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PENGOKSIDAAN PEMFOTOMANGKIN KITOSAN DAN TERBITANNYA 
DAN FENOL OLEH TiO2 TERIMOBILASASI MELALUI SISTEM 

SUSUNAN DUA LAPISAN DIBAWAH SINARAN CAHAYA NAMPAK 

 

ABSTRAK  

 

 Sistem dwilapisan mudah yang terdiri daripada TiO2 sebagai lapisan atas dan 

kitosan (CS), rangkai silang kitosan-gluteraldehid (CS-GLA) dan kitosan-

epiklorohidrin (CS-ECH) sebagai lapisan bawah telah berjaya dihasilkan dan 

dipegunkan pada plat kaca. Sifat-sifat pemendapan dan kelekatan TiO2 dapat 

diperbaiki dengan menambah pengikat organik seperti getah asli terepoksi (ENR50) 

dan resin fenol-formaldehid (PF) di dalam formulasi penyaduran. Apabila sistem 

dwilapisan ini melalui proses sinaran di dalam larutan akueus yang diudarakan di 

bawah 45-W lampu pendarfluor telah menyebabkan perubahan yang ketara terhadap 

kandungan kedua-dua ENR50 dan PF pada lapisan atas TiO2, selain daripada 

perubahan fizik-kimia yang istimewa pada lapisan bawah CS, CS-GLA dan CS-

ECH. Walau bagaimanapun, telah didapati bahawa semasa fotodegradasi sebahagian 

daripada ENR50 dan PF telah bertindak sebagai agen pembentukan liang untuk 

menghasilkan bukaan liang pada permukaan TiO2 seperti yang tunjukkan oleh 

analisis SEM, sementara analisis TGA, EDX dan ujian COD pula menunjukkan 

secara kuantitatifnya tiada perubahan yang signifikan terhadap kandungan ENR50 

dan PF yang boleh didapati selepas 5 kitaran penggunaan berulangan. Struktur 

berongga lapisan TiO2 terpegun ini membenarkan penyebaran pencemar dengan 

lebih efektif, meningkatkan penembusan cahaya dan memperbaiki sifat optik seperti 

yang ditunjukkan oleh analisis spektroskopi fotopendarcahaya (PLS).  
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 Sementara itu, lapisan bawah CS, CS-GLA dan CS-ECH teroksida secara 

perlahan dalam 5 kitaran penggunaan berulangan. Kajian pencirian melalui analisis 

unsur, spektroskopi inframerah transformasi fourier (FT-IR), spektroskopi resonans 

magnet nukleus keadaan pepejal 13C, spektroskopi pemantulan bauran UV-Sinar 

nampak (DRS), spektroskopi fotopendarcahaya (PLS) dan ukuran pengembangan 

secara lazimnya menunjukkan pembentukan kumpulan karbonil dan penyingkiran 

sebahagian daripada kumpulan amino tanpa mengubah sebahagian besar struktur 

polimer CS dan terbitan rangkaisilangnya. Dalam semua kes, warna lapisan CS telah 

dilihat bertukar menjadi lebih keperangan dan pengambilan air telah berkurangan. 

Pembentukan serentak pembukaan liang pada permukaan TiO2 dan pengoksidaan 

lapisan bawah CS, CS-GLA dan CS-ECH bertanggungjawab terhadap pengurangan 

kadar penggabungan semula pasangan lubang elektron di permukaan lapisan atas 

TiO2. Akibatnya, berdasarkan pada pemalar kadar tertib pertama seperti yang 

diperolehi daripada analisis HPLC, aktiviti pemangkinan foto oleh sistem yang 

digunakan untuk penyingkiran fenol mematuhi urutan seperti berikut TiO2/CS-ECH 

> TiO2/CS-GLA > TiO2/CS ≥ rampaian TiO2 > TiO2 lapisan tunggal. Perubahan 

yang sama telah diperolehi untuk kecekapan pemangkinan foto dan kadar 

mineralisasi bagi fenol dan bahan perantaraannya seperti asid maleik, asid fumarik, 

hidrokuinon dan katekol. Kesan penjerapan boleh diabaikan dan kesemua sistem 

terpegun ini boleh diguna semula untuk sekurang-kurangnya 10 kitaran tanpa 

kehilangan keaktifannya.     
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PHOTOCATALYTIC OXIDATION OF CHITOSAN AND ITS 
DERIVATIVES AND PHENOL BY IMMOBILIZED TiO2 BILAYER 

ASSEMBLAGE SYSTEMS UNDER VISIBLE LIGHT  

 

ABSTRACT 

 

Simple bilayer systems consisting of TiO2 as a top layer and chitosan (CS), 

cross-linked chitosan-glutaraldehyde (CS-GLA) and chitosan-epichlorohydrin (CS-

ECH) as sub-layers were successfully fabricated and immobilized onto a glass plate. 

