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SIMULASI RAMBATAN GELOMBANG CAHAYA DI DALAM PERANTI-

PERANTI FOTONIK 
 

 

ABSTRAK 

Disertasi ini adalah tertumpu kepada simulasi rambatan gelombang cahaya 

dalam peranti fotonik leper, ianya termasuk penyiasatan keadaan satu mod dalam 

pandu gelombang rusuk, reka bentuk pemutar dan pembelah polarisasi, penyiasatan 

pantulan berganda dalam pengganding interferens-berganda hablur fotonik dan reka 

bentuk pembahagi panjang-gelombang hablur fotonik hibrid 1-D dan 2-D dan antara-

silih saluran. 

Pendekatan yang diambil dalam reka-bentuk adalah menggunakan kaedah 

separa-analitik, ianya bagi membolehkan penggunaan proses optimisasi pantas. 

Teknik carian global dan simpleks setempat telah digunakan dengan meluas. Dalam 

penyiasatan keadaan satu mod dalam pandu gelombang rusuk dan reka bentuk 

pemutar polarisasi pandu gelombang silika kaedah “film mode matching” dan “finite 

element” telah digunakan. Kaedah “finite element – eigen mode expansion” 

digunakan dalam analisa rambatan pemutar polarisasi pandu gelombang silica. 

Kaedah indeks efektif kuasi 2-D dan “eigen mode expansion” digunakan dalam 

mereka bentuk pembelah polarisasi pandu gelombang silica, penyiasatan pantulan 

berganda dalam pengganding interferens-berganda hablur fotonik dan reka bentuk 

pembahagi panjang-gelombang hablur fotonik hibrid 1-D dan 2-D dan antara-silih 

saluran. 

Secara keseluruhan, kesemua objektif yang ditetapkan dalam tesis ini adalah 

tercapai. Dalam penyiasatan pandu-gelombang rusuk satu mod dari gallium 

arsenid/aluminium gallium arsenid (GaAs/AlGaAs), formulasi satu mod bagi pandu 

gelombang rusuk silikon atas silica didapati adalah juga terpakai kepada pandu-

gelombang rusuk GaAs/AlGaAs.  Satu kaedah langsung bagi menetapkan had satu 
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mod dalam arah menegak telah dikenal pasti dengan mengguna faktor kuasa 

terkurung dalam pandu gelombang tersebut. Peranti-peranti optik berasaskan pandu-

gelombang silika bagi tujuan pengawalan polarisasi isyarat telah disiasat. Satu reka-

bentuk pemutar polarisasi (TE/TM) menggunakan pandu-gelombang silika telah 

diperolehi dan panjang peranti tersebut adalah 790 m dan kecondongan dinding 

sisinya adalah 46
o
. Kecekapan peranti tersebut dalam menukar polarisasi adalah 99% 

dengan nilai “crosstalk” pada  -38 dB dengan kecekapan keseluruhan pindahan kuasa 

dalam lingkungan 81%. Bagi reka-bentuk pembelah polarisasi pandu-gelombang 

silika, ianya terdiri dari pengganding berarah tiga saluran yang simetrik, ditengahnya 

adalah pandu-gelombang konvensional dan  disebelah luar adalah dua pandu-

gelombang parutan. Satu reka bentuk yang padat telah diperolehi dengan panjang 

keseluruhan peranti tersebut adalah 340 m dan nisbah pembahagian isyarat 

polarisasi TE dan TM yang diperolehi adalah 36 dB dan 15 dB masing-masing.  

Akhir sekali dalam tesis ini, peranti-peranti optik yang berasaskan hablur 

fotonik hibrid 1-D dan 2-D telah dicadangkan dan disiasat. Dalam penyiasatan 

pengganding interferens berganda, kesan dari isyarat pantulan berganda dilihat 

sebagai sebab utama mengapa imej berkala dalam pengganding tersebut menyimpang 

dari prinsip pengimejan-diri. Dalam reka-bentuk pembahagi berganda panjang 

gelombang, satu reka-bentuk yang efisien dan padat telah dicadangkan bagi panjang 

gelombang 1.31/1.55 m, dengan panjang keseluruhan peranti tersebut adalah 12.33 

m. Kecekapan pemindahan kuasa peranti tersebut adalah 91% dan nisbah 

kepupusan adalah -23.7 dB dan -20.8 dB bagi panjang gelombang 1.31 m dan 1.55 

m masing-masing. Bagi peranti antara-silih saluran, dengan mengguna panjang 

interaksi sepanjang 2800 m, ianya menghasilkan renggangan saluran sebesar 0.8 nm 

dengan kecekapan keluaran sebanyak 90% 
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SIMULATION OF LIGHTWAVE PROPAGATION IN PHOTONIC 

DEVICES 

 

ABSTRACT 
 

This dissertation focuses on the simulation of lightwave propagation in planar 

devices, which include investigation of single mode conditions in rib waveguide, 

designs of compact silica polarization rotator and splitters, investigation of multiple 

reflections in photonic crystal (PhC) multimode interference couplers and design of 

hybrid 1-D and 2-D PhC wavelength division multiplexers and channels interleavers.  

