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PEMBANGUNAN DAN ANALISIS HIDROTAlSIT-MEMBRAN-MEMBRAN 

BERLIANG TERUBAHSUAI UNTUK PEMISAHAN KARBON DIOKSIDA 

 
ABSTRAK 

Pembebasan karbon dioksida (CO2) telah menjadi salah satu daripada 

masalah persekitaran yang paling serius semenjak revolusi perindustrian. Hari ini, 

pengurangan pelepasan CO2 dianggap amat penting demi mengelak perubahan iklim 

global dan pemanasan global. Untuk ini, pemisahan CO2 daripada campuran gas 

sedang giat dilaksanakan. Objektif utama penyelidikan ini ialah pemisahan CO2 

daripada aliran gas sintetik yang terdiri daripada campuran gas binari dengan 

menggunakan teknologi membran tak-organik. Penyelidikan difokuskan kepada 

sintesis dan pembangunan membran tak-organik berliang yang terubahsuai dengan 

hidrotalsit bagi membantu pemisahan CO2. Bahan hidrotalsit telah digabung bagi 

memperbaiki afiniti CO2 dan penstabilan terma membran tak-organik untuk 

permisahan gas CO2. Membran berliang meso HT-alumina (~10 μm) yang bebas 

daripada rekahan dan berliang mikro HT-silika (~200 nm) telah berjaya disintesis di 

atas lapisan γ-Al2O3 yang disokong oleh penyokong cakera α-Al2O3 menggunakan 

teknik sol-gel dan balut-rendam. Kesan pembolehubah ke atas prestasi membran, 

struktur dan kaitan ciri telapan dan mekanisma pengangkutan dipelajari dengan cara 

mengubah komposisi hidrotalsit dan suhu penyinteran. Membran yang tidak 

disokong diciri untuk mengetahui kehadiran HT, kumpulan berfungsi permukaan, 

topografi permukaan dan morfologi, kawasan permukaan, saiz liang, penjerapan CO2 

dan kapasiti penyah-jerapan.  

 

Pencirian ini dilakukan dengan menggunakan kaedah penyerakan sinar-x 

(XRD), FTIR, SEM, EDX, BET, TGA. Pengubahsuaian membran berliang dengan 
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HT meningkatkan prestasi pemisahan CO2. Membran komposit HT-silika yang 

mengandungi 15 isipadu% HT dan disinter pada suhu 500 ºC memberikan 

peningkatan tertinggi dalam kepilihan telapan CO2/CH4, CO2/N2 dan CO2/H2 

masing-masing 42.65, 37.78 dan 6.34, dengan penelapan CO2 tertinggi sebanyak 

4.8×10-7 mol.m-2.s-1.Pa-1 berbanding membran HT-alumina di dalam kajian 

penelapan gas tulen. Membran komposit HT-silika yang mengandungi 15 isipadu % 

HT diuji untuk kajian penyerapan gas tulen CO2, H2, N2 dan CH4 pada suhu operasi 

berlainan dan perbezaan tekanan. Penelapan gas campuran dan pemisahan CO2/CH4, 

CO2/N2 dan CO2/H2 juga dikaji disekitar suhu (30-190ºC), perbezaan tekanan (100-

500 kPa) dan kepekatan suapan CO2 (10-50 %). Membran komposit HT-silika yang 

mengandungi 15 isipadu % HT memberikan peningkatan tertinggi kepemilihan 

dalam CO2/CH4, CO2/N2 dan CO2/H2 masing-masing sebanyak 104.4, 68.2 and 9.3, 

berbanding kepilihan telapan. Eksperimen rekabentuk (ER) telah digunapakai untuk 

mengoptimumkan dan membangunkan model impirikal bagi penelapan CO2 kajian 

kepemilihan campuran gas CO2/CH4, CO2/N2 dan CO2/H2 pada julat suhu (30-

190ºC), perbezaan tekanan (100-500 kPa) dan kepekatan suapan CO2 (10-50 %). 

Perisian ER dengan metodologi permukaan respon (MPR) memberikan persamaan 

impirikal dengan keboleh-ramalan yang baik dan keboleh-percayaan yang cukup 

bagi pemodelan dan ramalan prestasi membran HT-silika. 
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DEVELOPMENT AND ANALYSIS OF HYDROTALCITE-MODIFIED 

POROUS MEMBRANES FOR CARBON DIOXIDE SEPARATION 

 
ABSTRACT 

 The emission of carbon dioxide (CO2) has become one of the most serious 

environmental problems since the industrial revolution. Today, reducing CO2 

emissions is considered extremely important in order to abate the global climate 

change and global warming.  For this purpose, CO2 separations from gas mixtures 

have been actively researched. The main objective of this research is to separate CO2 

from the synthetically produced gas stream containing binary gas mixtures using 

inorganic membrane technology. The research focused on the synthesis and 

development of different porous inorganic membranes modified with hydrotalcite 

(HT) to facilitate the separation of CO2. Hydrotalcite material was incorporated to 

improve the CO2 affinity and the thermal stability of the inorganic membranes for 

CO2 gas separation. The crack free mesoporous HT-alumina (~10 μm) and 

microporous HT-silica (~200 nm) porous membranes were successfully synthesized 

on top of γ-Al2O3 layer supported by a α-Al2O3 disc support using the sol-gel and 

dip-coating techniques. The effect of different parameters on the membrane 

performance, the structure and permeation properties relationships and the transport 

mechanism were studied by varying hydrotalcite compositions and sintering 

temperatures. The unsupported membranes were characterized for the presence of 

HT, surface functional groups, surface topography and morphology, surface area, 

pore size, CO2 adsorption and desorption capacity.  
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 These characterizations were done using X-ray diffraction (XRD), Fourier 