The deposition and adhesive properties of TiO2 were improved by adding organic 

binders like epoxidized natural rubber (ENR50) and phenol-formaldehyde resin (PF) 

in the coating formulation. Exposing these bilayer systems in aerated aqueous 

solution to 45-W fluorescent lamp caused significant changes in content of both 

ENR50 and PF of TiO2 top layer, in addition to the remarkable physico-chemical 

changes of CS, CS-GLA and CS-ECH sub-layers. However, it was found that the 

ENR50 and PF had actually acted as pore-forming agents via their photodegradation 

process to create macro pores on the TiO2 surface as shown by SEM analysis, while 

TGA, EDX and COD analyses indicated quantitatively that there is no significant 

change in ENR50 and PF content that can be observed after 5 cycles of repeated 

usage. This porous structure of immobilized TiO2 layer allows better diffusion of 

pollutants, increases the light penetration and improves the optical property as 

indicated by photoluminescence spectroscopy (PLS) analysis. 

CS, CS-GLA and CS-ECH sub-layers were mildly oxidized within 5 cycles 

(Each cycle was equivalent to two hours of irradiation) of repeated usage. 

Characterization studies via elemental analysis, Fourier-transform infrared 

spectroscopy (FTIR),13C solid state nuclear magnetic resonance (13C-NMR), UV- 
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Visible diffuse reflectance spectroscopy (DRS), photoluminescence spectroscopy 

(PLS) analyses and swelling measurement generally indicated the formation of 

carbonyl group and partial elimination of some amino groups without altering much 

of the whole polymeric structure of CS and its cross-linked derivatives. In all cases, 

the visual color of sub-layers of CS and its cross-linked derivatives had converted to 

more intense brown and less water uptake was also observed. The simultaneous 

generation of macro pores on TiO2 surface and oxidation of CS, CS-GLA and CS-

ECH sub-layers are responsible for the reduction in the recombination rate of 

electron-hole pair on the surface of TiO2 top layer. Consequently, according to the 

pseudo first-order rate constant as determined by HPLC analysis shows that the 

photocatalytic activity of applied systems for phenol removal followed this order 

TiO2/CS-ECH > TiO2/CS-GLA > TiO2/CS ≥ TiO2 in slurry > TiO2 single layer. The 

same trend was observed for photocatalytic efficiency and mineralization rate for 

phenol and its intermediates, which were identified to be maleic acid, fumaric acid, 

hydroquinone and catechol. In fact, the effect of adsorption was extremely negligible 

and all these immobilized systems were reusable at least for up to 10 cycles of 

applications without losing their photocatalytic activity.  
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CHAPTER ONE 

INTRODUCTION 

 

1.1  Photocatalysis 

 The phenomenon of photocatalysis can be defined as the combination of 

photochemistry and catalysis. More precisely, the meaning of “photocatalysis” herein 

implies direct interaction between the light and catalyst (Hamal and Klabunde, 

2007). Therefore, there is no photoreaction on illumination with light alone. Thus, 

reaction usually demands the use of photocatalyst which implies that the photon 

assists the generation of catalytically active species (Chatterjee and Dasgupta, 2005). 

 However, all the knowledge that was acquired during the development of 

semiconductor photoelectrochemistry during 1970 and 1980s had significantly 

enhanced the development of photocatalysis (Heller, 1981). The application of 

photocatalysis, especially photocatalysis using semiconductor particles, is an 

emerging new scientific technology. This is especially true after the discovery by 

Fujishima and Honda of the photolysis of water into environmentally clean fuels 

(hydrogen and oxygen) utilizing an electrode of titanium dioxide (TiO2) in an 

electrochemical cell (Fujishima and Honda, 1972). Following this, several works 

have been devoted solely towards understanding the essential concept of the 

photocatalysis process for enhancing the photocatalytic efficiency as well as 

investigating the overall advantages of the photocatalytic process for the 

environmental remediation technologies. Hence, several advantages can be 

concluded from applying this technology in environmental protection, which are 

listed as follows (Kabra et al., 2004): 
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a.  Photocatalysis exhibits an alternative way for the energy-intensive traditional  

      treatment methods with great capability of harvesting renewable and        

pollution- free solar energy. 

b.  Photocatalysis technology does not require transformation of treated             

pollutants from one medium to another, unlike conventional treatments              

methods. 

c.  High capability for destroying a wide range of hazardous compounds in            

different wastewater streams. 

d. Potentially applicable to aqueous and gaseous-phase treatment, as well as to            

some extent solid (soil) phase treatments. 

e. The photo-reaction conditions for photocatalysis in general are mild, the             

photodegradation time is modest, and less chemical agents input are required. 

f. The generated intermediates of treated hazardous compounds are minimal. 

g. The photocatalyst (semiconductor) powder is recoverable and reusable for             

many cycles of treatment. 

 

1.2 Fundamental mechanism of photocatalysis 

 Unlike metals which already have a continuum of electronic state, 

semiconductors posses  a void energy region without energy levels that are available 

to promote the recombination of an electron and hole generated by photoactivation in 

the solid semiconductors. The void region that centered between the top of the filled 

valence band (VB) and the bottom of the vacant conduction band (CB) is called 

energy band gap (Ebg) (Linsebigler et al., 1995). The process of semiconductors 

photocatalysis basically includes the following steps. If the energy of the incident 

photon is equal or exceed the band gap energy (Ebg) of the semiconductors/ 
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photocatalyst, absorption of the photonic energy (hυ) by the semiconducting solids 

leads to excitation of an electeron (e-) from the valence band to the conduction band 

of the semiconductor and a positive hole (h+) would be left in the valence band. 

