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PERBANDINGAN DIANTARA PRESTASI ANGGARAN DAN SEBENAR 

BAGI BENTENG YANG DIBINA DI ATAS KAWASAN BERTIANG 

KELIKIR  

 
ABSTRAK 

 
 

Didalam pengalaman menggunakan tiang kelikir, enapan, tempoh 

pengukuhan, dan lain-lain prestasi sebenar selalunya tidak sama dengan yang 

dianggar. Dalam kajian ini, pengukuran, terutamanya keatas enapan dan tempoh 

pengukuhan sebenar telah dilakukan bagi satu tanbakan yang dibina diatas suatu 

kawasan tiang kelikir. Lokasi kajian di Kodiang, Kedah, iaitu sebahagian daripada 

projek keretapi elektrik berkembar dari Ipoh ke Padang Besar, terdiri daripada Zon 

1 dan Zon 2.  Tapaknya terdiri daripada tanah lempung marin kawasan utara 

semenanjung Malaysia. Tempoh pengukuhan yang biasa diperuntukkan bagi 

projek keretapi berkembar adalah 45 hari daripada masa peletakkan beban terakhir 

benteng. Peningkatan mendadak keupayaan galas bagi tanah yang dirawat dan 

kestabilan benteng kerana pembaikan tanah juga dinilai. Tindakbalas lain yang 

diambil maklum adalah oerubahan tekanan air liang dan pergerakan sisi tanah 

terbeban. Penyiasatan tanah dan pengalatan yang meluas telah dijalankan dalam 

kajian ini terutama bagi membandingkan diantara anggaran dan prestasi sebenar 

benteng. Didapati bahawa enapan lapangan sebenar secara amnya kurang daripada 

yang dianggar. Enapan bagi Zon 1 hanya 72 % daripada yang dianggar sementara 

bagi Zon 2 hanya 58 % daripada yang dianggar. Anggaran masa bagi pengukuhan 

di Zon 1 hanya 68 % daripada sebenar sementara bagi Zon 2 hanya 84 % daripada 
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sebenar. Keupayaan galas bagi kawasan yang dirawat dengan tiang kelikir 4 kali 

lebih besar daripada kawasan tidak dirawat. Faktor keselamatan daripada 

kegagalan cerun benteng secara menggelongsor telah meningkat 1.4 kali daripada 

nilai sebelum dirawat.  
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A COMPARISON BETWEEN PREDICTED AND ACTUAL 

PERFORMANCES OF AN EMBANKMENT BUILT OVER STONE 

COLUMN AREA 

 

ABSTRACT 
 
 

In stone column experiences, actual settlements, consolidation times, 

and other performance indicators often disagree with the predicted ones. In this 

study, measurements particularly on actual settlements and consolidation times 

were made on an embankment built over stone columns. The area of study, 

situated at Kodiang, Kedah, as a part of the electrified double track project 

between Ipoh to Padang Besar, consisted of Zone 1 and Zone 2. The embankment 

over Zone 1 was 4 m thick, while that of Zone 2 was 2 m thick. The underlying 

soil material was marine clay of northern region of Peninsular Malaysia. The 

consolidation time allowed for embankments in the project was 45 days after 

achieving top surcharge levels. The rapid gain in bearing capacity of the treated 

soil and embankment stability achieved due to the improved soil were also 

assessed. Other behaviors noted were change in pore pressures and lateral 

displacements of soil under loads. Extensive soil investigation and instrumentation 

have been carried out in the study particularly to compare between actual and 

predicted behavior of the embankments. It was found that actual field settlements 

were generally lesser than predicted.  The measured field settlement at Zone 1 was 

only equivalent to 72% of the predicted, while at Zone 2 the measured was only 

58% of the predicted. Also, it was found that the predicted time required for 
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consolidation at Zone 1 was equivalent to 68% of the actual time, while at Zone 2, 

the predicted time was 84% of the actual. The ultimate bearing capacity of site 

treated with stone column was 4 times greater than the untreated site. The factor of 

safety against sliding failure of slope treated with stone column has increased by 

1.4 times of the factor of safety of untreated slope. 
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CHAPTER 1 

INTRODUCTION 

 
1.0 Introduction  

 
 The stone column method of ground treatment involves partial replacement of 

soft soil with a vertical column made of compacted gravel, penetrating the soft stratum. 

