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PROSES ELEKTROGENERATIF UNTUK PEROLEHAN SEMULA EMAS 

DARIPADA LARUTAN SIANIDA DAN PEMBENTUKAN EMAS 

MIKROSTRUKTUR PADA MATRIKS BERASASKAN KARBON 

 

 

ABSTRAK 

 

 

Sistem elektrogeneratif telah diperkenalkan sebagai kaedah alternatif untuk 

perolehan semula emas daripada larutan akueus secara elektrokimia. Proses ini tidak 

memerlukan bekalan tenaga luar kerana pertukaran kimia berlaku secara spontan, 

malah pada masa yang sama, tenaga elektrik telah dihasilkan sebagai suatu produk 

sampingan. Dua jenis mod operasi telah dikaji. Reaktor statik yang beroperasi dalam 

mod elektrogeneratif telah digunakan untuk perolehan semula emas daripada larutan 

sianida. Larutan emas sianida digunakan sebagai katolit dalam kajian ini kerana 

larutan sianida merupakan agen pengekstrakan yang paling biasa digunakan dalam 

industri hidrometalurgi. Reaktor statik yang dilengkapkan dengan katod tiga dimensi 

iaitu grafit berliang dan karbon kekaca berongga (RVC) dan katod dua dimensi iaitu 

kuprum dan keluli telah digandingkan dengan anod zink. Sistem ini berupaya 

memperolehi lebih daripada 90% emas dalam masa 3 jam beroperasi. RVC yang 

diaktifkan merupakan katod yang paling efektif dengan kadar perolehan emas 

sebanyak 99% dalam satu jam beroperasi. Reaktor elektrogeneratif alir laluan  yang 

dilengkapi dengan RVC yang diaktifkan telah dikaji. Reaktor tersebut mempunyai 

kadar perolehan emas lebih daripada 99% dalam masa 4 jam beroperasi. Penilaian 

prestasi reaktor ini adalah berdasarkan kepekatan KAu(CN)2 awal dalam larutan 

sianida iaitu 0.051 mM, 0.508 mM , 2.54 mM   dan kadar alir katolit. Berasaskan 

keadaan eksperimen, kadar perolehan semula emas sangat bergantung kepada 

kepekatan awal emas dan kadar alir katolit. 



xviii 
 

Kinetik untuk proses elektropengenapan merupakan gabungan beberapa jenis 

proses penukleusan yang melibatkan  penjerapan, proses penukleusan dua atau tiga 

dimensi yang dikawal oleh pembauran  atau  kemasukan kekisi oleh ad-atom. RVC 

yang diaktifkan dengan larutan Sn/Pd mempunyai  saiz partikel yang lebih kecil.  

Pengaktifan ini menggalakkan proses penukleusan dua dimensi  dan nukleus emas 

akan membentuk di atas tapak aktif Sn/Pd  dan tumbuh secara lateral. Pembentukan 

elektrogeneratif emas menghasilkan saiz emas dalam julat 20-200 nm. Ia boleh 

digunakan sebagai cara alternatif untuk menghasilkan mangkin emas di atas  substrat 

berongga tiga dimensi. 



xix 
 

ELECTROGENERATIVE PROCESS FOR THE RECOVERY OF GOLD 

FROM CYANIDE SOLUTIONS AND THE FORMATION OF GOLD 

MICROSTRUCTURES ON CARBON-BASED MATRICES 

 

 

ABSTRACT 

 

 

The application of an electrogenerative system as an alternative to the 

electrochemical recovery of gold from aqueous solutions is presented. This process 

does not require an external supply of energy due to the spontaneous chemical 

reaction that takes place in the reactor while generating an external flow of current as 

a by-product. Two types of operation modes were investigated. A batch reactor 

operating in an electrogenerative mode is used in gold recovery from cyanide 

solutions. In this study, gold cyanide solutions serve as the catholyte because cyanide 

is the most common leachant used during the extraction of metals in the 

hydrometallurgical industry. The  batch reactor with an improved design using three 

dimensional cathodes namely porous graphite and reticulated vitreous carbon (RVC) 