In the design approach, we have adopted semi-analytical technique which 

allows us to incorporate fast optimization process. Global and local simplex search 

techniques were extensively used. In the investigation of single mode conditions in 

rib waveguide and the design of silica polarization rotator, full vectorial film mode 

matching and finite element methods were used. Propagation analysis in the silica 

polarization rotator was conducted using finite element eigen-mode expansion 

method. The quasi 2-D effective index method with eigen mode expansion method 

was used in the design of compact silica grating waveguide polarization splitter, 

investigation of multiple reflections in hybrid PhC multimode interference coupler 

and design of hybrid PhC wavelength division multiplexers and channel interleavers.  

Basically all the objectives set in the thesis were achieved. In the 

investigation of single-mode gallium arsenide/aluminium gallium arsenide 

(GaAs/AlGaAs) rib waveguide, single-mode formulation for silicon on silica is 

shown to be equally applicable to GaAs/AlGaAs rib waveguide. A direct method of 

identifying vertical single-mode cut-off limit is also established by using power 

confinement factor in the waveguide. In the design and optimization of polarization 

controlling optical components, compact silica polarization rotator and polarization 

splitter were investigated.  A compact silica polarization rotator of length 790 m 
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with slanted sidewall angle of 46
o
 was designed. It has an overall conversion 

efficiency of 99%, with very low crosstalk value of -38 dB and a power transfer 

efficiency of about 81%. As for the silica polarization splitter it consisted of a 

symmetric three channel directional coupler, with intermediate conventional 

waveguide at the center and two grating waveguides on the outside. a compact design 

was obtained with an overall length of 340 m and splitting ratio for the TE and TM 

polarized signals obtained at 36 dB and 15 dB respectively. 

 Finally in this thesis, optical components based on hybrid 1-D and 2-D 

photonic crystal structure were proposed and investigated. In the investigation of 

hybrid photonic crystal multimode interference coupler, the effect of multiple 

reflections is observed to be one of the main reasons why image periodicity in the 

couple departs from self-imaging principle. And in the proposed wavelength division 

multiplexer, an efficient design was proposed for 1.31/1.55 m wavelength, with a 

total device length of 12.33 m. Its power transfer efficiency is 91% and extinction 

ratios of -23.7 dB and -20.8 dB at wavelength 1.31 m and 1.55 m respectively. For 

the channel interleaver, an interaction length of 2800 m give a channel spacing of 

0.8 nm wavelength,  with output efficiency of 90%. 
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CHAPTER 1 

INTRODUCTION 

 

1.0 Introduction 

Photonics is the science and technology of generating and controlling 

photons, particularly in the visible and near infra-red light spectrum. Photonics as a 

science is closely related to quantum optics and optoelectronics. The emergence of 

photonic in communications and other applications are largely due to the advent of 

semiconductor laser (1960‟s) [1] and low loss optical fibers (1970‟s) [2]. Especially 

in telecommunication it is helped further by the development of erbium doped fiber 

amplifier (EDFA) [3,4] in 1987 and dense wavelength division multiplexing 

(DWDM) [5] in the 1990‟s. 

 

1.1 Photonic Devices and Integrated Circuits 

Photonic devices lie at the heart of the optical communications revolution. 

Major photonic devices include optical fibers/waveguides, couplers, electro-optic 

devices, magneto-optic devices, acousto-optic devices, nonlinear optical devices, 

optical amplifiers, lasers, light-emitting diodes, and photodetectors. Development 

and progress in these devices have been achieved not on single material platform but 

on many different materials, shown in Tables 1 and 2 [6].  

Optical components are built using materials including indium phosphide 

(InP), gallium arsenide (GaAs), lithium niobate (LiNbO3), silicon (Si), silica-on-

silicon (SOI) and organic polymer. Lithium niobate offers little practical promise as a 

material platform for integration since it cannot be used to practically implement 

active opto-electronic components like lasers and detectors.  

 

file:///D:\Thesis%20PhD\wiki\Photon
file:///D:\Thesis%20PhD\wiki\Infra-red
file:///D:\Thesis%20PhD\wiki\Light
file:///D:\Thesis%20PhD\wiki\Electromagnetic_spectrum
file:///D:\Thesis%20PhD\wiki\Quantum_optics
file:///D:\Thesis%20PhD\wiki\Optoelectronics


 2 

Table 1.1: Functions achieved to date at 1550 nm wavelength in key integrated 

optical material systems [6]. 