Ultraviolet (UV) or near-UV photons are typically needed for this type of 

photoreaction (Mills and Hunte, 1997).  

                                   
−+≥ + → ehtorSemiconduc bgEhυ            (1.1) 

 Thus, the generated pair (e--h+) immediately migrates to the 

semiconductor/photocatalyst surface where they either recombine, producing wasted-

thermal energy or take place in subsequent reduction and oxidation (redox) processes 

with any compound, which might be adsorbed on the photocatalyst surface to give 

the necessary end-products (Chatterjee and Dasgupta, 2005; Kabra et al., 2004). The 

overall mechanism of the photo-induced semiconductor/photocatalyst is illustrated in 

Figure 1.1 (Mills and Hunte, 1997).  

   

 

 

 

 

 

 

 

Figure 1.1: 

 

Illustration of the main processes occurring on a semiconductor particle 
following the electronic excitation. Electron-hole pair recombination can 
occur at the surface (reaction (a)) or in the bulk (reaction (b)) of the 
semiconductors. At the surface of the particle, photogenerated electrons can 
reduce an electron accepter A (reaction (c)) and photogenerated holes can 
oxidize an electron donor D (reaction (d)). The combination of reaction (c) 
and (d) presents the semiconductor sensitization of the general redox 
reactions (Mills and Hunte, 1997). 
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  Several types of semiconductor catalyst such as TiO2, ZnO, ZnS, CdS, Fe2O3 

and GaP have been tested as photocatalysts for the degradation of a wide range of 

ambiguous refractory organic pollutants into harmless biodegradable compounds, 

and finally mineralize them to CO2, H2O and other mineral acids. Among all of the 

semiconductors catalysts, titanium dioxide, TiO2, is close to being an ideal bench 

mark photocatalyst in the environmental photocatalysis applications (Chong et al., 

2010).  

  The various applications of  TiO2 in the photocatalysis technology include 

selective synthesis of organic compound (Pillai and Endalkachew, 2002), 

photokilling of pathogenic organism (Sichel et al., 2007), cancer treatment 

(Fujishima et al., 2000), self-cleaning and anti-fogging (Fujishima and Zhang, 2006), 

air cleaning (Sun et al., 2003), detoxification and remediation of water (Dominguez 

et al., 2005), degradation of hazardous inorganic compounds (Kim et al., 1998), 

decontamination of soil (Hamerski et al., 1999) and treatment of heavy metals (Eliet 

and Bidoglio, 1998). In addition to the unique characteristic of TiO2 in the wide 

range of applications mentioned above, it also offers unlimited applications by the 

presence of photoinduced phenomenon which is depicted in Figure 1.2 (Carp et al., 

2004). 

 

1.3 TiO2 as semiconductor photocatalyst   

1.3.1 General remarks of TiO2 

 Titanium dioxide (TiO2) is one of the members of transition metal oxides. In 

the beginning of the 20th century, titanium dioxide was used intensively in industrial 

products in order to replace the older toxic lead oxides as pigments for white paint. 

Recently, the yearly production of TiO2 passed 4 million tons. This pigment has been 
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widely used in various applications involving paint, plastics, rubber, inks, papers and 

textile, in addition to the considerable amount of the global production used in food 

and pharmaceuticals products (Carp et al., 2004). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Photoinduced processes on TiO2 (Carp et al., 2004). 
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 In fact, there are two possible ways to manufacture the commercial TiO2 

pigments, either by sulfate or chloride processes.  The sulfate process involves direct 

reaction between the TiO2 ore and sulfuric acid; then the product is hydrolyzed to 

produce a hydrate oxide, which is followed by calcination process at 900 oC to obtain 

pigmentary TiO2 (Delgado-Vargas and Paredes-Lopez, 2003). The chloride process 

was improved in 1920 but not commercially applicable until the late 1950s. In this 

process, TiO2 ore reacts with gaseous chlorine in the presence of coke to produce 

liquid titanium tetrachloride. The product is distilled and oxidized in the vapor phase 

to obtain pigmentary TiO2 (Blakey and Hall, 1988).  

 

1.3.2  Crystallographic structure of TiO2   

 In nature, TiO2 crystallizes in three crystalline forms: anatase (its name is 

derived from the Greek word ‘anatasis’ meaning ‘extension’), rutile (its name is 

derived from the Latin word ‘rutilus’ meaning ‘red’) and brookite (its name is named 

in honor of the English mineralogist, H.J. Brooke). These crystal structures are 

classified based on the TiO2
6- octahedral unit (Carp et al., 2004). 