and two dimensional cathode materials, copper and stainless steel plates were 

coupled with a zinc anode. The system resulted in more than 90% gold being 

recovered within 3 h of operation. Activated RVC serves as a superior cathode 

material having the highest recovery rate with more than 99% of gold being 

recovered in 1 h of operation. An electrogenerative flow-through reactor with an 

activated RVC cathode was also developed.  The reactor proved to be efficient in 

recovering more than 99% of gold within 4 h of operation.  The performance of the 

reactor was evaluated with initial KAu(CN)2 concentrations of 0.051 mM, 0.508 mM 

, 2.54 mM  and various electrolyte flow rates.  Gold recovery was found to be 

strongly dependent on electrolyte flow rate and initial gold concentration in the 

cyanide solution under the experimental conditions used. 
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The kinetics of the gold electrodeposition process can be described by a 

combination of different kinds of parallel nucleation processes namely adsorption, 

two dimensional or three dimensional nucleation process controlled by diffusion or 

lattice incorporation of ad-atoms. It was found that activation of RVC using Sn/Pd 

activation significantly decreased the particle sizes and promotes the 2D nucleation 

process where the gold nuclei will be preferably formed at the Sn/Pd active sites and 

grow laterally. Electrogenerative gold deposition produced gold deposits with size 

ranging from 20-200 nm. It could serve as a potential alternative method for gold 

catalyst formation on 3D microporous substrates.  
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CHAPTER 1 INTRODUCTION 

1.1 Metal Ions Removal and Recovery from Process Solutions. 

Metal finishing, electronics and hydrometallurgical industries are major 

sources of metal ion containing process streams. The report by United States-Asia 

Environmental Partnership (2002) stated that chemical and electronic industries in 

Malaysia account for 12% of the country‘s major industrial polluters.  According to 

the report, the local small to medium electronics and electroplating industries were 

found to dispose effluents containing heavy metal contaminants into domestic 

sewage drains without prior treatment. A cost effective treatment system is needed to 

recover and remove heavy metal ions from the industrial process streams. There is a 

trend in the metal finishing and processing industries to operate in a close-loop 

system (Pletcher and Walsh, 1993). The system is designed with complete recycling 

of excess reagents to ensure maximum utilization and minimal waste generation.   

  

There are several methods available for metal ions removal and recovery 

from process solutions. Among these techniques, precipitation is the most widely due 

to its simplicity and cost effectiveness. The solution pH is adjusted to the optimum 

range for precipitating the metal as a hydroxide. Other reagents such as sulphides are 

added to increase recovery. Metals such as copper and chromium have been removed 

from wastewater using precipitation methods. Hexavalent chromium has to be 

reduced to trivalent chromium by sodium bisulphite or sulphur dioxide (Cherry, 

1982). The subsequent process involved adding lime and caustic soda to increase the 

pH and precipitating the chromium as chromium hydroxide. The process is not 

selective, hence giving rise to a mixture of different metal precipitates. Treated water 
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is run through a clarifier to settle the solids. This method generates secondary 

pollution and involves high cost of sludge disposal in landfills. 

 

Electrodialysis is a process involving an array of ion exchange membranes 

positioned between a pair of electrodes. The applied voltage drives the flow of ions 

in solution and the membrane selectively transports ions having positive or negative 

charges and reject ions of the opposite charge. Removal, separation and pre-

concentration of ions can be achieved using this method. The electrodialysis method 

was applied in removal and recovery of nickel and copper ions from wastewater. 

(Ogutveran et al., 1997; Spoor et al., 2002; Wong et al., 2002; Cifuentes et al, 2004).  

Millmam and Heller (1982) demonstrated the successful application of the 

electrodialysis method in a gold plating operation. Electrodialysis was operated at the 

drag-out rinse following the plating bath. Ion exchange resins were used for the 

second rinse to recover the remaining gold. Gold recoveries up to 99% were 

achieved and the concentrate recovered by electrodialysis was returned directly to the 

plating tank. However, there is a problem about membrane durability which can 

potentially increase cost. 

 

Anion exchange resins have been used for the recovery of gold from cyanide 

solutions. The solution pH is adjusted and the solution flows through an immobile 

resin. Ions of interest from the solution are exchanged for similarly charged ions 

attached to the resin. Although such resins have higher loading capacities than 

activated carbon, they are much more expensive and their use involves special resin 

regeneration and elution processes (Gomes et al., 2001). This process has failed to 

gain wide acceptance compared to adsorption on activated carbon due to its higher 
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capital cost, poor physical strength of resin and less selectivity. Exhausted resin will 

need to be incinerated and this process will generate environmentally hazardous 

fumes. 