Soft strata are common features in construction sites – they exist in the forms of soft 

clay, silty clay and loose silty sand. Thus for the column, the soft soil is replaced by the 

compacted stones. That replacement may amount to between 15 % and 35 % of the soft 

soil volume under a treatment area. This variation depends on design parameters such as 

column diameter and spacing (Bachus and Barksdale, 1983). 

 

 Stone column installation could be carried out in two different methods – the 

bottom feed method and the top feed method - which are distinguished from each other 

by the way a hole is formed and stone is fed into the hole.  

 

 The bottom feeding method, also called the dry method, is carried out by first 

inserting the probe to the desire depth via pushing the vibro-probe or poker. Vibration 

and compressed air mechanisms come together with the vibro-probe. This dry method 

is more suitable for soft layer of soil – of undrained shear strength about 6 to 7 kPa - 

with high water table.  Once brought to the desired depth, the vibro-probe is gradually 

drawn out, and during the process, stone is filled almost continuously into the hole 

via a chute or pipe attached to the vibro-probe. A stone container or hopper attached 



2 
 

to the mast holding the vibro-probe continually feed the gravel into the chute and 

down into the created void at the bottom of the column while the hopper itself is 

continually re-filled with stone using a loader. The stone in this case should be 

relatively finer in size such as about 40 mm in diameter. The compaction of each 

batch of stone is achieved through repeated withdrawal and insertion – pulling and 

pushing – of the vibro-probe. The compacted gravel interlocks with the surrounding 

soil forming a strong column – the stone column, (Bryan et al., 2007). 

 

 

 The wet or top feeding method is also carried out by first inserting the probe 

to the desire depth via pushing the vibro-probe. Instead of using compressed air to 

create the hollow, compressed water is used to flush out the soft soil during vibro-probe 

descent.  This wet method is more suitable for relatively harder layer of soil. Once 

brought to the desired depth, the vibro-probe is drawn, out creating a column of void. 

Stone is fed into it in batches and the compaction of each batch is again achieved with 

the pushing actions of the vibrating probe. The stone in this case can be coarser in size 

such as between 40 mm and 70 mm in diameter.  This method is favorable for a 

relatively harder soil in order to avoid the collapse of unsupported hole after retrieving 

the vibro-probe and before filling the cavity with stone. In finished form, again, a stone 

column will have compacted stone interlocks with the surrounding soil forming a strong 

column – the stone column (Raju et. al., 1997).   
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 The success of stone column concept was first demonstrated in France in 

1830 in order to treat the soft soils. Then in Europe in late 1950’s and in USA in 1972 

the method was re-adapted to the construction industry. In Malaysia, the method was 

utilized effectively in early 1980’s. This type of ground treatment has continued to 

spread successfully until today and become the most commonly used technique due to 

the rapid gaining of bearing capacity and the crucial role of accelerating the 

consolidation settlement. The decreased settlement time makes the stone column 

method more advantageous over the prefabricated vertical drain which requires 

relatively longer time for the same settlement amount to take place and only minor gain 

in bearing capacity. Stone column ground treatment method is also considered more 

favorable over piled embankment ground treatment method due to mainly economical 

factor (Bachus and Barksdale, 1983). 

 

 The stone column is especially unique in the sense that it creates a composite 

ground that has higher shear strength than the native soil. As such, more stress will be 

concentrated at each stone column. The design load on a stone column could vary 

between 20 to 50 tons (Bachus and Barksdale, 1983). 

 

1.1 Problem statement  

 Malaysia has significant areas of marine clay that are undergoing development 

especially in the northern region. Stone column is one of the most common ground 

treatment methods applied for the areas, and yet not a single stone column trial 

embankment has been studied, describing and analyzing the comprehensive behavior of 
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a group of stone columns. There were instead studies pointing out only to single or 

detached aspect of stone column behavior. 