Transform Infrared (FTIR) spectrometry, scanning electron microscopy (SEM), 

Energy-Dispersive X-ray spectroscope, Brunauer-Emmett-Teller method (BET) and 

Thermo gravimetric analyzer (TGA) techniques. The modification of porous 

membranes with HT enhanced CO2 separation performance. The HT-silica 

composite membrane containing 15 vol.% HT and sintering temperature of 500 ºC 

gave the highest increase in CO2/CH4, CO2/N2 and CO2/H2  permselectivity of 42.65, 

37.78 and 6.34, respectively, with the highest CO2 permeance of 4.8×10-7          

mol.m-2.s-1.Pa-1 compared to HT-alumina membranes in preliminary pure gas 

permeation studies. The HT-silica composite membrane containing 15 vol.% HT was 

tested for pure gas permeation studies of CO2, H2, N2 and CH4 at different operating 

temperatures and pressure differences. The mixed gas permeation and separation of 

CO2/CH4, CO2/N2 and CO2/H2 was also studied for wide range of temperature (30-

190ºC), pressure difference (100-500 kPa) and CO2 feed concentration (10-50 %). 

The HT-silica composite membrane containing 15 vol.% HT provided the highest 

increase in CO2/CH4, CO2/N2 and CO2/H2 separation selectivity of 104.4, 68.2 and 

9.3, respectively, compared to permselectivity. The design of experiments (DoE) was 

used to optimize and build up an empirical model for the CO2 permeance and 

separation selectivity studies of CO2/CH4, CO2/N2 and CO2/H2 mixed gases at wide 

range of temperature (30-190ºC), pressure difference (100-500 kPa) and CO2 feed 

concentration (10-50 %). The DoE software with response surface methodology 

(RSM) produced empirical equations with good predictability and sufficient 

reliability for the modeling and predicting the HT-silica membrane performance.
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CHAPTER 1 

 
INTRODUCTION 

 

1.1 Global issues of carbon dioxide as greenhouse gas  

 Several greenhouse gases (GHG) exist in the earth's atmosphere such as 

carbon dioxide (CO2), water vapor (H2O), methane (CH4), nitrous oxide (N2O) and 

ozone (O3) (Mondal et al., 2012). These gases allow direct sunlight (relative 

shortwave energy) to enter the atmosphere and reach the earth's surface unimpeded. 

When the shortwave energy strikes the earth’s surface, some of it (longer-wave 

(infrared) energy) is reradiated back towards the atmosphere as infrared radiation 

(heat). Greenhouse gases absorb this infrared radiation and trap the heat in the lower 

atmosphere (Carpenter et al., 2013). GHG results in an increase of the average earth 

temperature above what it would be in the absence these gases (Rohde et al., 2012). 

The rise in the average earth temperature may, in turn, leads to change of the 

weather, rising sea levels due to melting of iceberg at the pole, changes in 

ecosystems, loss of biodiversity and reduction of crop yield, usually referred to as 

"climate change" (Houghton et al., 2001; Hunter et al., 2013). The anthropogenic 

carbon dioxide has been known to cause irreversible change in ocean chemistry that 

could endanger marine life populations on a huge scale (Pires et al., 2011; Crim et 

al., 2011).  In addition, increasing GHG concentrations affect the composition of the 

atmosphere and lead to the depletion of the stratospheric ozone layer.  

 

The first measurements made in the second half of the twentieth century 

show that CO2 concentration in atmosphere had increased. The concentrations of 

CO2 in the atmosphere were only slightly changed before the industrial revolution 
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from 280 ppmv in 1000 to 295 ppmv in 1900 based on antarctica ice core data. It 

increased to 315 ppmv in 1958 and further to 377 ppmv in 2004 based on actual data 

logged in Hawaii (Yang et al., 2008; Humlum et al., 2013). At present, there are 

around 390.5 ppmv (Humlum et al., 2013), an increase of over 39 percent. 

International Panel on Climate Change (IPCC) forecasts that, the concentration of 

CO2 in the atmosphere may go up to reach 570 ppmv by the year 2100, causing a rise 

of average earth temperature of around 1.9˚C and an increase in mean sea level of 38 

cm (Stewart and Hessami, 2005). The ever increasing anthropogenic CO2 emissions 

(i.e., emissions produced by human activities) since the beginning of the industrial 

age, has been due to the burning of huge amounts of fossil fuels, such as coal or 

natural gas to produce electricity, and petroleum or diesel for transportation. Hence, 

CO2 is of utmost concern compared to other GHGs, and its emission has always been 

the subject of interest in research discussion about global issues.  

  

Several options can be applied to reduce CO2 emissions from fossil fuel such 

as improving the efficiency of fossil fuel combustion, replacing of fossil fuel with 

renewable one and sequestrating of CO2 from its large emission sources. Separation 

and capture of CO2 from its emission sources are promising options but they 

remained as great challenges due to some technological and political issues (Mondal 

et al., 2012). In industrial settings, the separation of CO2 is an essential step in many 

industrial processing such as the natural gas purification. The final natural gas used 

as fuel in the industry or vehicles is consists almost entirely of methane. Removal of 

CO2 increases the calorific capacity, yields better transportation conditions and 

prevents pipeline corrosions. Carbon dioxide content in the natural gas obtained 

from gas or oil well can vary from 4 to 50% (Datta and Sen, 2006). On the other 
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hand, purged gas from a gas-reinjected EOR (enhanced oil recovery) well can 

contain as much as 90% carbon dioxide. Before a natural gas rich in carbon 

dioxide can be transported, it must be pre-processed so as to meet the typical 

specification of 2–5% carbon dioxide (Datta and Sen, 2006). 