 

Adsorption is another method which is widely employed in metal recovery. 

Gold cyanide or gold chloride complexes are strongly adsorbed on activated carbon 

(Cho et al., 1979; Adam and Fleming, 1989; Jia et al., 1998). Although the 

mechanism has not been fully explained, this recovery system has gained wide 

acceptance in the gold mining industry.  Heap leaching of gold with alkaline sodium 

cyanide in mining industries will typically produce very dilute solutions containing 

0.5-10 mg L-1 of gold(I). The pregnant solution is then transferred to a series of tanks, 

where carbon is added. The gold is adsorbed onto the surface of the carbon. The 

carbon, with gold attached, is removed by screening. The gold bearing carbon is then 

passed through a stripping vessel containing heated sodium hydroxide-cyanide-water 

solution where the gold is desorbed. After the stripping process, the activated carbon 

can be regenerated. This preconcentration step will subsequently produce solutions 

of 50-2500 mg L-1 of gold(I).  Gold ions eluted from the adsorbents are not in their 

metallic state and will be subjected to electrolytic recovery or cementation (Stavart et 

al., 1999; Barbosa et al., 2001).  

 

Cementation has been used in metal recovery in hydrometallurgical 

processes. It is a metal displacement reaction where metal ions from an aqueous 

solution are precipitated spontaneously by a relatively more electropositive metal. 

Zinc dust was used in the Merrill-Crowe process to recover gold from cyanide 

solution. The overall chemical reaction for this process is shown in Eq. 1.1. 
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Zn + Au(CN)2
- + H2O + 2CN- ⇋ Au + Zn(CN)4

2- + OH- + 0.5 H2  (1.1) 

 

The solution is deoxygenated and soluble lead salts are added to the solution to 

inhibit passivation of the zinc surfaces which increase the cementation rate 

(Yannopoulos, 1991). Unfortunately, the resulting product is physically inseparable. 

 

In moving towards technologies that are both efficient and environmental 

friendly, electrochemical methods offer the most promising options. Metal ions can 

be removed and recovered in a single step. Electrochemical technology plays many 

important roles in environmental protection and covers a broad range of technologies 

which are summarized in Table 1.1 (Pletcher, 1992; Pletcher and Walsh, 1993).  

Electrolytic methods are mostly employed in industries such as in metal refining and 

recycling or water treatment.  However, electrolytic processes have limitations when 

dealing with low metal ion concentrations.  In wastewater treatment and 

hydrometallurgical processes, the concentration of metal bearing solutions ranges 

from 1 mg L-1 to 1000 mg L-1. In dilute solutions, the current efficiency of the system 

is very low due to the side reactions occurring in the system. The power consumption 

in treating dilute solutions is relatively high and thus it is not cost effective (Pletcher, 

1992).  

 

There are numerous research papers dealing with the electrowinning of gold, 

either from mining industries or electroplating wastes (Stavart et al., 1999; Barbosa 

et al., 2001; Reyes-Cruz et al., 2002, 2004; Spitzer and Bertazzoli, 2004). Stavart et 

al. (1999) used three-dimensional carbon felt for electrowinning gold where 
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Table 1.1  Scope of electrochemical techniques. 

Scope and details 

Metal Extraction, refinery, and production 
 Extraction of precious metals from sulphide ores, electrorefining of copper, 

lead, silver, nickel, electrowinning, cementation, aluminum recycling. 

Water treatment 
 Effluent treatment: Removal of toxic metals or organic chemicals from 

industrial waste streams using electrodialysis or electrolysis techniques prior 
to discharge. 

 Water disinfection: Ozonation, chlorination, hydrogen peroxide for removal 
of bacteria. 

 Recycling of process stream: Aim to regenerate redox reagents in the 
industrial process to achieve ‗zero effluent‘. 

Metal finishing and materials processing 
 Electroplating and electroless deposition, conversion coating forming suitable 

passive films such as in anodizing and chromating.  Electroforming, 
electrochemical etching and cleaning. 