 In one instance, the measured settlements of a 10 m high bridge embankment in 

Shah Alam – for the Shah Alam expressway - which was founded at a similar mining 

pond area treated with similar stone columns were found to be 100 mm at a particular 

area and 250 mm at another. These settlements not only differed too much but also 

much lesser than predicted (Raju et. al., 1997). Consequently, the settlement times were 

2.5 months for the first area and 6 months for the second. The particular difference 

between the predicted and measured settlements has been puzzling but not been 

discussed or analyzed. For the double track project between Rawang and Ipoh, field 

settlements were found 50% lesser than predicted for some embankments founded on 

stone columns (Raman 2006). Apparently, actual field settlements being lesser than 

predicted are a common occurrence which actually could be a good indication of the 

success of stone column procedure, but these haven’t been completely addressed. 

 

  For  the electrified double track project between Ipoh to Padang Besar, 

there are a lot of stretches treated with stone column between Alor Star to Arau alone, 

in order to treat the problem of soft ground. For these sites, the normal periods allowed 

for full settlement were not more than 45 days after achieving top surcharge level of the 

embankments. An experimental embankment was constructed in Kodiang, Kedah in 

order to study the overall behavior of marine clay of the area when treated with stone 

column procedure. This so called trial embankment or experimental embankment was 

divided into two zones – Zone 1 and Zone 2 – with each having different embankment 
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height while the rest of parameters remained the same. For each zone, the following 

aspects were studied: 

i. Predicted and actual monitored total settlements. 

ii. Lateral displacements.   

iii. Time required achieving degree of consolidation. 

iv. Bearing capacities of composite and original grounds. 

v. Slope stabilities of composite and original grounds. 

The main question asked for this experimental embankment project was if the actual 

behavior matches with predictions. The previous experience indicates that the actual 

performance has always been better. 

 

1.2 Objectives of the Study  

The main objectives of the study are as follows: 

i) To compare the actual performance of an embankment over stone column 

foundation, in terms of settlements and times associated with them, with 

predictions. 

ii) To evaluate bearing pressure caused by an embankment over stone column 

foundation in working condition and the extent to which the foundation can be 

further loaded.   
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1.3 Scopes of the Study 

The scope of this study is limited to the followings: 

i. The study used the method by Priebe (1995) in the analyses of the stone 

columns.  

ii. The stone column installation has been carried out by the bottom feeding, or 

otherwise known as the dry method. 

iii. The instrumentation installed at the trial embankment has involved 44 items, as 

shown in Table 1.1, from which data was collected.  

                                     Table 1.1: Summary of instrumentations 

Instrument Items 

Inclinometer 3 

Horizontal Profile-meter 2 

Total Pressure Cell 2 

Deep Settlement Gauge 2 

Rod Settlement Gauge 10 

Surface Settlement Marker 8 

Ground Heave Marker 4 

Piezo-meter   3 

Total 44 
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iv. Soil investigation and samplings were carried at the trial embankment for 15 

occasions, as listed in Table 1.2 

 

                         Table 1.2: Summary of soil investigation and samplings 

Testing Items 

Cone Penetration Test (CPT)   2 

Vane Shear Test (VS)   2 

Undisturbed Sampling (UDS) 5 

Mackintosh Probes (MP)          2 

Dynamic Penetration Test (DPT) 3 

Bore Hole (BH) 1 

Total  15 
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CHAPTER 2 
 

LITERATURE REVIEW 
 
 
2.0 Introduction 

Vibro replacement is one of the deep vibratory compaction technique 

applied at soft soils in order to decrease settlement significantly as well as to decrease 

the time required for achieving consolidation.  

 

Stone column ground treatment also improves treated ground parameters of 

cohesion C and internal angle of friction ɸ which allows immediate gain on bearing 

capacity of treated ground. Improved ground has a combination of constrained modulus 

of the inserted stone column Ec and the original soft soil constrained modulus Es which 

indicates relative stiffness of materials used for ground treatment (Malarvizhi and 

Ilamparuthi, 2011). 

 

2.1 Stone Column Design Methods 
 

Presently available methods for calculating settlement can be classified 

based on the simple approach and assumption made and also sophisticated methods 

based on fundamental elasticity boundary conditions. All these approaches for 

estimating settlement assume an infinitely wide loaded area reinforced with stone 

column having a constant diameter and spacing. The methods of predicting the 

settlement are based on the unit cell concept for the loading and geometry (Priebe, 
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1995; Aboshi and Suematsu, 1985). The methods of designing stone column are as 

given next. 