 

1.2 Conventional technologies for CO2 separation and capture 

Several conventional technologies are available for separation and capture of 

CO2 such as; cryogenic distillation, absorption using liquid solvents and pressure- 

temperature swing adsorption using various solid sorbents. Cryogenic distillation 

technology has been used for decades for CO2 removal on the basis of fractional 

condensation and distillation at low temperature. This technology is a commercial 

process to produce a large volume of CO2 with high purity from streams that already 

have relatively high CO2 concentrations (>90 %). However, the cost of this 

technology is very high due to the requirement of extremely low temperature (lower 

than -73˚C for liquefaction of CO2) and high pressure (Leo et al., 2009; Burt et al., 

2009; Olajire, 2010), which leads to high cost.  

 

The absorption process is the commercial technology used for CO2 

separation and capture for more than few decades. Absorption of CO2 can be either 

physical or chemical process. In a chemical absorption process, CO2 is chemically 

captured from gaseous streams through acid-base neutralization reactions using 

basic solvents such as monoethanolamine (MEA) to form a weakly bonded 

intermediate compound. The CO2-rich solution is pumped to a stripper column for 

thermal regeneration where the CO2 is stripped from the solution and the original 

solvent pumped back for a new cyclic use. The pure CO2 released from the stripper 
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is compressed for the subsequent transportation and storage (Yu et al., 2012). High 

CO2 recovery rate is about 98% can be achieved with MEA solutions due to fast 

kinetics and strong chemical reaction (Yang et al., 2008). However, there are many 

drawbacks of using liquid solvent absorption such as flow problems (flooding and 

loading) caused by viscosity increases with fast-reacting solvent, equipment 

corrosion, and high energy consumption for solvent regeneration (Zheng et al., 

2005; Gray et al., 2005). For physical absorption process, CO2 is selectively 

absorbed in a solvent according to Henry’s Law, which means that they are 

temperature and pressure dependent. Higher CO2 partial pressure and lower 

temperature favor the solubility of CO2 in the solvents. Different physical solvents 

for CO2 absorption are commercially available such as dimethylether of 

polyethylene glycol (Selexol process), propylene carbonate (FLUOR process), cold 

methanol (Rectisol process) and ionic liquid. Lower energy is required for solvents 

regeneration due to the weakly interacting between CO2 and the solvent compared to 

that of chemical solvents. However, physical absorption has drawbacks due to high 

capital cost of constructing Selexol and FLUOR plants. In addition, the high 

viscosity of ionic liquid limits the mass transfer and hence low absorption rates 

(Olajire, 2010; Yu et al., 2012). 

 

Adsorption is another well-established technology for CO2 separation and 

capture. Various regenerable solid sorbents are often used such as activated carbons, 

metal oxide, hydrotalcite, zeolites, mesoporous silica functionalized with amines and 

activated alumina. CO2 molecules are attracted and trapped by the solid sorbents 

through physisorptions (van der Waals) or chemisorptions (covalent bonding), 

followed by regeneration (desorption) of the solid sorbents which can be achieved 
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either by increasing the temperature (Temperature Swing Adsorption, or TSA), or by 

reducing pressure (Pressure-Swing Adsorption, or PSA) (Olajire, 2010). Physical 

adsorbents based on carbons and zeolites can adsorb large amounts of CO2 at room 

temperature (Hao et al., 2013; Cheung et al., 2013). The rate-limiting step in the 

adsorption is the diffusion of CO2 from gas mixture to the inside pore of the 

adsorbent which is three times higher than the magnitude of CO2 transfer across the 

gas-liquid interface in aqueous amine absorption (Khatri et al., 2005). However, 

these physical adsorbents have many disadvantages due to reduced CO2 adsorption 

capacity at high temperature (Zheng et al., 2005; Gray et al., 2005), high temperature 

requirement for regeneration, poor tolerance to water (Franchi et al., 2005) and 

unsuitable for high CO2 concentration streams (> 3%) since it needs frequent 

regeneration of solid bed. 

 

1.3 Membrane technology for CO2 separation  

  Membrane technology is a novel method to facilitate CO2 separation from a 

gas mixture. Membranes act as filters that enable continuous separation of one or 

more gases from a feed mixture based on the differences in physical properties of the 

gases and/or chemical interplays between the membrane material and the gas 

(Olajire, 2010). The separation of CO2 using membrane technologies provides many 

advantages over the other conventional separation technologies (Zhang et al., 2013). 

First, the membrane process is a viable energy-saving alternative for CO2 separation, 

since it does not require any phase transformation. Second, the necessary process 

equipment is very simple with no moving parts, compact, relatively easy to operate 

and control, and also easy to scale-up (Ismail et al., 2009; Zhang et al., 2013). 

Membrane materials are classified into organic (polymeric) and inorganic (carbon, 
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zeolite, ceramic or metallic) which can be porous or dense. 

 

  There have been several studies of polymeric membranes for gas separation 

due to its low energy cost, ease in fabrication and scalability (Ismail et al., 2009; 

Basu et al., 2010). Polymeric membranes can be categorized into two groups; 

rubbery or glassy; based on operating temperature relative to the glass transition; 

Rubbery membranes can be operated above the glass transition temperature 

(Approximate midpoint of the temperature range over which a material undergoes a 

phase change from brittle to rubbery), while glassy membranes operate below the 

glass transition temperature (Olajire, 2010; Adewole et al., 2013). However, the loss 

in permeance stability of polymer membranes at high temperature, high pressure, 

and highly acidic or alkaline environment has limited its application (Koros and 

Mahajan, 2000). Furthermore, polymeric membranes show inverse behavior for the 

permeability/selectivity; in other words, the gas selectivity decreases as the gas 

permeability through the membrane increases (Zhang et al., 2013). It has been 

reported that presence of CO2 even in low concentration induces plasticization 

problem in polymeric membrane, specially the glassy polymers, due to its 

condensability at certain pressures. It is supposed that a plasticization phenomenon 

happens when the polymer matrix absorbs CO2 present in the feed to an extent that it 

increases the free volume of the polymer matrix. The swelling of polymer matrix 

during the absorption of CO2 enhances the permanent enlargement of interchain 

spacing in the polymer matrix, which in turn, increases the permeability of gas and 

decreases the separation performance (Pandey et al., 2002; Baker, 2002; Basu et al., 