 

Table 1.2: Elemental optical functions and the corresponding ideal integrated optical 

material system(s) for operation at 1550 nm wavelength [6]. 

 

Although active opto-electronic devices can be implemented on GaAs, the 

intrinsic band-gap of GaAs generally only allows operation in the 850 nm 

telecommunication wavelength window, limiting its usefulness to local area network 

applications. Indium phosphide [7] and recently silicon [8], has demonstrated the 

ability to integration of both active and passive optical devices operating in the 1310 

nm or 1550 nm telecommunication wavelength windows, since it supports all the key 

high-value opto-electronic functions required in an optical transport to be integrated 

on a single substrate. 
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In silica-on-silicon technology, waveguide is formed in a silica layer by 

doping it with phosphorus or germanium atoms. Low-loss integrated silica 

waveguides on silicon allow for low loss coupling with optical fibers and are used to 

form a variety of planar lightwave circuits for optical branching, switching and 

filtering. Silica waveguides can also be used as platforms (motherboards) for hybrid 

optoelectronic integration [9]. Increases in integration density with this technology 

are restricted however, by the large minimal bending radius of silica waveguides that 

is of the order of a few centimeters. A significant denser integration has been 

demonstrated with higher index contrast silicon oxynitride (SiON) technology [10]. 

An index contrast in the order of 3.3% between the core of the SiON waveguide and 

silica cladding, allows the minimum bending radius to be reduced to below 1 mm. 

Further scaling is possible with silicon-on-insulator technology, where the waveguide 

is formed in a thin silicon layer. Extremely high refractive index contrast between the 

silicon core (n = 3.5) and silica cladding (n = 1.444) allows the waveguide core to be 

shrunk down to a submicron cross-section, while still maintaining single mode 

propagation at telecommunications wavelengths. Such extreme light confinement 

allows the minimal bending radius to be reduced to the micron range, opening an 

avenue to realize ultra-dense photonic integrated circuits on a single silicon chip [11]. 

However it also results in significantly enhanced propagation losses due to increased 

interaction of the waveguiding mode with the sidewall surface roughness [12]. 

In recent years, organic photonic polymeric materials have undergone rapid 

development and have exhibited large improvements in performance. Organic 

polymer waveguide do not have the limitation due to intrinsic bandgap as in group 

III-IV semiconductor material such as GaAs and InP, making it suitable for wide 

range of wavelength including blue light generated by gallium nitride (GaN) laser. 
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Complex switching and routing circuits with state-of-the-art performance have been 

demonstrated on a polymer waveguide platform. Organic photosensitive polymeric 

materials offer low cost, flexibility of design and fabrication, and performance 

suitable for photonic devices [13]. 

Extensive research is also currently being done on photonic crystal (PhC) 

integrated circuits [14]. Light propagating in one or two dimensional, periodically 

coupled, waveguiding structures shows effects that are not observed in bulk media. 

The new degrees of freedom that arise due to the micro structuring of optical sample 

allow for almost arbitrary tailoring of the dispersion relation, according to specific 

needs of device. For higher power of the optical excitation, nonlinear effects broaden 

the diversity of observable phenomena that arise due to the interaction of the 

nonlinearity and the unique features of the dispersion relation. Infiltration of these 

periodic structures with polymers or chemical substance [15,16] added a further 

ability to manipulate the dispersion properties using electro or acoustic optical effect. 

 

1.2 Motivations and Objectives in the Thesis 

The motivation to explore planar optical waveguide technology started with 

the national top-down project in the year 2002 [17]. And the basic structure that is 

vital to the design and fabrication of photonic devices is the photonic waveguide. 

Therefore the goal and scope of this thesis is to conduct theoretical investigation on 

the propagation of lightwave in photonic waveguides and devices. The basic 

waveguide structures identified for investigations are the gallium arsenide/ 

aluminium gallium arsenide (GaAs/AlGaAs) rib waveguide and silica channel 

waveguide. In this thesis the single mode condition was studied in GaAs/AlGaAs rib 

waveguide by investigating the lateral and vertical higher order modes, the 
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polarization birefringence of the fundamental polarized modes and compared some of 

these results with the silicon on insulator (SOI) rib waveguide properties available in 

literature.  Similarly for the silica waveguide, basic properties such as modal 

birefringence and hybridness due to structural deformation were investigated. Based 

on these results, polarization controlling devices such as polarization rotator and 

polarization splitter in silica waveguide were designed and characterized. Further 

enhancement in the polarization birefringence property was obtained by using the 

slotted waveguide structure [18,19]. The silica polarization splitter was designed and 

characterization based on slotted silica waveguide structure. 