 

2.1.1 Equilibrium Method  

This method has been established by Aboshi and Barksdale (1979) which offers 

a simple realistic engineering approach for estimating the reduction in settlement of 

ground improved with stone columns. The following assumptions are necessary in 

developing the equilibrium method. 

· The extended unit cell idealization is valid 

· The total vertical load applied to the unit cell equals the sum of the force 

carried by the stone and the soil (i.e. equilibrium is maintained within the 

unit cell)  

· The vertical displacement of stone column and soil is equal 

· A uniform vertical stress due to external loading exists throughout the 

length of the stone column 

 

The consolidation settlement then will be calculated as shown at Equation 2.1: 

 

St =  (  Cc / (1+ e0) )  x  log10  ( (𝜎'O  + 𝜎C) / 𝜎'O )  x  H      (2.1) 

Where, 

St = primary consolidation settlement occurring over a distance H of stone column 

treated embankment 
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H = vertical height of stone column treated ground which settlement are being 

calculated. 

𝜎'O = average initial effective stress in the clay layer 

𝜎C = change in stress at clay layer due to the externally applied load 

Cc = compression index from one dimensional consolidation test 

e0  =  initial void ratio 

 

2.1.2 Greenwood Method  

Greenwood (1970) has presented preliminary empirical curves giving the 

settlement reduction due to ground treatment with stone column as a function of 

undrained soil strength and  stone column spacing.  Greenwood has incorporated the 

area replacement ratio into his settlement curves with the use of improvement factor. 

 

Greenwood in the opinion that the stress concentration η decreases as the 

stiffness of the ground being improved increases through time due to consolidation 

process in proportion to the stiffness of the stone column. Therefore, the stress 

concentration factors greater than 15 required to develop the large level of improvement 

are unlikely in the firm soils. 

 

2.1.3 Incremental Method   

This method for estimating the settlement founded by Goughnour and 

Bayuk.(1979) With the use of unit cell idealization, the stone is assumed to be a non-

compressible so that all volume change occurs in the clay, both radial & vertical 
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consolidation occurs at the clay. The unit cell divided into small, horizontal increments. 

The vertical strain and vertical and redial stresses are calculated for each increment 

assuming all variables are constant over the increment. 

 

    When the stress levels are sufficiently low especially at early stage of loading, 

the stone column remains in the elastic range. But for most cases of design, the stone 

column bulges laterally yielding plastically over at least a portion of its length estimated 

2 to 3 times the stone column diameter 

 

The assumption is also made that vertical, radial and tangential stresses at 

the interface between the stone column and soil are principal stresses. Therefore no 

shear stresses are assumed to act on the vertical boundary between the stone column and 

soil. 

In the elastic range the vertical strain is taken as the increment of vertical stress divided 

by the modulus of elasticity. 

 

                 When failure took place at stone column under certain load; the usual 

assumption is made that the vertical stress in the stone equals the radial stress in the clay 

at the interface times the coefficient of passive pressure of the stone. Radial stress in the 

cohesive soil is calculated following the plastic theory developed by Kirkpatrick, 

Whitman, et al. and Wu et al. (1983). 
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The plastic theory gives the change in radial stress in the clay as a function 

of the change in vertical stress in the clay, the coefficient of lateral stress in the clay 

applicable for the stress increment. 

Radial consolidation of the clay is considered using modification of the Terzaghi one-

dimensional theory, but the vertical stress increased to reflect greater volume changes 

due to radial consolidation. 

2.1.4 Finite Element Method 

Balaam and Poulos (1983) have studied the stone column behavior using finite 

element method by a large group of stone columns using the unit cell concept. The 

modulus ratio of the stone to the clay was assumed to vary from 10 to 40, and the 

Poisson’s ratio of each material was assumed to be 0.3.     

 

A coefficient of at-rest earth pressure KO=1 was used. Their analysis 

indicates that as drainage occurs, the vertical stress in the clay decreases and the stresses 

in the Stone increases as the clay go from the undrained to the drained state.  