 However, anatase type TiO2 has a crystalline structure that matches the 

tetragonal system (with dipyramidal habit) and is employed basically as a 

photocatalyst in UV light region. The rutile type TiO2 has a tetrahedral symmetry 

structure (with prismatic habit) which is mainly utilized as whitening pigment of 

paint. As for brookite type TiO2, it has an orthorhombic crystalline structure. All the 

crystalline forms of TiO2 are depicted in Figure 1.3 (Bokhimia et al., 2001).   
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Figure 1.3: Crystal structures of (a) anatase, (b) rutile (b), and (c) brookite 
(Bokhimia et al., 2001).  

 

 

1.4  Heterogeneous TiO2 photocatalysis  

 Among many different types of advanced oxidation processes (AOPs)  are 

UV, VUV, O3/UV, O3/V-UV, H2O2/UV, Fenton (Fe2+/H2O2), Fenton-like 

(Fe3+/H2O2),  photo-Fenton reactions and heterogeneous photocatalysis TiO2/UV, 

TiO2/UV/H2O2 andTiO2/UV/O3 (Dominguez et al., 2005). Heterogeneous 

photocatalyst using TiO2 as one of the advance oxidation processes (AOPs) has 

received great attention from the environmental standpoint in comparison with other 

AOPs as well as the conventional wastewater technologies. The conventional and 

AOPs technologies are summarized in Figure 1.4 (Chen et al., 2000). However, the 

heterogeneous photocatalyst is potentially applicable for destruction of a wide 

spectrum of organic and inorganic water contaminants at ambient pressure and 

temperature in a relatively short time period without production of polycyclic 

products. It is also capable of oxidizing pollutants in ppb ranges and only requires 

oxygen as an oxidizing agent (Carp et al., 2004). 

(a) (b) (c) 

O Ti O Ti O1   O2 Ti 
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Figure 1.4: Various wastewater treatment technologies in environmental 
engineering (Chen et al., 2000). 
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 As generally observed, TiO2 is close to being an ideal photocatalyst and well-

researched material in the environmental photocatalysis applications because of its 

many desirable properties such as follows (Mills and Hunte, 1997):  

 

a.  Inexpensive and readily available. 

b.  Biologically and chemically inert. 

c. Having broad spectral absorption response in the UV-C (220-290 nm), UV-B 

(290-320 nm) and UV-A (320-400 nm) with high absorption coefficient. 

d. Photoactive. 

e. Photostable (i.e. not liable to photoanodic corrosion for instance).  

 

 The process of photocatalytic reaction by TiO2 takes place by the absorption 

of ultraviolet (UV) or near-ultraviolet photons (hυ) that is equal or exceed the band 

gap energy (Ebg) value for anatase 3.2 eV, or 3.0 eV for rutile onto its surface. An 

electron would be photoexcited from the valence band (VB) to the empty conduction 

band (CB) of the TiO2 and a positive hole would be left in the valence band in 

femtoseconds. Subsequently, a series of reductive and oxidative reactions will be 

induced on the TiO2 surface. The overall mechanism of the electron-hole pair 

formation as well as the redox reactions involving various compounds adsorbed on 

the photocatalyst surface when TiO2 is irradiated with adequate hυ is depicted in 

Figure 1.5 (Chong et al., 2010). The series of chain oxidative-reductive reactions 

(Equations (1.2) – (1.12)) that take place at the photoinduced TiO2 surface was 

generally proposed as follows (Chong et al., 2010):  
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Illustration of the photo-induced formation mechanism of electron-
hole pair in a semiconductor TiO2 particle with the presence of water 
pollutant (P) and dissolved oxygen (Chong et al., 2010).  

Figure 1.5: 

 

 

Photoexcitation :  

                                                  TiO2 + hυ → e- + h+                                      (1.2) 

Charge-carrier trapping of e- : 

                                                 −− → TRCB ee                                                    (1.3) 

Charge-carrier trapping of h+ : 

                                                  ++ → TRVB hh                                         (1.4) 

 

Electron-hole recombination: 

                                                  heate)(hhe CBTRVBTR +→+ −++−
          (1.5) 
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Photoexcited e- scavenging: 

                                                   (O2)ads + e- →
−•

2O                              (1.6) 

Oxidation of hydroxyls: 

                                                    OH-  + h+ → OH˙                             (1.7) 

Photodegradation by OH˙ : 

                                                    R-H + OH˙ → Ŕ˙ + H2O                  (1.8) 

Direct photoholes: 

R + h+ → R+. → Intermediate (s)/Final Degradation Products            (1.9) 

Protonation of superoxides: 

                                                  
−•

2O + OH˙ → HOO˙                         (1.10) 

 

Co-scavenging of e- : 

                                                 HOO˙ + e- → −
2HO                             (1.11) 

Formation of H2O2 : 

                                                HOO- + H+ →H2O2                             (1.12) 

 

 The −
TRe  and +

TRh  in Equation 1.4 represent the surface trapped valence band 

electron and conduction band hole respectively. In this regard, it was found that these 

trapped carriers are usually bound to the TiO2 surface and do not recombine 

immediately after photo excitation (Furube et al., 2001). The absence of the electron 

scavengers leads to direct recombination between the photoexcited electron and the 

valence band hole in nanosecond with simultaneous release of heat energy    

(Equation 1.5).  On the other hand, the presence of electron scavengers like oxygen is 

important for prolonging the recombination rate and successful functioning of 
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photocatalytic performance. Equation 1.6 shows how necessary the presence of 

oxygen is in preventing the direct recombination of electron-hole pair, while 

allowing the formation of superoxides radical (
−•

2O ). This 
−•

2O  radical would be 

further protonated to produce the hydroperoxyl radical (HO2˙) and subsequently 

producing hydrogen peroxide (H2O2) as presented in Equations 1.10 and 1.11 

respectively. 