As a natural progression, the slotted structures were investigated further. The 

slotted array structures are periodic in nature, however a full 3-D propagation 

analysis of these structures are very memory intensive and in order to reduce the 

computer resources required, only a 2-D effective index analysis was conducted on 

the periodic structure. Models for the multimode interference coupler, wavelength 

division multiplexer and channel interleavers based on 1-D and 2-D photonic crystal 

structures consisting of gallium arsenide (GaAs) dielectric rods in air were 

investigated. The waveguiding in these structures are in the air defect channel 

waveguide due to bandgap mirror confinement [20]. In real practical devices 

however it would be based on finite height columns of rods with omni-directional 

reflectors above and below the structure [21]. 

As an overview to this thesis, following the introduction given in chapter 1, 

chapter 2 gives some literature background about electromagnetic wave theory and 

chapter 3 gives the computational aspect used in this thesis. In the proceeding 

chapters, the optical waveguide and devices investigated are the single mode 

condition in large GaAs/AlGaAs rib waveguide, design and optimization of silica 
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based polarization controlling devices such as polarization rotators and splitters, the 

effect of multiple reflections in multimode photonic crystal waveguide coupler and 

finally the design of wavelength division multiplexer and channels interleaver for 

dense wavelength division multiplexers based on photonic crystal directional 

coupler. The following sections below summarized the motivations, objectives and 

results of these research topics and full report are found in chapters 4, 5, 6, 7 and 8 

respectively. Finally a conclusion on the research work presented in this thesis and 

future extension of these works are given in chapter 9. 

 

1.2.1 Single Mode Condition in GaAs/AlGaAs Rib Waveguide. 

 In chapter 4, single mode condition in gallium arsenide/aluminium gallium 

arsenide (GaAs/AlGaAs) rib waveguide was investigated. Rib waveguide is 

important optical device due to its ability to propagate light in single mode at large 

size comparable to single mode fibre. This would allow better power transfer 

between rib waveguide and single mode fiber optic, since the spot size of the 

lightwave are comparable [22,23].  

 In the single-mode condition in rib waveguide, various formulations such as 

one proposed by Soref et. al. [22] and Pogossian et. al. [23] were analysed. Even 

though these formulations are for silicon on insulator (SOI) rib waveguides, its 

validity to GaAs/AlGaAs rib waveguide was investigated.  Therefore one of the 

objectives in the study of GaAs/AlGaAs rib waveguide was to investigate the single-

mode cut off conditions, i.e. the maximum allowable width and slab height that 

maintain only single-mode propagation in the waveguide. Comparison were made 

between the effective indices of the modes in the waveguide, specifically the quasi-

TE ( y
H11, 

y
H21 , y

H31 and  y
H12) modes to the slab mode effective index. The second 



 7 

objective was to analysis the power confinement factors of the higher order ( y
H21

, 

y
H31

and y
H12

) modes.  

 The result obtained shows that the formulation given by Soref et. al. [22] is 

valid for GaAs/AlGaAs rib waveguides. It is observed that at single-mode 

GaAs/AlGaAs rib waveguide dimensions, only the fundamental mode effective index 

is larger than the slab waveguide mode effective index. And in the analysis of the 

power confinement factor, as the higher order modes evolve from leaky modes into 

guided modes, the power confined in the rib waveguide due to these modes would 

increase drastically, thus the results leads to a simple identification of the vertical 

(slab height) single mode cutoff. Investigation was also conducted to identify 

polarization independent rib waveguide structures. In a polarization independent rib 

waveguide, the fundamental quasi-TE and quasi-TM modes effective indices would 

be the same. Two optical waveguide's mode solving methods were employed in the 

investigation, the semi analytical film mode matching (FMM) method [24,25] and a 

full numerical finite element method (FEM) [26].  

 

1.2.2 Germanium Dioxide Doped Silica Polarization Rotator. 

One of the most important polarization controlling device in optical 

integrated circuit is the polarization rotator [27]. It is being used for example to 

improve isolation between signals in adjacent communication channels in optical 

transmission system, and by implementing polarization mode interleaving [28] in 

long distance transmission network. These applications require efficient on-chip 

polarization rotator that can be integrated with other optical components. Numerous 

design have been proposed [27,29-32], but in this thesis the design and optimization 



 8 

of silica polarization rotator based on slanted sidewall waveguide [27] was adopted 

due to its high conversion efficiency compared to other designs. 