 

2.1.5 Priebe Method  

 It has been more than twenty years since Priebe (1995) established the 

theory of estimating the reduction in settlement due to stone columns ground 

improvement also uses the unit cell model, assuming that the stone column will be in 

the state of plastic equilibrium under a triaxial stress state while the soil within the unit 

cell is idealized as an elastic state. Meantime, Priebe method has been flexible of 
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adapting several approaches with the consideration of many reduction factors as to suit 

and simulate the composite ground condition. Based on these improvement factors, the 

composite deformation modulus increases meanwhile the settlement decreased. 

 

The stone columns installation densifies the soil surrounding the stone 

columns. In this cases, first of all the densification of the soil has to be evaluated and 

only then - on the basis of soil data adapted correspondingly - the design of vibro 

replacement follows. 

 

The complex system of vibro replacement allows a more or less accurate 

evaluation only for the well-defined case of an unlimited load area on an unlimited 

column grid. In this case a unit cell with the area A is considered consisting of a single 

column with the cross section AC   and the attributable surrounding soil. 

Furthermore the following idealized conditions are assumed: 

i. The column is sitting on a rigid layer. 

ii. The column material is uncompressible. 

iii. The bulk density of column and soil is neglected. 

 

The stone column would not fail in end bearing but settlement would take 

place due to bulging under loaded area at certain length of the stone column meanwhile 

the vertical stress would be the same along the stone column length. 
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The basic improvement of a soil achieved with the installation of stone 

columns is evaluated on the assumption that the column material develops lateral forces 

towards surrounding soil as such the surrounding soil reacts elastically. Furthermore, at 

the moment when the stone column installed by displacing the soft soil, the initial 

pressure difference is equal to zero therefore, coefficient of earth pressure K = 1. The 

basic improvement factor n0 due to stone column improvement has been expressed by 

Equation 2.2: 

 

n0 = 1 +  Ac/A x  [ ( ½ + f (µs, Ac/A ) / (Kac x f (µs, Ac/A )  ) -1]      (2.2) 

Where n0 is influenced most with the function of Poisson’s ratio and area replacement 

ratio as expressed at Equation 2.3: 

f (µs, Ac/A ) = (1- µs) x (1- Ac/A) / (1-2 x µs + Ac/A)       (2.3) 

The coefficient of active earth pressure for the stone column material Kac was found by 

Equation 2.4: 

                 Kac = tan 2   (45o -  фc/2 )        (2.4)   

 

A Poisson’s ratio of  μs=1/3 which is adequate for the state of final settlement. 

                   

  The relationship between the improvement factor no  , the reciprocal area ratio 

Ac/A and the friction angle of the backfill materials фc  is shown in Figure 2.1 and 

Equation 2.2: 
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Figure 2.1: Design chart for vibro replacement (Priebe, 1995) 
 

Where, 

no = settlement improvement ratio 
Ac  = stone column area     
A   = grid area 
μs  = Poisson’s ratio 
KaC = coefficient of active earth pressure for column material 
фc = friction angle of column material. 
 
 

  Another assumption has been made by Priebe, considering the stone column 

backfill material used is compressible material. Therefore, the Point of concern here is 

any settlement caused by a load which is not related to column bulging. the actual 

improvement Factor correspond at best with the ratio of the constrained modulus of 

column material And soil Dc/Ds , as shown in Figure 2.2. 

 

We need to know the area replacement ratio (Ac/A)1  that starts 

corresponding to the ratio of the constrained modulus of column and Soil Dc/Ds. For 
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example, at μs=1/3 , the lower positive result of the following expression with no= 

Dc/Ds delivers the area ratio (Ac/A)1 as expressed at Equation 2.58: 

 

(Ac/A)1= - (4.Kac(no-2)+5)/(2.(4. Kac-1))  ±  ½  x [ (4.Kac(no-2)+5/(4. Kac-1))2 +   

                 (16.Kac(no-1)/ (4. Kac-1))]1/2         (2.5) 

 
 

                  
 
 

Figure 2.2: Column compressibility (Priebe, 1995) 
 
 
 

As an assumption, the settlement caused by compressibility of the column 

material can be considered in using a reduced improvement factor n1 which results from 

the equation developed for the basic factor no when the given reciprocal area ratio Ac/A 

is increased by additional value of Δ(Ac/A) as expressed at Equation 2.6 depending on 

the ratio of the constrained modulus Dc/Ds which can be extracted from Figure 2.1 

below as such the new area replacement ratio (Ac/A) has been expressed by Equation 

