 2003; Serpone et al., 1994). In fact, the
preparation method plays an important role in the photocatalytic efficiency of
prepared photocatalyst. Therefore, inserting different types of metal ions into TiO,
lattice leads to different photocatalytic efficiencies. In some cases there is no
photocatalytic activity noticed under visible light and lower activity even in the UV
light region compared to non-doped photocatalysts. This retardation in the
photocatalytic activity comes from high rate of recombination of charge carriers
through the metal ion energy levels (Brezova et al., 1997; Fujishima and Zhang,
2006). Furthermore, doping of metal ions involves other drawbacks related to the

thermal instability of the doped TiO,, high-cost of ion-implantation facilities, and
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fast electron trapping by the metal centers (Wang et al., 1999; Yamashita et al.,

1998).

1.7.4 Doping of TiO, with non-metal atoms

Doping of TiO, lattice with non-metal atoms such as N (Kosowska et al.,
2005), F (Mrowetz and Selli, 2006), S (Periyat et al., 2008), and C (Xiao et al., 2008)
is considered as another widespread technological approach for enhancing the
photocatalytic activity of TiO, by narrowing its band gap for larger absorption in the
visible light region. For instance, narrowing band gap of N-doped TiO, can be
achieved by substituting oxygen with nitrogen in the TiO, lattice. As a result, the
corresponding N (2p) states are centered above the valence band edge. Hence,
mixing of N (2p) states with O (2p) states leads to the reduction of the band gap of
the N-doped TiO, and higher photocatalytic activity for the degradation of color and
colorless pollutants can be achieved under visible light irradiation (Kosowska et al.,
2005). Additionally, the photocatalytic activity of carbon-doped TiO, can be
attributed to the presence of oxygen vacancy state between the valence band and
conduction band due to the formation of Ti** in the system of carbon-doped TiO,
(Xiao et al., 2008), or by narrowing the band gap or formed intra-gap localized level
(Li et al., 2008). Even though excellent results can be achieved by applying this
modification method, high consumption of energy is required due to the calcination

process or heating treatment under specific conditions (Kosowska et al., 2005).
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1.7.5 Utilizing different heterojunction systems

Heterojunction system means the coupling aspect of two different
semiconductors such as CdS/TiO, and/or Bi,S3/TiO,. Both heterojunction systems
were prepared by two different methods, which are, either direct mixing of these
semiconductors or by precipitation of one semiconductor which acts as sensitizer
over the other semiconductor which acts as supported material. Thus, utilizing two
semiconductors in contact with each other in different redox energy levels of their
corresponding conduction bands and valence bands can improve separation process
of electron-hole pair. This prolongs the life times of the charge carriers and as a
result improves the efficiency of the interfacial charge to the adsorbed pollutants on
the heterojunction system surface. However, the photocatalytic efficiency of the
heterojunction system strongly depends on the preparation method, how good is the
surface contact between the two semiconductors and the type of the treated substrate

(Bessekhouad et al., 2004).

1.7.6 Utilization of thin films

Utilizing a fixed TiO, photocatalyst has very important operational
advantages such as the time saved and photocatalyst material by eliminating the need
of catalyst powder recovery during the photocatalytic process. However, the overall
photocatalytic performance of the fixed TiO, thin films decrease compared to the
corresponding slurry mode of the TiO, powder. Since the photocatalytic process is a
surface phenomenon rather than volume or mass phenomenon (Damodar and
Swaminathan, 2008), easy access to the light irradiation and organic pollutants is

fundamental for the effective photocatalytic degradation. Thus, fixed TiO; thin film
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