 Therefore the objectives in chapter 5 were to investigate the effect of 

structural deformations (variation in width, height and slant angle) on the 

polarization rotation properties of a germanium doped silica waveguide, and to 

design and optimize a compact silica waveguide polarization rotator. The 

polarization rotator properties studied were the hybridness and polarization 

birefringence. As a results from this study, a polarization rotator design that is highly 

efficient and tolerant to fabrication errors, was obtained with a slanted structure with 

sidewall angle of 46
o
, height and width of 8.4 m and 5.8 m respectively. In the 

fabrication tolerance analysis, the critical parameter observed are the variation in the 

slant angle of the waveguide sidewall, where as the polarization rotator response is 

observed to be relatively stable with respect to the variation in the operating 

wavelengths. The optimum polarization rotator design obtained for operating 

wavelength of 1.55 m consisted of a rotator waveguide section, with an 

intermediate tapered slanted section to facilitate a better power transfer between the 

input/output sections and the rotator section. The overall polarization conversion and 

power transfer efficiencies are about 99% and 80% respectively. 

 

1.2.3 Low Refractive Index Grating Waveguide Polarization Splitter based on    

 Resonant Tunneling. 

 

In optical communication system, components based on polarization diverse 

scheme [33] would have the incoming optical signal split into TE and TM polarized 

state. One of the polarized states is then rotated and recombined using a power 

combiner. Splitting of optical signal into its respective polarization components is 

performed by a polarization splitter. Polarization splitters are based on different 
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principles [34-37] and these devices mainly utilize material with high refractive 

indices thus realizing a short and compact device due to its large polarization 

birefringence. Silica waveguide due to its low refractive index contrast would have 

low polarization birefringence thus the design of polarization splitters is normally 

rather large. In this work by the incorporation of slotted or grating structure [38], it 

enhances the difference in effective indices of the two polarization states therefore a 

short and compact silica waveguide polarization splitter may be achieved. 

The objectives in chapter 6 were to implement the design of a short and 

compact silica waveguide polarization splitter based on resonant tunneling [37] and 

to investigate its fabrication tolerance and loss analysis. In the design process, quasi 

2-D effective index method with global and local search method is employed to 

obtain the optimum design. In the polarization splitter design obtained the overall 

transmission efficiencies for the splitting of TM and TE optical components at a 

wavelength of 1.55 m are 88% and 83% respectively.  

 

1.2.4 Analysis of Multiple Reflections in Hybrid Photonic Crystal Multimode 

Interference Coupler. 

 

In this topic, multiple reflections in hybrid 1-D and 2-D gallium arsenide 

photonic crystal [39-41] multimode waveguides was investigated. In conventional 

multimode waveguide, self-imaging [42] is one of the most important phenomena 

observed. It is being exploited to design and fabricate numerous optical devices [42-

44]. However in photonic crystal multimode waveguide where the wave confinement 

is due to bandgap confinement [20], the reflectivity of all the modes in the waveguide 

is very large at the end facet of the waveguide. Therefore the objectives in chapter 7 

were to investigate the lightwave propagation in multimode photonic crystal 

waveguide, and the effect of multiple reflections on self-imaging phenomena. And it 
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is observed that multiple reflections are one of the main reasons why image 

periodicity in photonic crystal multimode interference coupler departs from self-

imaging principle. 

 

1.2.5 Hybrid Photonic Crystal Wavelength Division Multiplexer and Channel 

Interleaver. 
  

Wavelength selective components in optical communication system are used 

for wavelength multiplexing/demultiplexing of signals. In conventional optical 

waveguide structure, wavelength division multiplexer and channels interleaver may 

be realized in a form such as an array waveguide grating [45] and cascaded Mach-

Zehnder interferometer [46] respectively. In photonic crystal structure, numerous 

design of highly compact wavelength selective components has been reported. They 

are based on superprism [47,48], couple cavity waveguide [49], mini stopband effect 

[50,51], and directional couplers [21,52].  

For directional couplers based on 2-D photonic crystal, if the total length are 

large they are not suitable for channel interleaving application since a 2-D photonic 

crystal waveguide device exhibits relatively high propagation loss [53]. However 1-D 

photonic crystal waveguide exhibit lower loss [54,55]. Therefore in chapter 8, the 

objectives were to design and optimize a hybrid 1-D and 2-D gallium arsenide 

photonic crystal air defect channels wavelength division multiplexer for 1.31/1.55 

m and channels interleaver suitable for dense wavelength multiplexer. In this 

design, a coupled 1-D photonic crystal air defect channels was used in the interaction 

region sandwiched between input/output 2-D photonic crystal waveguides. The 2-D 

photonic crystal section was incorporated due to its superior wave bending efficiency 

[56,57]. An efficient design with power transfer efficiency of 91% and its extinction 

ratios of -23.7 dB and -20.8 dB at wavelength 1.31 m and 1.55 m respectively, 
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were obtained. And for the design of dense wavelength division multiplexer's 

channels interleaver with channel spacing of 0.8 nm wavelength, the power output 

efficiency obtained is about 90%.  