2010).  
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Inorganic membranes are gaining intense research efforts for use in CO2 

separation that are difficult to achieve by polymeric membranes with respect to their 

higher thermal, chemical and mechanical stability (Yeo et al., 2012). Inorganic 

membranes can be categorized based on their physical structures; either dense or 

porous. Dense inorganic membranes such as palladium and perovskite are usually 

used in selective separation of hydrogen and oxygen, respectively (Schiestel et al., 

2005; Burkhanov et al., 2011). Porous inorganic membranes are generally consist of 

a porous thin top layer supported on a porous metal or ceramic support which 

provides mechanical strength to the system and offers minimum mass-transfer 

resistance.  Porous inorganic membranes that are mainly used include alumina, 

titania, zerconia, hydrotalcite, silicon carbide, glass, amorphous silica, carbon and 

zeolites (De Vos and Verweij, 1998; Shekhawat et al., 2003; Kim et al., 2009b; Yeo 

et al., 2012).  These membranes vary in properties such as pore size, surface area, 

thermal and chemical stability. The porous inorganic membrane can be categorized 

based on their pore size into microporous (pore diameter <2 nm), mesoporous (2 

nm > pore diameter <50 nm) and macroporous (pore diameter >50 nm) (Shekhawat 

et al., 2003). The microporous inorganic membranes consists essentially of either 

amorphous silica, carbon molecular sieve or zeolites (Yeo et al., 2012). 

 

 Carbon molecular sieve (CMS) membranes are typically prepared through 

carbonization (at high temperature in an inert atmosphere) of polymeric precursors 

already processed in the form of membranes (Sim et al., 2013). In spite of higher 

production cost of CMS membranes which is greater than polymeric membranes by 

1 to 3 orders of magnitude per unit area, they provide higher permeance and 

separation factor compare to polymeric membranes. However, the major 
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disadvantage of CMS membranes that hinder their commercialization is their 

brittleness (Brunetti et al., 2010). The zeolite materials are aluminosilicates with 

uniform pore structures. Zeolite membranes are usually prepared by in-situ 

hydrothermal synthesis on porous stainless steel, α-alumina, or γ-alumina support 

tubes or disks for the gas permeation studies (Yang et al., 2008). Despite the success 

of zeolite membranes in the separation of CO2 from different gaseous systems, they 

have two main disadvantages: Firstly, high cost and difficult to produce; Secondly, 

low gas permeability compared to other inorganic membranes. This is due to the fact 

that relatively thick zeolite layers are necessary to get a pinhole-free and crack-free 

zeolite layer (De Beer, 2000). 

 

Mixed matrix membranes (MMMs) are a well-known solution to improve the 

thermal and mechanical properties of polymeric membranes. MMMS are formed by 

homogenous incorporation of an inorganic material in the form of micro- or nano-

particles (discrete phase) into a polymeric matrix (continuous phase). The 

combination of the two different materials provides high selectivity of inorganic 

phase and low cost of polymer phase that give better design for CO2-selective 

membrane. However, the performance of MMMs suffers from defects caused by 

poor interaction at the molecular sieves/polymer interface which forms non-selective 

void spaces. Additionally, MMMs encounter plasticization problem caused by CO2 

adsorption (Yang et al., 2008; Ismail et al., 2009; Brunetti et al., 2010). 

  

1.4 Hydrotalcite compound for CO2 separation 

 Hydrotalcite (HT) is a class of anionic clays called layered double hydroxide 

(LDH) or hydrotalcite-like compounds. The general chemical formula of hydrotalcite 
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is [M1−x
2+Mx

3+(OH)2](An−)x/n .mH2O], where M2+ the divalent cation (e.g., Mg2+, 

Ni2+, Co2+, Zn2+, Cu2+); M3+ is the trivalent cation (e.g., Al3+, Fe3+, Cr3+); An− is the 

anion (e.g., CO3
2−,SO4

2-,  NO3
−, Cl−) and x is the ratio of  (M3+/M2+ + M3+)  with 

values range from 0.2 to 0.33. These materials exist with positively charged layers of 

brucite [Mg(OH)2], and aluminum hydroxide [Al(OH)3], which are balanced by 

anions and water molecules in the interlayer region as shown in Figure 1.1 (Reichle, 

1985; Cavani et al., 1991; Salomão et al., 2011). HT compounds have attracted much 

attention worldwide since they find a wide range of applications. Various important 

applications include catalysis in dehydrochlorination and recovery of hydrochloric 

acid (Kameda et al., 2007) and decomposition of urea (Vial et al., 2006). HT has 

already found use in pharmaceutical industries as a drug carrier (Lee and Chen, 

2006). HT can also be applied in the purification of wastewater as sorbent to remove 

phosphates or heavy metals (Li et al., 2009). In particular, HT has been intensively 

investigated in recent years as adsorbents for CO2 at high temperature to reduce the 

greenhouse emission into atmosphere. HT has adequate mechanical strength when it 

is exposed to high pressure, it exhibits high capacity and selectivity to adsorb CO2 at 

high temperature, adequate CO2 adsorption/desorption kinetics for CO2 at operating 

conditions, and stable adsorption capacity of CO2 after repeated 

adsorption/desorption cycles (Yong et al., 2002). The CO2 adsorption capacity of HT 

is influenced by many factors such as aluminum content, anion type, water content as 

well as the heat treatment temperature. The effect of these factors on CO2 adsorption 

at high temperatures was investigated on several commercially supplied HTs at 

higher temperatures (300 oC). Their results revealed that the capacity for CO2 

increases when the amount of aluminum was decreased and that there is an optimum 

aluminum content in the HTs for adsorption of CO2. The presence of small amount of 
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water in the HTs also favors the adsorption capacity. Similarly, under dry and wet 

feed condition, the capacity for the wet feed conditions was found to be 

approximately 10% higher than for the dry feed condition.  Adsorption capacities of 

