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Abstract:. In the production planning it is essential to determine simultaneously the production
program, the lot sizes as well as sequencing and scheduling the batches: the planning of the
production program requires the knowledge of the available manufacturing capacities; these
depend, however, on the set-up times determined by lot-sizing, and the idle times of machines
induced by sequencing and scheduling. In addition, sequencing and scheduling depend on lot-
sizing, as set-up and processing times are influenced by lot-sizes. Lot-sizing and scheduling in
turn require the knowledge of the production program. In this paper, the approach of
hierarchical production planning and the concept of transfer functions is applied to describe the
interactions between the production program and lot-sizing decisions. As a first step, a basic
linear model to optimize the production program is formulated. Then transfer functions
describing the relation between the quantities to be produced, the optimum lot-sizes and the
relevant cost induced by the optimal inventory policy are determined by solving inventory
models for all possible quantities of goods to be produced.
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1.  The Basic Idea

Hierarchical models are conceived to avoid the disadvantages of sequential as well as of
simultaneous models and to combine the benefits of both approaches. The objective of these
models is to reduce the complexity without neglecting the interdependencies between various
aspects of a planning problem. In the case of production planning and inventory management,
both problems are solved at different hierarchical levels using separate models, which are
only interrelated by the targets set by the upper level deciding on the production program, and
the feedback reported by the lower level setting the number and sizes of lots. The model of
hierarchical production planning to be presented here may be described as follows:

(1) A company produces m goodsj=1, ..., m.
(2) The maximal quantity of product j which can be sold during period ¢ is vj;™; the

demand is considered to be deterministic but varies during the periods ¢ = 1, ..., T,
moreover, there are minimal quantities to be delivered v3™.

(3) Capacities b, of machines i = 1, ... , n are available; to produce one unit of product j,
a; units of machine capacity i are required.

(4) The selling of one unit of product j provides a net profit of 4, .

(5) The products are produced in lots. Set-up cost for each lot of product j are given by
CF; holding cost are equal to ¢} per unit of quantity and time.
(6) The lot-sizes of different products are determined independently from each other.

At the upper level, the production program is determined by using a linear programming
model (LP1). The objective is to maximize net profits:
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The following restrictions have to be considered:

Capacities: Za,-j.xj,sb, (i=1,...,n;t=1,...,1)
=]
Sales: VIR <x, SR G=1,...m;t=1,...,7)

The costs of inventories are not considered in this type of planning models. To include
this type of cost, a transfer function L,(x;) has to be established, which describes the

functional relation between the quantity x; of product j to be produced during the next period

and the cost of inventory, provided that optimal lot-sizes are determined at the second level
(inventory management). The transfer function L,(x;) is established for every product j =

1, ... ,m using simple inventory models to calculate the optimum lot-size for every quantity
x; . Figure 1 shows the coordination between production planning and inventory management:

Targets x; are set by the upper level and are given to the lower level. As a feedback, the

lower level has to report the transfer function, the cost for an optimal inventory handling in
relation with the targets, as well as any deviations from the targets.

Figure 1. Coordination in a Hierarchical Production Planning System
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2. Determination of a Transfer Function for Inventory Cost

By using inventory models, optimal lot-sizes and costs induced by this choice are
determined for all possible quantities of output x; of products j = 1, ... , m. To explain the

principle of a feedback by transfer functions, we now consider the Economic-Order-Quantity
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(EOQ) model of inventory theory. This implies that sales of products are distributed equally
over the planning period of inventory management. If the length of this period is z, then the
rate of demand is given by:

X

0; =

; / or,if r=1 x;=6, j=1,..,m 2)

T
The relevant cost of inventory induced by a planned production of x; as a function of lot-
sizes g is given by:
R

_ 2} 1 L
Ij(xj,qj')—;-xj +E'Qj-cj 3)
J

An optimal lot-size can be calculated by using the square root formula:
R
2.Cj .Xj (4)

o _
q9; = I3
€y

Substituting ¢° for g in /;(x;,q), we get:

1
Li(x;)=1;(x;,97)= 2.cf.cJL-.xj =Kj.x} 4

The transfer function has the following characteristics:
(1) It is not defined for x; <0, and is continuous and differentiable for x, >0

(2) It increases monotonously, and is strictly concave:

1
dLj(xj)=1

& E.Kj_xj2>0
7

2 3
2 - J

(3) For sufficiently large quantities x;, the curvature is very small:

5
M _3 K; _x;E
3
by 8
Due to this fact, the transfer function may be approximated in the relevant interval by a linear
function or at least by a piecewise linear function. This fact is shown in figure 2 for the

coefficients ¢ =1000, c; =10, d;=20.
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Figure 2. Transfer function of cost of optimal inventory policy
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In principle, other inventory models may be applied to establish transfer functions of

inventory cost as well.