 However, all these occurrences in photocatalysis reactions are dependant 

totally on the presence of both dissolved oxygen and water molecules. In fact, 

without the presence of water molecules, the highly reactive hydroxyl radicals (OH•) 

could not be generated and impede the photocatalytic reaction of liquid phase 

organic pollutants (Chong et al., 2010). In other words, the fundamental task of the 

heterogenous photocatalyst is to generate free radicals in the solution, mainly the 

highly reactive hydroxyl radical (OH•), which is traditionally responsible for 

oxidizing almost all organic pollutants to CO2, H2O and simple mineral acids 

because of its high standard reduction potential of 2.8 V vs. NHE, being exceeded 

only by fluorine (Carp et al., 2004). Thus, during the heterogeneous photocatalytic 

reactions, the dissolved organic pollutants are degraded to its corresponding 

intermediates and subsequently mineralized to carbon dioxide and water, if the 

photo-treatment time is extended (Equation 1.13) (Chong et al., 2010).  

 

Organic Contaminants  → /hυTiO2 Intermediate(s) → CO2 + H2O               (1.13) 

 

The overall photocatalysis reaction as depicted by Equation 1.13 can be divided into 

five individual steps, which are depicted in Figure 1.6 and detailed out as follows 

(Fogler, 1999): 
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a. Movement of the organic pollutant(s) (e.g. A) from the aqueous solution to the 

TiO2 surface. 

b. Adsorption process of the organic pollutant(s) onto the photoinduced TiO2 

surface (i.e. surface activation by absorption photonic energy occurs 

simultaneously in this step). 

c. Photocatalysis reaction for the adsorbed phase of organic pollutant(s) on the 

TiO2 surface (e.g. A → B). 

d. Desorption of the intermediate(s) (e.g. B) from the TiO2 surface. 

e. Movement of the intermediate(s) (e.g. B) from the interface region to the bulk 

fluid. 

 
 

 

 

 

 

 

 

 

 

 

Figure 1.6: Basic steps that occur on the photocatalytic surface in 
heterogeneous catalytic reaction (Fogler, 1999).   

  

 However, it must be noted that the anatase form is the most active allotropic 

form. For instance, rutile is thermodynamically more stable than anatase, but anatase 

formation is kinetically preferable at temperature conditions lower than 600 oC. 
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Consequently, this lower temperature could offer higher surface area and higher 

surface density of active sites for pollutants adsorption and for catalytic process 

(Herrmann, 1999). In fact, rutile type TiO2 possess a relatively lower band gap 

energy value of 3.0 eV as opposed to 3.2 eV for anatase and the spectral absorption 

response of light can also extend to the visible light region, but anatase TiO2 shows 

better photocatalytic performance with maximum quantum yield better than the rutile 

TiO2 due to its conduction band position which demonstrates stronger reduction 

power as compared to the rutile TiO2 (Puma et al., 2008).  

 In spite of the various advantages obtained from photocatalysis based on 

TiO2, heterogeneous photocatalysis for water treatment is still in the developmental 

stages as some significant challenges remain to be solved before effective 

applications can even be contemplated. Thus, in order to develop this technology into 

a cost-effective treatment and as a viable alternative to the current technologies, more 

fundamental research is needed  in order to broaden the spectral response of TiO2 to 

visible or solar spectrum and also to solve the post-treatment catalyst powder 

recovery (Chong et al., 2010). 

   

1.5 Immobilization of TiO2 photocatalyst 

 In heterogeneous photocatalyst technology, there are two major designs of 

heterogeneous photoreactor systems, one in which the TiO2 powder is used in the 

suspension or slurry mode and another in which it is immobilized on an appropriate 

solid support or on the inner wall of a photoreactor. The majority of the early 

photoreactors have used TiO2 powder suspended in contaminated water, since it 

presents high surface area for the photocatalytic reaction to take place and provides 

almost no mass transfer limitation (Damodar and Swaminathan, 2008). 
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 In fact, the slurry systems normally pose several practical problems of post-

treatment catalyst recovering step. This final step is normally a very difficult, costly, 

energy and time consuming process. The TiO2 suspended particles have great 

tendency to aggregate especially at high concentrations.  The particles may also 

cause the scattering of incident UV light resulting in serious difficulty in applying it 

to the continuous flow system (Andronic and Duta, 2008; Zhang et al., 2007). 