Selective Chemical synthesis 
 Chlor/alkali manufacturing processes, organic electrosyntheses such as 

hydrodimerization of acrylonitrile, reduction of carboxylic acid. 

On site generations of chemicals 
 Chlorine and hydrogen peroxide can be generated on site avoiding hazards of 

transporting chemicals. 

Cleaner energy generation 
 Fuel cells, solar photovoltaic cells. 

Sensors 
 Electrochemical sensors are available for a wide range of gases in atmosphere 

such as CO, SO2, NH3, NOx 
 

Sources: Pletcher, 1992; Pletcher and Walsh, 1993 
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 gold extraction higher than 90% and current efficiencies ranging from 6% to 12% 

were achieved. Spitzer and Bertazzoli (2004) used a filter-press type electrochemical 

reactor to recover silver and gold selectively from electroplating effluents. Current 

efficiencies were found to be 15%-23%. Reyes-Cruz et al. (2004) studied gold and 

silver recovery from a three-dimensional electrochemical reactor with RVC 

electrodes and recovered 26% gold and 48% silver. All these treatment technologies 

are categorized as electrolytic cells, which need power consumption. Electrolytic 

systems involving low concentrations of gold will have kinetics and thermodynamics 

limitations even though the conductivity of the solution is high. Side reactions such 

as oxygen and water reduction tend to occur which cause low current efficiencies in 

all these systems (Reyes-Cruz et al., 2004; Spitzer and Bertazzoli, 2004). An 

alternative for electrochemical methods that can reduce operating cost for the 

precious metal recovery process would be the electrogenerative system. This method 

enables recovery of metals without any external supply of energy. 

 

1.2 Electrogenerative System and its Working Principle 

An electrogenerative reactor is a galvanic reactor. The galvanic process is an 

electrochemical process in which a chemical reaction that occurs in a system 

produces an electrical current. The equilibrium potential is obtained by subtracting 

the potential of cathode to anode and is related to the free energy of the overall cell 

reaction by following Eq. 1.2  

 

∆Go=-nFEo
cell=- nF (Ec-Ea)     (1.2) 
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where ∆Go is the Gibb‘s free energy, n is the number electrons accepted or released 

by the reaction per mole of reactant, F is Faraday‘s constant, Eo
cell is the overall cell 

potential, Ec is the standard reduction potential at cathode, Ea is the standard 

reduction potential at anode. 

 

All electrogenerative processes have a negative Gibb‘s free energy (∆G < 0) 

which means that they are thermodynamically favorable and are spontaneous redox 

reactions. As with all electrochemical techniques, the electrogenerative reactor is an 

elegant technology as the main reagent being the electron is a clean reagent.  

 

1.3 Electrogenerative Reactors 

Electrogenerative reactors incorporate two coupled electrode reactions. The 

electrical circuit is shown in Figure 1.1. The electrical contact is made through an 

external wire and current collectors attached to the anode and cathode. A voltmeter is 

used to measure the overall cell voltage. Generally, by the careful choice of anode 

and cathode materials, any redox reaction which is thermodynamically favourable 

can be utilized for metal recovery. Selectivity and the rate of the reaction can be 

controlled by varying the electrode potential using a resistance load in the circuit, 

using suitable electrodes and electrocatalysts. In electrolytic cells, the selectivity of 

the system depends on the cathode potential applied to the electrode.  

Electrogenerative processes can be made selective for particular reactions from the 

choice of electrodes and electrolytes used by the system.  
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Figure 1.1  Schematic diagram of an electrogenerative reactor and its electrical 
circuit. 
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1.3.1   Reactor Design and Operation Modes  

Operation of electrogenerative reactors involves many of the concepts of fuel 

cells and the factors considered in electrolytic cell design can also be applied to 

electrogenerative reactors.  Electrogenerative reactors can be operated in a batch or 

continuous mode such as a batch reactor, single-pass reactor and batch-recycle 

reactor.   

 

1.3.1.1  Flow-through and Flow-by Reactor 

The flow reactor can be classified in two groups: flow-through or flow-by 

systems (Pletcher and Walsh, 1992).  The classification is based on the direction of 

solution flow with respect to the electrical current through the anode and cathode.  