HTs having CO3
2- and OH anion reveal that the HTs containing CO3

2- show higher 

adsorption capacities than those containing OH- (Baba et al., 2010). However, 

researches on the fabrication of HT material as a CO2 selective membrane has been rarely 

conducted (Othman, 2009; Kim et al., 2009a).  

 
 

 

Figure 1.1: Schematic representation of the HT structure (Salomão et al., 2011) 

 

1.5 Problem statement 

 The inorganic membrane has been widely studied for preparation and 

modification of CO2-selective membranes because of its high resistance against heat 

and chemicals (Yeo et al., 2012). However, the attempt to prepare uniform and thin 

inorganic membrane is a very challenging work. Many factors affect the production 

of high quality inorganic membrane. These include: the right choice of synthesis 

method and suitability of preparation conditions. The most important features of the 
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good CO2-selective membrane are high CO2 permeation flux and selectivity for CO2 

from the gaseous mixture. High CO2 permeation flux reduces the required 

membrane area and high CO2 separation selectivity under low driving force is 

important to confirm the high separation efficiency of the prepared membrane, 

therefore the capital separation cost will be reduced (Lu et al., 2007). However, the 

membrane performances have to balance between CO2 permeation flux and CO2 

separation selectivity. Generally, the increasing membrane thickness decreases the 

gas permeation flux, but at the same time increases the gas separation selectivity. 

The synthesis of a defect free and thin membrane layer is desirable for both high gas 

separation selectivity and gas permeation flux. This is one of critical issue along 

with the challenges to prepare a membrane with the desired characteristics. 

 

The inorganic molecular sieve membranes made from zeolite, carbon and 

silica currently suffer problems such as brittleness and low permeability. In this 

work, a molecular sieve hydrotalcite membrane is prepared and characterized for the 

first time in order to investigate its potential to solve some of the issues faced by the 

membranes described earlier. Its separation performance with the other molecular 

sieve membrane namely pure silica membrane is also compared. Hydrotalcites are 

very attractive materials for CO2 adsorption at elevated temperature in the presence 

of water. Therefore, in this research the fabrication of new membrane from HT 

material modified porous alumina and silica membranes to increase the separation 

selectivity of CO2 from different gaseous mixtures is a subject of this study. 

Modification of the internal pore surface of alumina membrane with HT increases 

the amount of adsorbed CO2 resulting in increase of the CO2 diffusion and 

separation selectivity. The composite membrane of HT-alumina is expected to 
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provide high gas permeation flux due to the bigger pore size of alumina 

(mesoporous) and adequate separation factor. 

 

Separation of gas using membranes follows a few mechanisms. In molecular 

sieve mechanism, the separation is based on the kinetic diameter of the gas 

molecules. The gas with small kinetic diameter penetrates through the pores, 

whereas the larger kinetic diameter cannot pass through these pores. High gas 

selectivity and permeation flux for the small gas molecules in a gas mixture can be 

achieved from molecular sieve membranes. However, the separation selectivity and 

gas permeation flux can further improve the interaction between gas molecules and  

pore  wall,  resulting  in  an  additional  transport  along  the  surface.  The second 

mechanism called surface affinity for porous materials can also drastically decrease 

or eliminate the transport of weakly adsorbed molecules through the pore by 

reducing the size of pore mouth by the adsorbed molecules (Moon et al., 2004). 

Separation  layers  can  be  chemically  modified  in  order  to  change  the  surface  

affinity of the  membranes.  In this way the  pore  size  can  be  changed and/or  the  

chemical  character  of the  surface  can  be modified (Keizer et al., 1988). With  

smaller pore  size  it  is  expected  that  the  gas-solid  interaction and surface affinity 

play a bigger role than the other gas diffusion phenomena. 

 

1.6 Research objectives  

This research is aimed at developing a novel porous HT membranes with 

molecular sieve characteristics for CO2 separation from natural gas, flue gas and fuel 

streams. The present research study has the following objectives:  
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1. To develop and synthesize HT-modified porous membranes by sol-gel 

method at different HT vol. % and sintering temperature. 

2. To characterize and analyze the physical and chemical properties of HT-

modified porous membrane. 

3. To evaluate and study the performance of HT-modified porous membranes 

for single gas CO2, H2, N2, and CH4 permeances and permselectivities over 

wide range of pressure differences and operating temperatures. 

4. To study the performance of HT-modified porous membrane for CO2 

permeation and separation from different binary gaseous mixtures contains 

CO2/CH4, CO2/N2 and CO2/H2 over different range of operating parameters 

(operating temperature, pressure difference across the membrane and CO2 

feed concentration).  

5. To optimize and build up an empirical model for CO2 permeance and CO2 

separation selectivity for different mixed gas mixtures contains CO2/CH4, 

CO2/N2 and CO2/H2. 