 

1.3 Major New Contributions 

New contributions in this thesis are:  

1.  Investigation of vertical mode cut-off in large GaAs/AlGaAs rib 

waveguide using the analysis of power confined in the rib section of the 

waveguide. 

2. Optimum and efficient silica polarization rotator design based on 

conventional slanted waveguides are presented. 

3.  Design and characterization of a compact silica polarization splitter based 

on resonant tunneling effect and grating waveguide. 

4.   Computation of photonic band diagram for 1-D photonic crystal using 

quasi 2-D effective index -eigenmode expansion method is introduced. 

5. Investigation of lightwave propagation and multiple reflections in 

photonic crystal multimode interference couplers.  

6. Design of a hybrid 1-D and 2-D GaAs photonic crystal wavelength 

division multiplexer for 1.31/1.55 m channel splitting and channels 

interleaver suitable for dense wavelength division multiplexing 

application with 0.8 nm wavelength spacing. 

 

1.4 Methodology and Computation Tools used in this Thesis 

This dissertation blends two types of lightwave simulations i.e. theoretical 

investigation of physical phenomena and design of photonic waveguide devices. The 

investigations of physical phenomena include investigation of single mode conditions 
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in rib waveguides and multiple reflections in photonic crystal multimode interference 

couplers. Photonic waveguide devices proposed include the compact silica 

waveguide polarization rotators, silica grating waveguide polarization splitters and 

the modeling of hybrid 1-D and 2-D photonic crystal wavelength division 

multiplexer and channels interleaver suitable for dense wavelength division 

multiplexer. In the design and investigation of the photonic waveguide devices, 

advanced optimization technique using global and local simplex algorithm were 

employed [58-60]. A combination of semi-analytical methods [61-63] to design and 

optimize, and numerical technique [64] in the verification of the designs were used. 

The general methodology adopted in the design and optimization process is given by 

the flow chart shown in Figure 1.1.  

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 1.1: Flow chart - general methodology in the design and optimization process. 
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Photonic softwares used in this thesis, are FIMMWAVE, FIMMPROP [63] 

and KALLISTOS [60] from Photon Design, CAMFR [61] which is freely available 

in the internet, and also multiphysics simulation tool Comsol v. 3.4 [64] that is based 

on finite element analysis. The propagation analyses employed are the quasi 2-D 

effective index method with eigenmode expansion (EIM-EME) [63] and 3-D finite 

element method with eigenmode expansion (FE-EME) [63]. 

 



 14 

CHAPTER 2 

DIELECTRIC WAVEGUIDE THEORY 

 

2.0 Introduction – Maxwell Equations  

Guided wave optical devices form the basis of modern optical communication 

systems. The basic physics governing these devices are the Maxwell equations [65-

67]. The four underlying Maxwell equations for electromagnetic fields in a source 

free, non-magnetic medium are 

   
t

H
E 0              (2.1) 

   
t

r

E
H 0              (2.2) 

   00 Er
              (2.3) 

   00 H               (2.4) 

In Eqs. (2.1) – (2.4), E is the electric field intensity vector and H is the magnetic field 

intensity vector, and the operator is defined as  

   zyx ˆˆˆ
zyx

             (2.5) 

The constants in Maxwell equations are the dielectric constant of free space, 

    
9

0

20 10
36

11

c
 F/m 

The permeability of free space, 7

0 104  H/m and the quantity c  is the velocity 

of light in vacuum. 

Taking the curl ( ) of Eq. (2.1) and substituting Eq. (2.2) yields an 

equation that depends only on the electric field intensity vector E  
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2

2

00
t

r

E
E             (2.6) 

Using the identity  EEE
2)(             (2.7) 

and substituting in Eq. (2.6), yields the wave equation 

   0
2

2

0

2

t

E
E                  (2.8) 

Considering only time harmonic fields with the time dependence represented by the 

real part of exp(i t), results in the time harmonic wave equation 

   0
2

0

22 EE kn              (2.9) 

where 
0

rn  is the refractive index, and 000k  the wavenumber of 

free space. The dielectric constant of the medium
r0
, where r  is the relative 

dielectric constant. 

 

Figure 2.1. A typical symmetric dielectric slab waveguide with its transverse and 

normal components to the dielectric interface shown as t and n respectively. 

 

At the boundary between the two media, shown in Figure 2.1, distinguish by 

the dielectric constants 1 and 2, in the absence of charge and current, the boundary 

conditions on the electric field component transverse (t) and electric displacement 

component normal (n) to the dielectric interface are 

   E1t = E2t            (2.10) 
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D1n = D2n            (2.11) 

Hence the electric field normal component becomes, 1E1n = 2E2n. 