When the direction of the solution flow and electrical current flow is perpendicular to 

each other, it is called a flow-by system.  If these directions are parallel to each other, 

it is called a flow-through system.  Figure 1.2 shows the schematic diagram of a 

flow-through and a flow-by system with respect to the directions of current and 

solution flow. The reactors shown in Figure 1.2 contain two compartments in the cell 

assembly.  The reactor can be assembled with multiple electrode pairs or multiple 

reactors which can be connected in series or in parallel to increase cell performance.  

The configurations of the reactor in which the electrode pairs are in parallel and in 

series are shown in Figure 1.3 and Figure 1.4 respectively. 
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Figure 1.2  Flow-by and flow-through reactor configurations. 
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Figure 1.3 Parallel flow-by reactor with six electrode pairs (electrical circuits 

excluded). 
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Figure 1.4.  Flow-by reactor connected in series (electrical circuits excluded). 
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1.3.2  Three-dimensional Electrodes 

The most important component in the electrochemical reactor is the electrode. 

The electrode can be broadly classified into two types, namely two or three- 

dimensional electrodes.  These electrodes can be static or moving such as the rotating 

cylinder or rotating disc electrode. High mass transfer rates can be achieved with 

electrode movement while high surface area can be achieved with the use of porous, 

three-dimensional electrodes. Three-dimensional electrodes are more superior 

compared to two-dimensional electrodes when dealing with dilute process liquors 

due to the higher active electrode area per unit reactor volume leading to higher mass 

transfer rates even at low metal ion concentrations (Pletcher and Walsh, 1992; Walsh 

and Reade, 1994; Walsh, 2001).  Examples of three-dimensional electrodes are 

porous graphite electrodes, carbon felts, reticulated vitreous carbon (RVC), packed 

bed electrodes and active fluidized bed electrodes.  Studies involving these three-

dimensional electrodes can be found extensively in the literature (Pletcher et al. 

1991; Ponce-de- Leon and Pletcher, 1996; Widner et al. 1998).  

 

1.3.2.1 Porous Graphite 

Graphite is one of the allotropes carbon.  It is composed of a series of stacked 

parallel layer planes shown schematically in Figure 1.5.  Within each layer plane, 

each carbon atom is bonded to three others with sp2 bonding, forming a series of 

continuous hexagons in what can be considered as an essentially infinite two-

dimensional molecule. The hybridized fourth valence electron is paired with another 

delocalized electron of the adjacent plane by a van der Waals bond.  Graphite can 

conduct electricity due to the vast electron delocalization within the carbon layers. 

These valence electrons are free to move and hence able to conduct electricity.  
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Figure 1.5 Three-dimensional schematic of the graphite structure (Pierson, 1993) 
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However, the electricity is only conducted within the plane of the layers. 

There are  two known forms of graphite, alpha (hexagonal) and beta (rhombohedral) 

graphite which have very similar physical properties except that stacking of these 

layer planes occurs in two different ways (Pierson, 1993).  

 

 

1.3.2.2 Reticulated Vitreous Carbon 

 

RVC is an open pore foam material composed solely of vitreous carbon 

(Reticulated vitreous carbon- A new form of carbon, 2008). It has a honeycomb 

structure as shown by Figure 1.6. The structure of RVC is achieved by 

polymerisation of resin combined with foaming agents, followed by carbonisation. 

RVC is produced in several pore sizes, usually described as number of pores per inch 

(ppi). It has a free void volume between 90% and 97%, depending on the ppi grade 

and its three-dimensional porous structure offers high surface area, up to 66 cm
2
/cm

3 

for the 100 ppi RVC (Wang, 1981; Friedrich et al., 2004). It is suitable to use RVC 

as an electrode material especially in flow reactors which require high void volume, 

high surface area and low electrical and fluid flow resistance. RVC is one of the most 

chemically inert forms of carbon over a wide range of temperatures. Its chemical 

inertness, its wide range of usable potential (1.2 to -1.0 V vs. SCE) and the 

hydrodynamic and structural advantages of its open-pore foam structure make 

vitreous carbon foam an attractive material for electrodes (Wang, 1981). However, 

the skeletal structure of the material is brittle and needs support and the low 

volumetric carbon content means that care has to be taken to ensure uniform 

potential and current distribution through the material.  
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Figure 1.6 SEM micrograph that shows the three-dimensional honeycomb 

structure of RVC at 50x magnification 
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 1.3.3 Electrochemical Reactor Design with Three-dimensional Electrodes 

In electrochemical reactor design, achievement of efficient mass transport is 

necessary since the maximum current density for a reaction is directly proportional to 

mass transport coefficient. Efficient mass transport will minimize the differences in 

the composition of chemical species adjacent to electrode surface and bulk solution. 