 

1.7 Research scope  

This research focuses on the synthesis, development and characterization of 

porous membranes modified with HT as a CO2 affinity membrane. For this purpose, 

different HT vol. % in the composite membrane and different sintering temperatures 

are to be investigated carefully. The synthesized membranes are characterized in 

order to understand its chemical structure, surface morphology, CO2 adsorption 

capacity, porosity and pore size distribution. The steps outlined below leads to the 

accomplishment of the research objectives. These are:  
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1.7.1 Synthesis of unmodified alumina and silica membranes via sol-gel 

method 

The alumina membrane is synthesized from sol-gel method following the 

documented work in (Ahmad et al., 2005; Ahmad et al., 2006b). In this research 2 

vol.% of PVA solution containing 4 g of PVA in 100 mL of water is used as a 

binder, as reported previously that this ratio of binder is adequate to achieve an 

appropriate porosity level to avoid cracks on the gel layer. Whereas, the silica 

membrane is synthesized from sol-gel method following the procedures reported by 

(De Vos and Verweij, 1998; Peters et al., 2005). The polymeric silica sol was 

prepared by hydrolysis and condensation of tetraethylorthosilicate (TEOS) in ethanol 

with nitric acid (HNO3) as catalyst. The standard molar ratios of TEOS-ethanol-

water-HNO3 are used. 

 

1.7.2 Development of alumina and silica membranes with HT material via sol-

gel method 

HT sol was prepared from sol-gel technique by controlling hydrolysis and 

condensation of aluminum tri-sec butoxide and magnesium methoxide following the 

documented work (Valente et al., 2007; Prince et al., 2009). The HT-alumina 

membrane was prepared by mixing together the freshly prepared alumina sol with 

HT sol at different volume ratio followed by dip coating the support in this mixed 

sol. Whereas, the HT-silica membrane was prepared by mixing together the freshly 

prepared silica sol with HT sol at different volume ratio followed by dip coating the 

support in this mixed sol and sintering it at different temperature.   
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1.7.3 Characterization of unmodified and the modified porous membranes  

The synthesis membrane samples will be characterized and re-evaluated using 

the following equipment:  

• X-ray diffraction (XRD) technique will be used to characterize the membrane 

internal structures and compositions of the membrane. The XRD patterns 

should suggest the presence of HT in the porous membrane sample. 

• Fourier Transform Infrared spectrometry (FTIR) test will be used for the 

determination of surface functional groups. These functional groups govern 

the activity of the membrane. 

• Brunauer-Emmett-Teller method (BET) method will be used to determine the 

surface area, pore size, volume and pore size distribution for the suggested 

membrane. These physical properties of the membrane govern the 

permeability and selectivity of the membrane because they indicate whether 

that the CO2 gases can penetrate through the membrane pore or not. That 

permeability determines the amount of CO2 that can permeate through the 

membrane and the separation factor from other gases. 

• Thermo gravimetric analyzer (TGA) technique will be used to determine the 

changes in membrane weight in relation to the change in temperature. Also, 

TGA analysis will be used to determine the CO2 adsorption and desorption of 

the adsorbent through the change membrane in membrane weight when CO2 

gas is fed instead of N2. 

• Since it is of importance to characterize the surface topography and 

morphology of the membranes, scanning electron microscopy (SEM) will be 

employed for this purpose.    

http://en.wikipedia.org/wiki/Weight
http://en.wikipedia.org/wiki/Temperature
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1.7.4 Study of the permeation of single gas and mixed gas mixtures using 

modified HT porous membrane  

 All the unmodified and modified membranes with HT are subjected to 

preliminary single gas permeations of CO2, H2, N2 and CH4 at 30 ºC and 100 kPa. 

The modified HT membrane that has highest permselectivity performances of 

CO2/CH4, CO2/N2 and CO2/H2 will be selected for single gas and mixed gas 

permeation studies over operating temperature range 30-190 ºC and pressure 

difference across the membrane of 100-500 kPa. In the mixed gas permeation and 

separation studies, three binary gas mixture were carried out CO2/CH4, CO2/N2 and 

CO2/H2 using the selected modified membrane over operating temperature of 30-190 

ºC and pressure difference across the membrane of 100-500 kPa and CO2 feed 

concentration of 10-50%. 

 

1.7.5 Modeling, optimization for CO2 permeance and separation selectivity 

from mixed gas mixture and surface affinity study 

Design of experiments (DoE) was chosen to optimize and find out empirical 

equations for CO2 permeances and separation selectivities of the three binary gas 

systems of CO2/CH4 CO2/N2 and CO2/H2 using Design Expert software version 

6.0.6. The optimization of the process parameters was determined by using response 

surface methodology (RSM) coupled with center composite design (CCD). Whereas 

the statistical model equations are determined using quantitative data from the set of 

experimental runs.  
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1.8 Organization of thesis 

The thesis consists of five chapters and each chapter gives specific 

information about this research project. 

 
Chapter 1 (Introduction) presents a brief introductory of this research 

project. This chapter starts with the global issues and the importance of the CO2 

separation. This chapter also gives brief overview of the conventional and membrane 

technologies for CO2 separation and the definition of HT compound and its 

application in CO2 separation. At the end of this chapter, problem statements that 

provide basis and rationale to justify the research direction in the present study are 

elaborated. Based on the problem statement; the specific objectives of the research 

followed by the research scope are stated clearly in this chapter. 

 

Chapter 2 (Literature review) presents literature review on the background 

of the present research project. This chapter provides the literature review on the 

modification of γ-alumina membrane for CO2 separation, in addition to the sol-gel 

method for synthesis of γ-alumina membrane. The methods used for synthesis and 

modification of silica membrane for CO2 gas separation are also provided. Further in 

this chapter are reviews on the hydrotalcite compound for CO2 adsorption, the sol-gel 

method used for preparation of hydrotalcite and the efforts on fabrication of 

hydrotalcite membrane. At the end of this chapter, the gas transport mechanisms 

through inorganic porous membrane are discussed.     