 Thus, immobilization of TiO2 powder on solid supports is an alternative and 

convenient method to solve these problems. Even though the photocatalytic 

efficiency of the immobilized TiO2 system may be less than that of the slurry system 

due to the reduced surface area accessible for photocatalytic reaction as well as low 

porosity of the supported catalyst layer (Mascolo et al., 2007), but the catalyst can be 

used for long-term applications without lowering much of its photocatalytic 

efficiency (Dionysiou et al., 2000; Fabiyi and Skelton, 2000). The summary of some 

of the supporting materials as well as some deposition methods that are reported in 

the literatures are shown in Table 1.1. 

 In order to avoid the cracking and fast peeling off of catalyst layer after short 

period of usage (Gelover et al., 2004), various deliberate steps should be taken into 

account in a careful selection of the catalyst deposition parameters that may yield 

high quality immobilized catalyst in terms of high adhesion properties, and high 

photocatalytic performance due to high porosity of the immobilized catalyst surface 

(Andronic and Duta, 2008). The catalyst support should be chemically inert in order 

to avoid any additional source of water pollution coming from the leaching of the 

metals ions into the treated solution, in case of using metal substrates as the 

supporting materials. The same environmental problems would be faced when 

inorganic adhesives are used as binders for the photocatalyst powder. 
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Table 1.1 Photocatalytic processes of immobilized TiO2 under UV light 

References Pollutant degraded Deposition  method Support material 

Uddin et al., 
2007 Methylene blue Sol-gel Cellulose fiber 

Tryba, 2008 Phenol Manual pasted with 
a brush Cotton material 

Andronic and 
Duta, 2008 Methyl orange Doctor blade Microscopy glass 

substrate 

Zhang et al., 
2007 Phenol Vapor hydrolysis 

method Tetrapod-like ZnO 

Tasbihi et al., 
2007 Phenol Sol-gel 

Glass beads, silica 
gel, and quartz 

sand 

Nikolaki et al., 
2006 

1,3-dichloro-2-
propanol 

Spray technique 
using pippeting 

Reactor tubular  
wall 

Horikoshi et 
al., 2002 

Nonylphenol 
polyethoxylate 

surfactant 
Dip-coating Fiberglass cloth 

Chen and 
Dionysiou, 

2006 
 

4-chlorobenzoic acid Modified sol–gel Stainless steel 

Li et al., 2008 Methyl orange Dropping  TiO2 
solution onto  zeolite Zeolite 

Hosseini et al., 
2007 Phenol Direct mixing Perlite 

Kansal et al., 
2008 Lignin Spray gun Pumice stone 

Chen et al., 
2006 Benzene Plasma 

sprayed Aluminum 

Fabiyi and 
Skelton, 2000 Methylene blue Thermal treatment Polystyrene beads 

Watts and 
Cooper, 2008 

 
4-chorophenol Direct mixing Concrete surfaces 
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Table 1.1: Continued 
Damodar and 
Swaminathan, 

2008 
Azo dye Smooth paint brush PVC tube 

Yao et al., 2010 Phenol and methyl 
orange Sol–gel-adsorption Activated carbon 

Mascolo et al., 
2007 Methyl red Rotary evaporating Cylindrical glass 

Kim et al., 
2005 S. choleraesuis subsp Drop into catalyst 

formulation Chitosan beads 

Wang et al., 
2002 Trichloroethane Chemical vapor 

deposition (CVD) Pyrex glass tube 

Dionysiou et 
al., 2000 

Chlorinated phenols 
and pesticides Sol-gel Stainless steel 

rotating disk 

Fretwell and 
Doglas, 2001 4-Chlorophenol Dip or spin-coating Quartz or glass 

Brezova et al., 
1997 Phenol Sol-gel Glass fibers 

 

  

1.6 Organic binders 

1.6.1 Epoxidized natural rubber (ENR) 

 Natural rubber (NR) has been commonly used as an economic adhesive 

material for various products such as tires, products under the car bonnet, gloves, 

balloons, rubber bands, ets, due to its unique physico-chemical characteristics such 

as elasticity, stickiness and resilience. However, the great limitations of NR is due to 

its chemical structure (cis 1,4-polyisoprene) as shown in Figure 1.7, which exhibits 

low stability to heat, sunlight and oxygen (Yoksan, 2008). The chemical 

modification of NR is one of the promising ways to modify a part of the carbon-

carbon double bonds on the molecular structure of NR into the polar epoxy group 

and eventually producing epoxidized natural rubber (ENR). The epoxidation process 
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leads to the reduction of the molecular weight of NR with an increase in the density 

of the ENR produced.  The resultant ENR offers excellent air impermeability, oil and 

organic solvent proof, wet road grip performance and wide spread applications 

(Yoksan, 2008; Yu et al., 2008). In general, the preparation of ENR is usually 

performed by the epoxidation of NR with peracetic, perbenzoic and perpthallic acids 

in solution (Hong and Chan, 2004). However, the epoxidation process utilizes an in-

situ technique based on hydrogen peroxide and formic acid in order to epoxidize NR 

latex. The preparation steps are depicted in Figure 1.7 (Yoksan, 2008). The 

Malaysian Rubber Board presently provides two types of ENR, which are namely 

ENR25 and ENR50. The number in each of their name indicates the degree of 

epoxidation with 25 and 50 mol % of epoxide group’s in the ENR molecules. Thus, 

the properties of glass transition temperature (Tg), oil resistance and melt viscosity 

increased when the epoxide content of ENR increased as well (Thongnuanchan et al., 

2007). 