The rate of reaction in a mass transport controlled process depends on the rate at 

which a particular species reaches the electrode surface. A high mass transport 

coefficient is favourable when dealing with dilute solutions. Apart from increasing 

the volumetric flow rate of the electrolyte passing through the reactor, mass transport 

can be increased by installation of turbulence promoters placed in the flow path of 

electrolyte. The turbulence promoters can increase local eddy currents and increase 

mass transport. Turbulence promoters also encourage uniform current and potential 

distributions by promoting mixing between the boundary layer and the bulk solution 

(Pletcher, 1992). 

 

The charge transport within an electrolyte solution depends on ionic 

conduction. The ionic conduction is described by physicochemical laws and 

quantities, where conductivity, ionic dissociation, ion mobility and transport number 

are each playing their own roles. The charge transport process also influences the 

current distribution on the electrode in the reactor. A non-uniform current density 

will decrease the current efficiency in the process. The main factors which influence 

current distribution is conductivity of the electrolyte, geometry and dimension of the 

electrode, activation overpotential at the electrode which depends on electrode 

kinetics and concentration overpotential which depends on the mass transport 

process. Because the potential distribution within an electrode is strictly correlated 
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with current distribution and the selectivity of redox reactions depends strongly on 

the potential applied to the surface, it is essential to ensure uniformity of the current 

distribution to increase current efficiency (Heitz and Kreysa, 1986). 

 

   The use of three-dimensional electrodes increases the reactor design 

complexities due to its non-uniform current and potential distribution (Pletcher and 

Walsh, 1992; Walsh, 2001).  The performance of an electrochemical cell using a 

three-dimensional electrode is critically dependent on the potential distribution 

within the electrode and penetration depth of the current. The potential in the liquid 

phase, Φs and solid phase, Φm tend to be non-uniform along the direction of current 

flow, due to the ohmic drop. In thin electrodes, the potential falls slowly, the driving 

force (Φm-Φs) for electrochemical reaction becomes smaller towards the current 

collector (Figure 1.7 (a)). If the electrode is thick, the driving force will become so 

small that the reaction rate is under mixed or charge control and the current is very 

low (Figure 1.7 (b)).         

      

Figure 1.8 shows that the potential distribution arises due to differences in 

liquid phase potential, Φs and solid phase potential, Φm in flow-through and flow-by 

reactors. For a flow-through porous electrode, if the electrode thickness is higher 

than effective penetration depth, theoretically very little of the porous electrode is 

operating under mass transport limiting conditions. Therefore, the effective electrode 

thickness is limited by a voltage drop. In a flow-by configuration, an ohmic drop 

occurs across the electrode thickness, electrode length can be extended to achieve a 

higher conversion per solution pass. It is important to note that distribution of 

potential, current density  and  flow  are  all  interrelated  in  a  three-dimensional  
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Figure 1.7   Electrode potential and normalized current density distribution in 
three-dimensional electrodes. (a) thin electrode (b) thick electrode. 
j(x) is the local current density at point x and j ave is the mean current 
density over all x (adapted from Pletcher and Walsh, 1992) 
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Figure. 1.8  Potential distribution in a three-dimensional electrode in (a) flow-

through (b) flow-by reactor. Dotted line shows solid phase potential in 
case of an excellent current conductor, (Φm =constant) 
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electrode (Langlois and Coeuret, 1990; Pletcher and Walsh, 1992; Doherty et al., 

1996). 

 

1.3.4  Ion Exchange Membrane 

Another component which plays an important role in electrogenerative 

reactors is the ion exchange membrane.  It works as a separator between the anolyte 

and catholyte of different compositions which enforces selectivity in the migration of 

ions between both compartments.  The advantages of using ion permeable 

membranes as a separator are its high selectivity, high stability and high rate of 

transport of ions through the membrane thus achieving high conductivity with low 

resistance (Davis et al., 1997).  Other considerations involve the cost of the reactor, 

low maintenance requirements, simplicity of design and installation, safety and ease 

of operation. Placement of an ion exchange membrane in the reactor should be 

considered carefully to minimize the interelectrode gap, which leads to an ohmic 

loss.  The cell design and operation mode are strongly dependent on the specific 

process application and objective of the operation.  