The transfer function can be used to obtain a minimum lot-size x;?,‘*“ . This is defined as the

break even point, where the gross profit gained by selling x7" just covers the set-up and
holding cost:

L

2 R

. K; 2c;.c;

f min J J )

dl.xl=KI Xj :xj =[_d) = d2 (6)
J J

The existence of a single break-even point is guaranteed by the following facts:

() For x; = 0, the cost of inventory converge to zero but the gradient goes to «
(i)  For x; =0, the net profit is equal to zero, its increase is constant and equal to d;
(iii)  Net profit minus cost of inventory is negative in the environment of x ;=0

(iv)  Due to the strict concavity of the transfer function, the difference of net profit and
cost of the inventory is positive for sufficiently large x f

If the demand x, of a product in period # is less than the break even point x™", then this

product is considered to be “exotic” and has to be planned separately: That means, the
demand of several periods will either be combined in order to obtain a minimum lot-size
x5 ; or it will not be produced at all during that period. Hence, the quantity to be
produced will then be pre-determined as x,, =0.
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3. Production Planning with Transfer Functions

Having established the transfer functions for the inventory cost L;(x;) for the minimum
quantities to be produced x}™, we can now determine the production program. In order to
take into account cost of inventories, the transfer functions L ;(x;) have to be included into the
objective function of LP2:

T

D=Zi[dj1,,-L,.(xﬂ)]= max! (N

t=1 j=1

The capacity restrictions of LP1 remain the same:

m

Zay-.xﬂsb,- (Gi=1,....,n;t=1,...,1)

Jj=l
For exotic products, the sales restrictions

VIR S x) SV G=1,....m;t=1,...,7)
have to be modified to take into account pre-determined quantities:

0, for all exotic productsnot to be produced
v}','i“ = x}"i“, Jor all exotic products to be produced with minimal quantity

v}’,’m, Jor all other products
For all exotic products which are not to be produced, the upper limit has to be set to zero.
As L;(x;) is concave, the objective function LP2 is convex: as the second derivative of
L;(x;)is very small, it can, be approximated by a linear function,

Lizp=a,x;+8 ®)

the parameter are given by
_ L)L,

iT max min

Xjo TXj

Bj=L;(x]")-a;x " ®

The constant term 8; may be neglected, as it does not influence the optimum of solution.
Hence, the objective function of LP2 may be approximated by,

g

5=Zi[dj.xj,—-aj(xﬂ)]=>max! (10)

=1 j=1

The optimal production program may be obtained by solving LP2 with the simplex method
(or another method of linear programming).

Figure 2 shows that the linear approximation of the transfer function I i(x)

underestimates the cost of inventories. The result may be improved by approximating the
objective function through a piecewise linear function and by formulating the problem as a
separable problem (Hadley, 1964). This approach replaces the objective function by a
piecewise linear function. To do, so, net profits
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diy=d;xk ~L(x%) (11)
and calculated for a finite number of x% mesh points
Vi = x, <xd <<l =y (12)

The production program may then be determined as an optimal convex combination of mesh
points. :
The objective function of LP3 is given by,

i

T m
D =ZZ d% 2% = max! (13)

t=] j=1 k=1

.

The following restrictions have to be considered:
(1) Non-negativity and convexity conditions

220 (=lewm t=1..,T; k=1..,h;)

hy
D=1 (=leym t=1.,T)
k=1

2) For each variable, there are at most two neighboring weights i* positive
g g 7 P

(3) Capacity restrictions:

m
Zay.xﬂsbi (=l t=1,.,T)
J=l

(4) Sales restrictions:

v;'.,'i” Sxy < v}‘;‘”‘ (=L.,m t=1.,T)

(5) The relationship between the weights % and the variables x% is given by,

Ay
2= xh b (U=Loym; t=1,..,T)
k=1

If a convex function is to be minimized or a concave is to be maximized, then it is always
guaranteed that in the optimal solution only adjacent mesh points are considered, as a convex
combination of other mesh points come up with a less favorable result. This fact is
demonstrated in figure 3: If the function is to be minimized, then the convex combination of
the maximal and the minimal mesh point (dashed line) is higher than the combination of the
adjacent mesh points, e.g. of points x* and x* of points x*and x*, and of points x*and x*.

However, in the case to be considered here, a convex function should by maximized.
Hence, a convex combination of the minimal and the maximal mesh point will result in higher,
but invalid values for the function. Therefore additional restrictions must ensure that only
adjacent mesh points are combined. To solve this type of problems, Hadley (1964) suggests a
modification of the simplex algorithm of linear programming: The choice of a pivot variable

is restricted. 4%, can only be chosen as a pivot variable if no other AF with p#k-1 and

p#k+1 is basic variable, or if this A% is removed from the basis in the same step.
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If an optimal solution of the problem exists, then the algorithm will identify at least a local
optimum in a finite number of pivot steps.