Similarly, the boundary conditions on the magnetic field components transverse and 

normal to the interface are 

H1t = H2t            (2.12) 

B1n = B2n             (2.13) 

For a non magnetic material, r= 1, the normal magnetic field component, H1n = H2n 

 

2.1 Dielectric Waveguide  

Waveguides come in variety of different forms: slab waveguide, rectangular 

waveguide and circular waveguide in the form of optical fiber and holey fibers. The 

cores are assumed to have an average refractive index (dielectric constant, 1) higher 

than the cladding‟s (surrounding‟s) refractive index (dielectric constant 2). In the 

absence of conducting boundaries, electromagnetic fields exist both inside and 

outside the dielectric waveguide. The relative amount of energy propagating inside 

the core increases with an increase in the refractive index contrast between the core 

and the cladding. Considering the number of different waveguide structures [67,68], 

we present our discussion based on the simplest type waveguide: the dielectric slab 

waveguide.  

Some of the typical dielectric waveguides are shown in Figures 2.2 (a)-(d): 

(a) slab dielectric waveguide [69], (b) rectangular dielectric waveguide [69], (c) 

circular dielectric waveguide (optical fiber) [69] and (d) holey circular dielectric 

waveguide (holey fiber) [70]. 
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Figure 2.2. Type of dielectric waveguides. The dielectric constant of the surrounding 

is assumed to be 2, and the dielectric constant of the core, 1 is assumed to be larger 

than 2. 

 

For a general waveguide structure that propagates light along the z-direction, 

the dielectric constant can be written as (x,y), ie. the dielectric function is invariant 

along the direction of propagation. The field solutions for Maxwell equations are 

called modes and may be written in the following forms: 

)exp(),(),,,( tiziyxtzyx EE           (2.14) 

)exp(),(),,,( tiziyxtzyx HH          (2.15) 

These solutions or modes, would maintain their shape as the field propagates 

along the z-direction. Each mode is also characterized by its frequency , and its 

wavevector along the z-direction  (also known as propagation constant). The 

relation between the frequency and the propagation constant along the z-direction 

defines the dispersion relation. 

(a) (b) 

(c) (d) 
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 For a structure with uniform dielectric constant , Eq. (2.14) and (2.15) can 

also be written as  

)exp()exp(),,,( tiziyikxiktzyx yxEE          (2.16) 

)exp()exp(),,,( tiziyikxiktzyx yxHH          (2.17) 

where  222

2

2

0 yx kk
c

                    (2.18) 

and kx and ky are the wavevector components along the x and y directions. 

 

      

Figure 2.3. Light line, radiation modes and the phase space region for guided modes. 

 

Figure 2.3 shows that for a waveguide structure as shown in Figure 2.2(a), 

total internal reflection occurs when 2
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, in which case the field decays 

exponentially outside the guiding layer.  Thus in the -  plane, the guided modes can 

only exist in the phase space region above the light line of the cladding media. A 

further constraint imposed on allowed modes is the propagation constant is always 
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guided modes exist between two straight line that go through the origin in the -  

plane. The propagation constant is related to the effective index of the modes by the 

relation 
0k

neff , and the effective index of the guided modes based on the above 

results must be between the range 21 nnn eff , where rn . 

 

2.1.1 Dielectric Slab Waveguide Modes 

The slab waveguide supports a finite number of guided modes, leaky modes 

and infinite continuum of radiation modes. The guided modes, leaky modes and the 

radiation modes have to satisfy the wave equation, and can be obtained as solutions 

of a boundary value problem. Figure 2.4 shows different type of dielectric slab 

waveguides, symmetrical slab waveguide, asymmetrical slab waveguide and anti-

reflection resonant optical waveguide (ARROW) [20], which supports guided leaky 

modes. The refractive indices of the different layers are given by n1, n2, n3 and n4, 

and the thickness of the core (wave-guiding) layer shown with refractive index n1 is 

2d. 

   

Figure 2.4. Types of dielectric slab waveguides, (a) Symmetrical waveguide, (b) 

Asymmetrical waveguide and (c) Anti-reflection resonant optical waveguide 

(ARROW) 
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The modes of a dielectric slab waveguide shown in Figures 2.4 are hybrid 

modes in general, but they can be decomposed into quasi-transverse electric (TE) and 

quasi-transverse magnetic (TM) modes. 

A quasi-TE polarized light has one magnetic field component that is pointed 

out of the propagation plane and two electric field components which are within the 

plane. Quasi-TM polarized light has one electric field component pointing out of the 

plane and two magnetic field components which are within the plane. The wave 

equations (with x-z propagation plane) for quasi-TE mode are 

    0222

02

2

y

y
Hnk

x

H
           (2.19) 

    yx HE             (2.20) 

    
x

Hi
E

y

z            (2.21) 

and the wave equations for quasi-TM mode are   

    0222

02

2

y

y
Enk

x

E
           (2.22) 

    yx EH
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           (2.23) 

    
x

Ei
H

y

z

0

           (2.24) 

 

Typical field solutions for quasi-TM modes, assuming an asymmetrical slab 

structure shown in Figure 2.4(b), are shown in Figure 2.5. The dispersion diagram 

and the dependence of propagation constant on frequency is plotted in Figure 2.6. 