 

1.3.5 Electrochemical Transport Process 

Heterogeneous reduction of metal ions on the electrode will involve various 

transport processes. Mass transport, charge transfer processes must be taken into 

account in the studies of electrochemical reactors. Charge transfer determines the 

kinetics of the electrochemical reaction. Mass transport describes the transport of 

chemical species towards and away from the electrode surface; meanwhile charge 

transfer determines the current distribution in a reactor, influence the space time 

yield and the scale-up of electrochemical cell (Heitz and Kreysa, 1986).  
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1.3.5.1 Charge Transfer and Kinetics 

The kinetics of an electrochemical process depends on the relationship 

between cell potential and current. The equilibrium potential is obtained by 

subtracting the potential of cathode to anode and is related to the free energy of the 

overall cell reaction as indicated by Eq 1.2. 

 

However. Eq 1.2 does not taken into account the rate of reaction. The rate of 

reaction depends on the kinetics of the two electrode reactions. At equilibrium, the 

potential of an inert electrode in a solution containing both species O and R will be 

given by the following Nernst equation; 

 

E = E


RT

nF
ln

cR

cO

      (1.3) 

 

When a potential other than the equilibrium potential is imposed on the 

electrode, current will pass and the ratio of cO/cR will change according to the Nernst 

equation. If the electrode is made positive with respect to E, anodic current will flow 

and if it is made negative with respect to E, a cathodic current which is due to the 

conversion of O to R will be observed. Since oxidation and reduction depend on the 

charge transfer across the electrode and electrolyte interface, the rate constant for the 

reaction will be influenced by the local potential field which drives the charge 

transport. When an electrochemical reaction is slow, an overpotential is needed to 

drive the reaction. There exists an exponential relationship between current density 

and overpotential. The measured current is described by Butler-Volmer the equation 

shown as below; 
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j= jo
exp ((1-nF exp (-nF

RT RT
- )(

    (1.4) 

 

Where jo is exchange current density at the the equilibrium potential, α is charge 

transfer coefficient and η is overpotential. This equation shows that the kinetics of 

charge transfer depend on potential. Some electrode reactions are fast and give a 

reasonable current density close to the equilibrium potential. In contrast, others are 

slow and an overpotential is necessary to obtain a required current density. In most 

practical conditions, the potential will not be close to the equilibrium condition, one 

of the terms in this equation will be dominant. When the applied potential is negative 

with respect to equilibrium potential, the equation for the cathodic current becomes 

as follows; 

 

jc = jo -nF
RT

- exp ( )       (1.5) 

 

The equation can be written as:  

 

log j = log jo
nF

2.3RT
-

       (1.6) 

 

which is also known as cathodic Tafel equation (Bard and Faulkner, 1980; Pletcher, 

1992; Pletcher and Walsh, 1993). 
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1.3.5.2 Mass Transport  

There are three forms of mass transport, namely diffusion, convection and 

migration (Pletcher, 1992). Diffusion is the movement of species down a 

concentration gradient and it is described by Fick‘s Law.  An electrochemical 

reaction converts a reactant to a product at the surface of the electrode. There is a 

boundary layer adjacent to the electrode surface where the concentration of reactants 

and products in the boundary layer is lower and higher than the bulk solution 

respectively. Hence, reactants will diffuse from the bulk solution to the electrode 

surface and products will diffuse away from it.  

 

Convection is the movement of species due to mechanical forces. It is 

normally induced by stirring of solutions, electrode rotation and electrolyte flowing 

through the reactor. Convection can be categorized as free and forced convection. If 

it is caused by external influence such as stirring, it is called forced convection; 

whereas if it occurs spontaneously due to temperature variations, it is called free 

convection. 

 

Migration is the movement of charged spesies due to a potential gradient. The 

current of electrons through an external circuit must be balanced by the passage of 

ions through the membrane. If the reaction is carried out in a high concentration of 

inert electrolyte in solution, most of the charges will be carried by those inert species 

and less of the electroactive species is transported by migration.  
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