Figure 3. Approximation of a convex function by a piecewise linear function

v

4. Balancing Production Program and Let-sizing

As indicated above, production planning assigns targets for the production of an entire
period. For lot-sizing decisions based on inventory models, this aggregated demand has to be
disaggregated. The EOQ model assumes that the sales or the input of goods are distributed
equally over the period. Furthermore, inventory models do not concentrate myopically on one
single period, but try to take into account the impacts of present lot-sizing decisions on future
situation. The EOQ model simply assumes that the present rate of demand will remain
constant over time. Consequently, lot-sizes do not exactly match to the targets; they rather
have to be adjusted according to the rate of demand. As a matter of fact, the number of lots
required to meet the targets may not be integral at all. Since the number of batches to be
processes during one period has to be integer, it has to be rounded up, and consequently the
quantity actually produced will differ from the target set by production planning. In Figure 4,
the optimal lot size, number of batches, and excess production are plotted down as a function
of the target.

Obviously, the excess production is zero, if the demand is equal to an integer multiple of
the optimal lot-size. As soon as the demand exceeds this critical value, and a further lot is
produced the excess production jumps up accordingly.

The question is, how to manage these deviations between production planning and
inventory control. This excess production may be accepted, because it anticipates future
demands and avoids suboptimal lot-sizes. On the other hand, it may be advisable to control
the deviations and to adjust lot-sizes at least partly to quantities allocated by the production
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planning for the respective period. We consider synchronization approach of how to tune
inventory management to targets set by program planning: Lot-sizes are tuned such a way that
the targets are completely fulfilled. The number of batches to be produced is either rounded
up or down to the next integer value and the lot-sizes are adapted accordingly.

Figure 4. Lot-sizes without restrictions on excess roduction, coefficients
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Lot-sizes are adapted exactly to the targets set by production planning. If the number of
batches, which corresponds to the optimal lot-size g7, is not integer, it is either rounded down
and the lot-size is increased, or the number of batches is rounded up and the lot-size is

reduced accordingly. To optimize adaptation, the alternative with the minimum of cost is
chosen.

Let z; = [x—i] z} ={x—j}+1 with [y] = greatest integer strictly less than y (14)
9j 9;
Then the adapted lot-size is defined by the solution of
l;(x;,q;)=min cf.z}+l.c§'.f—j-;cf.z'- +lcfx—j (15)
2 z;f 2 z;

Figure 5 shows that the resulting transfer function has similar characteristics to the case of
unrestricted lot-size ¢%: The transfer function is continuous, concave and piecewise linear.

This is due to the optimization of adjustment: At the break even points, the lot-sizes switches
from z; 2 zj. At these points, the cost of inventory management are equal, hence the



The 2nd International Conference on Research
and Education in Mathematics (ICREM 2) — 2005 713

transfer function is continuous. Between two critical points, where the number of batches
changes, the cost function is linear.

Figure 6 shows the differences between the synchronized inventory policy and the EOQ
model: In principle, relative deviations of lot-sizes as well as of cost of synchronization
decrease with the rate of demand. The functions are, however, not monotonous but have
declining peaks at the critical points.

Figure 5. Lot-size and transfer function in case of synchronization, coefficients
cf =1000, ¢ =10, d;=20
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Figure 6. Relative changes of lot-sizes and inventory cost in case of synchronization,
coefficients
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5. Integration into Hierarchical Production Planning

As the transfer function is continuous and convex in the case mention above, and as its
curvature is — apart from finite number of vertices — quite small, the approach proposed for a
transfer function derived from unrestricted EOQ model may be applied to the transfer
functions. In particular, vertices of the transfer functions may be used as mesh points for
separable programming. In order to approximate strictly convex transfer functions, additional
mesh points may be introduced.

6. Conclusions

In this paper, we present a concept of transfer functions to integrate targets set by a
superior level of decision making with decisions on a subordinate level in the framework of a
hierarchical production system. Using synchronization methods to adjust lot-sizes set by
production planning, transfer functions of cost of inventories are derived. These functions can
be applied to coordinate production planning based on the traditional mathematical
programming approach and lot-sizing based on the EOQ model.

In the case considered, the transfer functions for inventory cost have the structure:
e Increase monotonously and slightly concave.

e The second derivative is small in the significant region.
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e There is a finite number of vertices; the transfer function is piecewise linear.

¢ The increase in cost implied by the adjustment of lot-sizes is relatively small in the
relevant region; it oscillates lower with damped amplitudes with the quantity to be
produced

Transfer functions facilitate to consider cost of inventories in the objective function of
production planning. The set-up cost can be charged against quantities produced according to
the principle of causality: If a certain quantity has to be produced and a fixed rule to control
inventories is applied, then a given amount of set-up and holding cost have to be accepted.
This approach makes it possible to solve the fixed charge problem without introducing binary
variables. For exotic products with small demand, however, the decision whether a lot with a
run out time of several periods should be produced or not must be taken before starting the

programming model.

A production planning model, which considers the cost of inventory control, can be
formulated as a separable program and be solved using a modified simplex algorithm.
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