 

Chapter 3 (Materials and Methods) describes the detail of materials and 

methodology used in this research project. The first part of this chapter presents the 
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list of all materials and chemicals used in present research project. The subsequent 

topics describe clearly the experimental procedures for synthesis method of 

membrane support, unmodified alumina and silica membranes, modified alumina and 

silica membranes with HT, characterization methods and analytical techniques. At 

the end of this chapter, details of experimental procedures of the gas permeation and 

separation test in measuring the gas permeation and separation and also gas sample 

analysis are elaborated.  

 

Chapter 4 (Results and Discussion) presents the experimental results and 

discussion of the present research project. The first section of this chapter presents 

the characterizations of unmodified and modified porous membranes with HT. The 

subsequent topic presents the preliminary single gas permeations comparison 

between the synthesized membranes. This is followed by single gas permeation of 

CO2, H2, N2 and CH4 and mixed gas permeation and separation studies of three 

systems CO2/CH4, CO2/N2 and CO2/H2 through the selected modified membrane 

with HT. In the last part of this chapter, DoE approach was discussed to optimize the 

operating parameters and build up empirical equations to represent CO2 permeances 

and separation selectivity for the three systems of CO2/CH4, CO2/N2 and CO2/H2.  

 

Chapter 5 (Conclusions and Recommendations) gives the conclusive 

attainment of all the major finding obtained in this research project. Suggestions and 

recommendations for future work to improve the present research work are also 

presented.  

 



19 
 
 
 

CHAPTER 2 

 
LITERATURE REVIEW 

 

This chapter provides the literature review of application of γ-alumina in gas 

separation, the methods used to enhance the surface diffusion and the synthesis 

fundamentals of γ-alumina membrane by sol-gel method. Next, various methods 

used in the synthesis of silica membrane for gas application are reviewed. The 

following section also reviews the modifications of silica membrane by doping 

elements to enhance its properties. Further in this chapter are reviews on the 

synthesis methods of hydrotalcite compounds and the synthesis of hydrotalcite 

membrane. Finally, literature review on the gas transport mechanisms for inorganic 

membranes is also provided. 

 

2.1   γ-alumina membranes for gas separation 

Although the synthesis of mesoporous γ-alumina membranes stalled in the 

early 1980’s, many valuable experimental details were revealed. These details 

included type of metal-organic compound, temperature of hydrolysis, amount and 

type of acid used as a peptizing agent, amount of binder adding to create defect free 

membrane and permeability of gases (Leenaars et al., 1984; Leenaars and Burggraaf, 

1985b; Leenaars and Burggraaf, 1985a; Othman et al., 2001; Kwon et al., 2012).  

Inorganic mesoporous alumina material have been selected to prepare a membrane 

for CO2 gas separation since it is thermally and chemically stable and has good 

mechanical strength (Kwon et al., 2012). Generally, the mesoporous alumina 

membrane provides high gas permeance but low selectivity due to transport of the 

gases through the pores by Knudsen diffusion mechanism in which the light gases 
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permeate faster than heavy gases (Mukhtar and Othman, 2004). A well-known 

example is Knudsen separation of uranium isotopes (Keizer et al., 1988). Higher 

Knudsen separation values are obtained for light gases such as H2/CO2 with a 

separation factor of 4.7. Moreover, mesoporous γ-alumina membranes had an 

essential function as intermediate layer on macroporous supports in order to provide 

a smooth pore size transition between the support and the more selective 

microporous silica membranes (Xomeritakis et al., 2009). Therefore, to achieve high 

separation factors, different mechanisms for gas transport through γ-alumina have to 

be employed. 

 

Separation factors can be enhanced by introducing an interaction between 

one of the gases in the mixture and the membrane pore surface. If the adsorbed gas 

is mobile along the surface of the pore wall, it will diffuse in the direction of 

decreasing driving forces. The additional diffusion enhanced the gas permeance and 

separation factor of the more adsorbed gas. The presence of this type of transport, 

called surface diffusion, is frequently described in porous materials (Othman, 2009). 

 

A few efforts have been reported to improve γ-alumina membranes to 

facilitate CO2 surface diffusion. Keirzer et al. (1988) and Uhlhorn et al. (1989b) 

modified the γ-alumina membrane with magnesia (MgO) by impregnating technique 

to improve CO2 surface diffusion and conform an increase in CO2 adsorption. 

However, the modified membrane showed CO2/N2 separation factor of only unit 

nearly to the Knudsen separation factor value, 0.8. They suppose that strong 

adsorption of CO2 occurred on the MgO sites, resulting in a decrease in CO2 

permeation rate.  
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Cho et al. (1995) improved the CO2 surface diffusion by doping calcium 

oxide (CaO) into the γ-alumina membrane. The CO2/N2 separation factor was 

enhanced to be 1.72 at 25 ºC and decreased with increase in the temperature to reach 

1.5 at 200 ºC. It was concluded that the separation factor could be enhanced by 

applying surface diffusion mechanism when the membrane is microporous and the 

operating temperature is low. 

 

Hyun et al. (1996) modified the top layer of γ-alumina composite membranes 

supported on α-alumina and titania by silane coupling with phenyltriethoxysilane to 

improve the CO2 affinity. It was found that the separation factor of the modified γ-

alumina membranes with silane coupling was strongly dependent on the 

hydroxylation tendency of the support materials and the amount of phenol radical. 

The CO2/N2 separation factor through the γ-alumina-titania membrane modified with 

the 10 wt. % silane solution was 1.7 at 90 ºC and pressure difference of 200 kPa for 

the equimolar binary gas mixture, whereas, there was no improvement of CO2/N2 

separation factors in the α-alumina supported case. 