The modal propagation constant of the modes supported by the waveguide increases 

as the operating frequencies is increased. At lower frequencies (higher wavelengths) 
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the modes would couple into the radiation mode region. However in the forbidden 

region, no guided mode would be found as the fundamental mode effective index 

cannot be larger than the bulk refractive index of the core layer in the waveguide.  

 

 

 

Figure 2.5. Typical field profiles of the first four quasi-TM modes supported in a 

asymmetric slab waveguide shown in Figure 2.4(b). Typical propagation constants of 

the modes would have its propagation constants, 0 > 1 > 2 > 3. 

 

 

 

 

Figure 2.6. A typical dispersion diagram for quasi-TM modes in a dielectric slab 

waveguide: shown in terms of propagation constant and angular frequency.  
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2.1.2 Mode Expansion 

Apart from the discrete set of guided modes, radiation modes and leaky 

modes are also solutions to Maxwell equations.  Radiation modes form a continuum 

and having the property 2

3

2

0

22

2

2

0 nknk  for substrate radiation modes and 

2

2

2

0

2 nk  for true radiation modes. A detailed discussion of radiation modes can be 

found in reference [69]. Leaky modes are also radiation modes but they are 

considered as a continuation of guided modes, since they will become part of guided 

modes as the frequency (wavelength) increases (decreases), seen as the guided modes 

dispersion curves extending into the radiation modes region, as shown in Figure 2.6. 

The guided modes together with the radiation modes form a complete orthogonal set.  

 

2.2 Coupled Waveguide Array  

In coupled waveguide array, the array mode is described as a collective 

excitation or a „„supermode‟‟ of the individual waveguides modes, evanescently 

coupled to each other [71,72]. The supermode is described in terms of the individual 

modes complex amplitudes, with the details of the field between the waveguides 

contained in the coupling constant. A more general approach, in which waveguide 

arrays are regarded as an example of a general one-dimensional periodic optical 

structure, is the Floquet-Bloch (FB) analysis [73]. It predicts that the propagation-

constant spectrum of the array‟s eigenmodes is divided into bands, separated by gaps 

in which propagating modes do not exist.  

Considering the case of three parallel waveguides as illustrated in Figure 2.7, 

suppose that the central direction of propagation is in the direction of z-axis, i.e. 90
o
 

normal to the direction of periodicity, the periodic dielectric permittivity given as 
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axx             (2.25) 

with a being the periodic lattice constant. 

 

Figure 2.7. Two-dimensional view of arrayed waveguides in parallel made of a 

layered structure. The direction of wave propagation is 90
o
 normal to the direction of 

periodicity. 

 

 

 

      

 

Figure 2.8. Mode patterns of orthogonal modes when three parallel waveguides are 

brought close for directional coupling. (a)–(c): The field profiles for the six lowest-

order guided modes for the index structure of three coupled waveguides. (d) The 

relative magnitudes of kk b

x /  positioned with respect to n(x), the refractive-index 

profile of three coupled waveguides [72]. 

 

The amplitude patterns of guided modes created by bringing the three guides 

closely are schematically illustrated in Figures 2.8(a), (b) and (c) [72]. The three 

propagation constants diverge from the original value of an isolated waveguide as the 
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three guides are put closer. A typical dispersion diagram shown in Figure 2.9 is for 

three waveguide arrays clearly show the mode splitting as a result of coupling 

between adjacent waveguides. If we increase the number of parallel waveguides in 

the array, the diverging propagation constants form a near continuum which is called 

a band.  

 

 

 

 

 

Figure 2.9. A typical dispersion diagram for TM modes in a coupled dielectric 

waveguide as in Figure 2.8. As the three coupled waveguides are put closer, the three 

propagation constants diverge from the original value of an isolated waveguide, 

depicted in Figure 2.6.  

 

 

2.2.1 Photonic Band Diagram of 1-D Periodic Structure  

The one-dimensional arrays of high and low refractive index material would 

exhibit eigenmodes divided into bands, separated by gaps in which propagating 

modes do not exist. Suppose the periodic dielectric array as shown in Figure 2.10 is 

consisted of a polymeric compound [74] of high refractive index (n = 1.59) layer of 

width d, and low refractive index (n = 1.0) layer of width s. The period for the layer 

is a = d + s.  
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