2.7 in order to get the regulated improvement factor n1 as show at Equation 2.8. 
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Δ (A/Ac)= (1/(Ac/A)1) -1          (2.6) 

Ac/A  =   1 / (A/Ac + Δ (A/Ac)        (2.7) 

n1= 1+  Ac/A  [ (0.5 + f (µs, Ac/A)) /( Kac . f (µs, Ac/A )  ) -1]     (2.8) 

 
Neglecting density difference between stone column and soil means that the initial 

pressure difference between the columns and the soil which creates bulging depends 

only on the load distribution of the foundation on columns and soil. This value is 

constant over the entire column length but the weights of the columns WC and of the 

soil WS may exceed the external loads thus, it has to be added.  

 

Under consideration of these additional loads, the initial pressure difference 

decreases with each depth increment and the bulging is reduced correspondingly. 

 

                   Since the pressure difference is a linear parameter to the depth, the ratio of 

the initial pressure difference and the one depending on depth expressed as depth factor 

fd  delivers a value by which the improvement factor n1 increases to the final 

improvement factor  as shown at Equation 2.14 on account of the overburden pressure. 

 

The depth factor fd is calculated based on the column & soil pressure 

differences which represented by (pC + γC·d)·KaC &(pS + γS·d) (KS = 1), the coefficient 

of earth pressure of the columns changes from the active value KaC to the value at rest 

K0C. Up to the depth where the straight line assumed for the pressure difference, meets 

the actual asymptotic line, the depth factor lies on the safe side. In practical cases the 

treatment depth is mostly less. 
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The pressure ratio at the stone column pc to the pressure at surrounding soil ps shall be 

determined as per Equation 2.9: 

Pc/Ps  =  (0.5 + f (µs, Ac/A)) /( Kac . f (µs, Ac/A ))     (2.9) 

Thus, the pressure at the stone column shall be obtained from Equation 2.10: 

Pc =  P / [ (Ac/A)+  ( 1- (Ac/A) / Pc/Ps)]       (2.10)  

Meanwhile, weight of soil (Ws) and weight of column (Wc) shall be calculated as per 

Equation 2.11 and 2.12 alternatively. 

Ws = Σ ( γs . Δd )          (2.11) 

Wc = Σ ( γc . Δd )          (2.12) 

The coefficient of column material will transformed from active to at rest (Koc) as 

determined by Equation 2.13 

Koc = 1- sin Øc         (2.13) 

Thus, the depth factor shall be calculated based on Equation 2.14 

fd = 1  /  ( 1+  (Koc -Ws/Wc)x (1/Koc) x(Wc/Pc))      (2.14) 

And the regulated improvement factor n2 shall be calculated as per Equation 2.15: 

   n2=fd x n1           (2.15) 

 
 

The simplified diagram in Figure 2.3 considers the same bulk density γ for 

columns and soil which is not on the safe side. Therefore, for safety reasons, the lower 

value of the soil γS  should be considered in this diagram. 
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Figure 2.3: Determination of the Depth Factor (Priebe, 1995) 
 
 

A step of compatibility control must be carried out in order to ascertain that 

the assigned load for the stone column is bearable in accordance to stone column 

compressibility in a step which has more simplification and approximation than 

mathematic calculation.  

At increasing depths, the confining pressure of the soil reaches such an extent that the 

columns do not bulge anymore. 

 

 The depth factor will not increase to infinity based on the linear assumption 

of pressure difference with depth, therefore this compatibility is limiting the depth 

factor and subsequently load assigned to the stone column as shown at Equation (2.16) 

as such the settlement due to inherent compressibility would not exceed than composite 

system settlement.  

In the first place this control applies when the existing soil is considered pretty dense or 

stiff. 

                         fd ≤  (Dc/Ds)/(Pc/Ps)      (2.16) 
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Figure 2.4: Limit value of depth factor (Priebe, 1995) 
 

 
 
The maximum value of  fd  can be extracted from the diagram in Figure 2.4. 