 

 

 

 

 

 

 

 

 

 

Figure 1.7: Preparation of ENR by performic epoxidation (Yoksan, 2008). 
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 In heterogeneous photocatalyst technology, ENR50 had been successfully 

used as a good emulsifier with PVC in order to improve the distribution of catalyst in 

the coating formulation and therefore, enhancing the coating properties of TiO2 

photocatalyst on the solid substrate for the photocatalytic degradation of methylene 

blue (Shin, 2010). Furthermore, ENR50 had also acted as adhesives to strengthen the 

coating conditions of the immobilized TiO2 in the presence of phenol-formaldehyde 

resin on various solid supports for photocatalytic degradation of methylene blue and 

cibacron brilliant red dyes (Amar, 2006). Finally, addition of ENR50 into 

immobilizing solution had improved the adhesiveness and robustness of the coated 

TiO2 as well as significantly speeded up the immobilization process of TiO2 on the 

aluminum plate by electrophoretic deposition technique for the photocatalytic 

degradation of phenol (Nawi et al., 2003). 

 

1.6.2 Phenol-formaldehyde (PF) resin 

 Phenol-formaldehyde (PF) resin is one of the oldest synthetic polymers 

synthesized in 1907 from the chemical reaction of phenol with formaldehyde. It is 

also considered the first true thermosetting synthetic polymer and presents many 

desirable properties such as the resistance of heat, corrosion, wear and the excellent 

mechanics adhesive capacity (Wanga et al., 2009). However, there are mainly two 

types of phenol-formaldehyde resins that had been synthesized with different 

formaldehyde/phenol ratios, namely Novolac and Resol. The phenolic resin 

composition depends on monomer ratio, catalyst, reaction conditions, and residual 

free monomers. Furthermore, the temperature and pH conditions play a significant 

role in the reaction of phenols with formaldehyde and eventually determine the 

profile and characteristics of the Novolac or Resol resin. Thus, phenol-formaldehyde 
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resin of novolac type is produced in acidic pH whereas Resol type is produced in 

alkaline conditions with an excess molar ratio of formaldehyde (1< 

formaldehyde/phenol < 3) (Poljansek and Krajnc, 2005). The Novolac resin is a 

linear chain condensation product, which normally produces a nonporous dense 

layer. The typical chemical structure of novolac phenol-formaldehyde resin is 

depicted in Figure 1.8 (Wei et al., 2007). In recent years, huge amounts of PF has 

been consumed in the wood industry in USA, Japan, China and some European 

countries due to its high bonding strength, excellent water resistance and chemical 

stability (Jin et al., 2010). Moreover, a combination of PF and ENR50 proved to be an 

excellent coating formulation of TiO2 powder in heterogeneous photocatalyst 

technology (Amar, 2006). 

 

 

 

 

 

 

Figure 1.8: Chemical structure of Novolac phenol-formaldehyde resins  
(Wei et al., 2007).  

 

 

1.7 Modification of TiO2 by conventional methods  

 Several attempts have been made in order to solve one of the major 

challenges related to the relatively wide band gap of TiO2 which absorbs only 3-4 % 

energy of the solar spectrum and restricts its applications due to the need of an UV 

excitation source (Hamal and Klabunde, 2007). Therefore, further development of 
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TiO2 should consider meeting the requirements of large-scale applications of TiO2 by 

harvesting more solar energy or increasing its spectral sensitivity towards visible 

light region. Enhancing the photocatalytic performance of the TiO2 has been 

achieved by several conventional approaches as discussed below. 

 

1.7.1 Self-sensitization by using colored pollutants 

 Organic dyestuffs with visible light absorbing chromophores are responsible 

for photosensitizing TiO2 photocatalyst in the field of treating textile wastewater. By 

this means, the irradiation of adsorbed dye on the TiO2 surface by visible light leads 

to the ejection of an electron from the photo-excited dye to the conduction band of 

TiO2 photocatalyst. Consequently, the presence of electron scavengers like oxygen 

leads to the formation of superoxide radical anion, which attacks the dye repeatedly 

to mineralize it to non-toxic harmless end product(s) (Bauer et al., 2001). The 

disadvantages of this method come from its limitation for the dyestuff or textile dyes 

only. The photocatalytic activity that depends basically on the adsorption rate of dyes 

which is an irreversible process that could cause blocking of the active sites on the 

catalyst surface and higher photocatalytic performance that demands for the nano-

scale TiO2 particles (Nagaveni et al., 2004). 