 

Lee et al. (2005) and (2006) investigated the effect of adsorption capacities of 

different gas species He, N2, CH4, C2H6 and CO2 on the permeation properties of 

mesoporous γ-alumina supported on α-alumina. It was observed that the permeation 

of the adsorbing gas species (C2H6 and CO2) increased through preferential 

adsorption on the membrane pore surface. It was observed that the permeance of the 

adsorbing gas components (C2H6 and CO2) in the single gas system increased 

through preferential adsorption on the membrane pore surface more than the 

predicted value by the Knudsen diffusion. While for binary gas systems, the 
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adsorbing gas component limited the diffusion of the weakly adsorbing gas through 

the γ-alumina membrane. It was concluded that the improvement in the adsorption 

capacity of membrane could enhance the separation factor in the presence of the 

adsorbing gas component due to the surface diffusion mechanism. 

 

2.1.1  Synthesis of γ-alumina membrane by sol-gel method 

The sol-gel process is the most practical method for fabrication of micro or 

meso porous inorganic membranes. The process involves the transition of suspension 

colloidal particles in a liquid system called sol into a semi- rigid solid network linked 

together by surface forces called gel. Therefore the term “sol-gel” processing can be 

used to describe wet chemical synthesis of inorganic materials in which eventually a 

particulate gel is produced. The sol-gel process starting from transformation of 

inorganic molecular precursor (metal alkoxide) into a highly cross linked solid 

(inorganic polymer) by hydrolysis and condensation reactions. Metal alkoxides have 

the general formula  M(OR)z where M is a metal of valence z and R is an alkyl group 

(Rahaman, 1995). Alumina alkoxides Al(OR)3 where R = (C4H9) are commonly used 

as a metal precursor for synthesis of alumina membrane from sol-gel method due to 

easily hydrolyzed by water to form hydroxides. The hydrolysis step replaces an 

alkoxide with a hydroxide group from water and a free alcohol (butanol) is formed as 

follows: 

Al(OR)3 + H2O  →  Al(OR)2 (OH) + ROH                                                          (2.1) 

Once hydrolysis has occurred the sol can react further and condensation 

(polymerization) occurs resulting in boehmite (AlOOH) sol.  

Al(OR)2 (OH) + H2O → AlOOH + 2ROH                                                           (2.2) 
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The following reaction might also be possible, provided that the coordination 

number of alumina was satisfied to cause the nucleophilic attack which initiated and 

facilitated water condensation reaction, giving rise to the production of alumina after 

liberation of water (Teoh et al., 2007; Othman and Kim, 2008b). 

 AlOOH + AlOOH  →  Al2O3 + H2O                                                                   (2.3) 

During hydrolysis step hydrochloric or nitric acid can be added into the 

boehmite mixture to facilitate peptization of the solution to a clear sol so that highly 

dispersed metals in the solution can be obtained (Yoldas, 1975; Othman et al., 2001). 

Changrong et al. (1996) investigated the effect of acidity on the boehmite sol 

properties. Stable boehmite sol was prepared by hydrolysis of aluminum tri-sec 

butoxide in hot distilled water at temperature above 80 ºC and nitric acid was used 

as a sol peptizer. It was found that the size and shape of the sol particles as well as 

the viscosity affected by its acidity. For low acidity the sol particles was needle or 

rod shaped with diameters of a few nanometers and length around a hundred 

nanometers. Whereas, the sol particles change to granular or spherical shaped with 

diameter of 10-20 nm at high acidity conditions. On the other hand, the sol viscosity 

increased sharply with increase the acidity resulted in more chain between the 

particles and finally a tendency for gelation at high acidic conditions. The optimum 

mole ratio of acid to alkoxide used to obtain stable boehmite sol useful for synthesis 

crack free alumina membranes was around 0.07 (Ahmad et al., 2008; Kwon et al., 

2012).   

 

The crack formation during gels drying is the biggest challenge in the 

synthesis of γ-Al2O3 membrane from sol-gel process. Normally, organic binders are 



24 
 
 
 

added to the boehmite sol to avoid cracking formation in the initial drying process 

and during heat treatment. Polyvinyl alcohol (PVA) and polyethylene glycol (PEG) 

were found to be the most effective binders in the preparation of crack free γ-Al2O3 

membrane (Lambert and Gonzalez, 1999; Othman et al., 2001; Ahmad et al., 2008). 

Othman et al. (2001) investigated the effect of PVA content on the characteristics of 

the sintered γ-Al2O3 membrane. It was demonstrated that the increase in PVA 

addition caused essential increase in the boehmite sol viscosity. High-viscosity sols 

form γ-Al2O3 membranes developed cracks during drying and sintering. On the other 

hand, the pore size of the sintered membrane increased with the increased PVA 

content. It was concluded that defect free γ-Al2O3 membrane with small pore size 

was prepared using 2 vol. % of PVA solution containing 4 g PVA in 100 ml of 

water. 

 

Mesoporous γ-Al2O3 membranes were prepared by dip coating of boehmite 

sol onto α-alumina support and drying at room temperature for 24 h (Othman et al., 

2001; Ahmad et al., 2006b). The dried membranes were then sintered to get the final 

membrane. The membrane thickness was found to depend on the sol viscosity, 

dipping time and on the support pore size (Leenaars et al., 1984; Othman et al., 

2001). However, multiply coating of the γ-Al2O3 membrane on the support was 

applied to avoid crack formation.  

 

2.2 Silica membranes for gas separation 

  Silica is considered an interesting material in the fabrication of CO2 selective 

membranes due to its low cost, availability and unique properties. It shows 

exceptional thermal, chemical, and structural stability in both oxidizing and reducing 
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