A depth factor fd < 1 should not be considered, even though it may result from the 

calculation.  

Therefore, a second compatibility control is imperatively required which 

relates to the maximum value of the improvement factor. It ascertains that the column 

settlement inherent from their compressibility does not exceed the settlement of the 

surrounding soil due to its compressibility by the loads assigned to each as expressed at 

Equation (2.17). In the first place this second controls applies when the existing soil is 

encountered pretty loose or soft. 

 
 
                  nmax = 1 + (Ac/A) x (Dc/Ds -1)      (2.17)       
 
 
 
Where Ac/A  is the original replacement ratio and not the modified ratio. 



21 
 

There is no final formula or equation which determine the behavior 

performance of pad footing or strip footing founded on stone column treated ground but 

the available design ensues from the performance of an unlimited column grid below an 

unlimited load area. 

 

The total settlement s∞ due to the applied load on a stone column treated 

ground readily to determine at Equation (2.18) on the basis of the foregoing description 

with n2 as an average value over the depth d. 

                                                  S∞ = P x  d / (Ds x n2)    (2.18)                                   

Diagrams which are given in Figure 2.5 and Figure 2.6, allow concluding from this 

value the settlements of single or stripping footings on groups of columns. These 

diagrams - with the diameter of the stone columns D as one parameter - are based on 

numerous calculations which considered load distribution on one side and a lower 

bearing capacity of the outer columns of the column group below the footing on the 

other side. 

 
 

Figure2.5: Settlement of single footing (Priebe, 1995) 
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Figure 2.6: Settlement of strip footing (Priebe, 1995) 
 

The diagrams do not refer directly to footing extensions as to be expected. 

The exits of a pad footing will mark indirectly the grid area A and the improvement 

factor n has to be obtained beside number of stone columns required at the above said 

grid area A. For example, the settlement reduction for a larger footing under the same 

load shall be compensated with a lower improvement ratio which results from a high 

area replacement. The approximation given for the diagrams by this assumed 

compensation seems to be acceptable for usually considered area ratios, i. e. up to some 

A/AC = 10. 

Obviously the above diagrams are valid for homogeneous conditions only and refer to 

the settlement s up to a depth d which the second parameter is counting from foundation 

level.  

 

The shear performance of treated ground with stone column is an essential 

part to be investigated. While the shear stress increases due to foundation load, a 
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bearing wedge element try to break out therefore, stone columns continues to deform 

until any further load increment would be transferred to adjacent columns and most 

ideal case comply with the aforementioned is the landslide or slip failure which will not 

occur before the bearing capacity of the total group of columns installed has been 

activated. The stone columns receive an increased portion of the total load m which 

depends on the area ratio AC/A and the improvement factor n, thus m is expressed at 

Equation (2.19): 

 
                  m = ( n – 1 + (Ac/A)) /n         (2.19)                         
 

In order to simplified the design which is not taking under consideration the decrease in 

volume of the surrounding soil to stone column due to bulging. Thus and especially at a 

high area ratio, the soil in fact are receiving a higher portion of the total load than the 

design has assumed. In order not to overestimate the shear resistance of the columns 

based on sharing basis of load distribution between columns and soil, the proportional 

load on the columns has to be reduced as determined by Equation (2.20): 

                                       m′= (n −1) /n          (2.20) 
 
The diagram in Figure 2.7 shows in solid lines the proportional load of the columns m´ 

and in dashed lines the not reduced one m. 

Based on the proportional load assigned to the column and soil, the average internal 

friction for the composite ground system shall be calculated as per Equation (2.21): 

 
     tanØ’ =  m′.tan Øc + (1- m′) . tan Øs          (2.21) 
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Due to the damages of soil structure accompanied the stone column installation, 

the soil cohesion shall be reduced for safety reason and the composite system cohesion 

shall be considered as a load proportional as per Equation (2.22): 

                                 C´ = (1-m´). Cs         (2.22)       

                                            

 

          
 

Figure 2.7:  Proportional load on stone columns (Priebe, 1995) 
 

 
 

2.2  Unit Cell Concept  
 

 The unit cell concept is fundamental to the analysis of stone column. To 

begin with, consider the tributary area of soil surrounding each stone column as 

illustrated in Figure 2.8.  
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