 

1.7.2 Dyes modifying TiO2  

 Dye sensitization approach depends basically on the anchoring of pigments 

on the surface of TiO2 photocatalyst which follows the same concept of self-

sensitization mentioned in Section 1.7.1. The high photocatalytic performance of the 

modified TiO2 photocatalyst is attributed to the photoinjection of an electron from 

the conduction band of the excited pigment anchored on the photocatalyst particles to 
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the conduction band of the TiO2 support. Consequently, the quantum yield of the 

redox process would be increased due to the additional formation of superoxides 

radical 
−•

2O  generated on the TiO2 conduction band (Iliev, 2002). However, the 

photocatalytic efficiency of the dyes doping system to the TiO2 photocatalyst 

depends on many factors such as the conduction band edge of the semiconductor, the 

LUMO (lowest unoccupied molecular orbital) of the dye, population of the low lying 

ligand fields, and the presence of the adsorbates such as water vapor and oxygen 

(Ozcan et al., 2007). 

 

1.7.3 Doping of TiO2 with metal ions   

 Doping of TiO2 lattice with a series of metal ions such as V, Cr, Mn, Fe, Ni, 

etc., causes a red shift in the absorption pattern of TiO2 photocatalyst. This 

phenomenon is basically due to the creation of local energy levels of metal ions 

within the band gap of the TiO2 photocatalyst. Thus, the electronic properties of the 

TiO2 become modified to a large extent and the photocatalyst shows clear response in 

the visible light region (Anpo and Takeuchi, 2003; Serpone et al., 1994). In fact, the 

preparation method plays an important role in the photocatalytic efficiency of 

prepared photocatalyst. Therefore, inserting different types of metal ions into TiO2 

lattice leads to different photocatalytic efficiencies. In some cases there is no 

photocatalytic activity noticed under visible light and lower activity even in the UV 

light region compared to non-doped photocatalysts. This retardation in the 

photocatalytic activity comes from high rate of recombination of charge carriers 

through the metal ion energy levels (Brezova et al., 1997; Fujishima and Zhang, 

2006). Furthermore, doping of metal ions involves other drawbacks related to the 

thermal instability of the doped TiO2, high-cost of ion-implantation facilities, and 

http://en.wikipedia.org/wiki/Molecular_orbital�
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fast electron trapping by the metal centers (Wang et al., 1999; Yamashita et al., 

1998). 

 

1.7.4 Doping of TiO2 with non-metal atoms    

 Doping of TiO2 lattice with non-metal atoms such as N (Kosowska et al., 

2005), F (Mrowetz and Selli, 2006), S (Periyat et al., 2008), and C (Xiao et al., 2008) 

is considered as another widespread technological approach for enhancing the 

photocatalytic activity of TiO2 by narrowing its band gap for larger absorption in the 

visible light region. For instance, narrowing band gap of N-doped TiO2 can be 

achieved by substituting oxygen with nitrogen in the TiO2 lattice. As a result, the 

corresponding N (2p) states are centered above the valence band edge. Hence, 

mixing of N (2p) states with O (2p) states leads to the reduction of the band gap of 

the N-doped TiO2 and higher photocatalytic activity for the degradation of color and 

colorless pollutants can be achieved under visible light irradiation (Kosowska et al., 

2005). Additionally, the photocatalytic activity of carbon-doped TiO2 can be 

attributed to the presence of oxygen vacancy state between the valence band and 

conduction band due to the formation of Ti3+ in the system of carbon-doped TiO2 

(Xiao et al., 2008), or by narrowing the band gap or formed intra-gap localized level 

(Li et al., 2008). Even though excellent results can be achieved by applying this 

modification method, high consumption of energy is required due to the calcination 

process or heating treatment under specific conditions (Kosowska et al., 2005). 
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 1.7.5 Utilizing different heterojunction systems  

 Heterojunction system means the coupling aspect of two different 

semiconductors such as CdS/TiO2 and/or Bi2S3/TiO2. Both heterojunction systems 

were prepared by two different methods, which are, either direct mixing of these 

semiconductors or by precipitation of one semiconductor which acts as sensitizer 

over the other semiconductor which acts as supported material. Thus, utilizing two 

semiconductors in contact with each other in different redox energy levels of their 

corresponding conduction bands and valence bands can improve separation process 

of electron-hole pair. This prolongs the life times of the charge carriers and as a 

result improves the efficiency of the interfacial charge to the adsorbed pollutants on 

the heterojunction system surface. However, the photocatalytic efficiency of the 

heterojunction system strongly depends on the preparation method, how good is the 

surface contact between the two semiconductors and the type of the treated substrate 

(Bessekhouad et al., 2004).  

 

1.7.6  Utilization of thin films 

 Utilizing a fixed TiO2 photocatalyst has very important operational 

advantages such as the time saved and photocatalyst material by eliminating the need 

of catalyst powder recovery during the photocatalytic process. However, the overall 

photocatalytic performance of the fixed TiO2 thin films decrease compared to the 

corresponding slurry mode of the TiO2 powder. Since the photocatalytic process is a 

surface phenomenon rather than volume or mass phenomenon (Damodar and 

Swaminathan, 2008), easy access to the light irradiation and organic pollutants is 

fundamental for the effective photocatalytic degradation. Thus, fixed TiO2 thin film 
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