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scouring mesh in tannase production medium. 
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Plate 4.12: Growth of free Aspergillus niger FETL FT3 cells in tannase 

production medium. 
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Plate 5.1: Tubular air lift bioreactor set-up. 
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Plate 6.1: SDS-PAGE of purified tannase. 204 
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PENGHASILAN TANASE OLEH STRAIN TEMPATAN  

ASPERGILLUS NIGER FETL FT3  

DALAM SISTEM KULTUR TENGGELAM  

 

ABSTRAK 

 

Kultur kulat penghasil tanase yang dicamkan sebagai Aspergillus niger FETL FT3 

telah dipencilkan dari tempatan daripada ekstrak tanin terhidrolisis kulit kayu bakau 

Rhizophora apiculata. Keupayaan kultur kulat tersebut untuk meningkatkan 

penghasilan tanase ekstrasel telah ditambahbaikan dalam sistem fermentasi kultur 

tenggelam (SmF). Penambahbaikan pelbagai proses parameter untuk penghasilan 

maksimum tanase ekstrasel oleh kultur kulat tersebut dilakukan dengan sel bebas 

dan sel tersekat-gerak di dalam kelalang goncangan 250 ml. Seterusnya keadaan 

pengkulturan yang telah ditambahbaik di dalam kelalang goncangan dipindahkan ke 

bioreaktor angkut udara 2000 ml dan pembolehubah-pembolehubah tertentu 

ditambahbaikan semula. Dalam kelalang goncangan, penghasilan tanase ekstrasel 

yang maksimum iaitu 2.81 U/ml diperolehi selepas 4 hari pemfermentasian pada 

suhu 30
o
C, menggunakan saiz inokulum 1% (i/i) 1 × 10

6
 spora/ml, pH awal medium 

6.0 dan kelajuan goncangan 200 psm dalam 50 ml medium minimum Czapek Dox 

yang diubahsuai yang mengandungi 3 b%-C asid tanik, 0.8 b%-C glukosa dan 0.048 

b%-N natrium nitrat dalam kes sel bebas. Sel tersekat-gerak di dalam pencuci periuk 

nilon telah menghasilkan tanase ekstrasel yang maksimum iaitu 3.98 U/ml, juga 

selepas 4 hari pemfermentasian menggunakan keadaan yang sama seperti sel bebas 

menggunakan 6 kepingan kiub pencuci periuk nilon. Walau bagaimanapun, aktiviti 

tanase yang rendah iaitu 2.14 U/ml dan 3.12 U/ml masing-masing diperolehi di 
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dalam bioreaktor angkut udara 2000 ml yang mengandungi 1800 ml medium 

pemfermentasian untuk kedua-dua sel bebas dan tersekat-gerak Aspergillus niger 

FETL FT3. Keadaan fermentasi yang telah ditambahbaik untuk penghasilan 

maksimum tanase ekstrasel iaitu 2.14 U/ml dan 3.12 U/ml masing-masing di dalam 

bioreaktor diperolehi selepas 4 hari pemfermentasian untuk kedua-dua sel bebas dan 

tersekat-gerak dengan saiz inokulum 1% (i/i) 8 × 10
5
 spora/ml dan 2.0 vvm 

pengudaraan dalam kes sel bebas dan dengan saiz inokulum 1% (i/i) 4 × 10
5
 

spora/ml, 2.0 vvm pengudaraan dan 200 kepingan kiub pencuci periuk nilon dalam 

sel tersekat-gerak. Seterusnya, enzim yang dihasilkan ditulenkan sebanyak 12.75 

kali ganda dengan 0.77% pemulihan melalui pemendakan amonium sulfate dan 

kromatografi turus penurasan gel Sephadex G-200. Berat molekul tannase yang 

ditulenkan dianggarkan sekitar 89 kDa melalui natrium dodesil sulfat-poliakrilamida 

gel elektroforesis (SDS-PAGE). Kajian tentang kesan suhu dan pH juga telah 

dijalankan ke atas aktiviti tanase yang telah ditulenkan. pH dan suhu optimum untuk 

aktiviti enzim ialah pada pH 5.0 dan 40
o
C, masing-masing. Enzim tersebut juga 

menunjukkan kestabilan yang baik selama 1 jam sehingga suhu 50
o
C dan kestabilan 

pH dalam julat yang terhad iaitu di antara pH 5.0 dan 6.0.   
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PRODUCTION OF TANNASE BY A LOCAL STRAIN  

ASPERGILLUS NIGER FETL FT3 IN SUBMERGED CULTURE SYSTEM 

 

ABSTRACT 

 

A tannase-producing fungal culture identified as Aspergillus niger FETL FT3 was 

isolated locally from hydrolysed tannin extract of Rhizophora apiculata barks. The 

potential of the fungal culture for enhanced extracellular production of tannase was 

improved in submerged fermentation (SmF) system. The improvement of various 

process parameters for maximum production of extracellular tannase from the fungal 

culture was carried out with free and immobilized cells in 250 ml shake flasks. 

Subsequently the improved cultivation conditions of shake flasks were transferred to 

a 2000 ml tubular air lift bioreactor and some selected variables were further 

improved. In shake flasks, maximum extracellular tannase production of 2.81 U/ml 

was obtained after 4 days of fermentation at 30
o
C with 1% (v/v) of 1 × 10

6
 spores/ml 

inoculum size, initial medium pH 6.0 and agitation at 200 rpm in 50 ml of modified 

Czapek Dox minimal medium containing 3 wt%-C tannic acid, 0.8 wt%-C glucose 

and 0.048 wt%-N sodium nitrate in the case of free cells. The immobilized cells on 

nylon scouring mesh produced maximum extracellular tannase of 3.98 U/ml, also 

after 4 days of fermentation via conditions similar to that of free cells using 6 pieces 

of nylon scouring mesh cubes. However, lower tannase activities of 2.14 U/ml and 

3.12 U/ml respectively were obtained in the 2000 ml tubular air lift bioreactor 

containing 1800 ml of the fermentation medium for both free and immobilized 

Aspergillus niger FETL FT3 cells. The improved fermentation conditions for the 

maximum production of extracellular tannase of 2.14 U/ml and 3.12 U/ml 
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respectively in the bioreactor were obtained after 4 days of fermentation for both 

free and immobilized cells with 1% (v/v) of 8 × 10
5
 spores/ml inoculum size and 2.0 

vvm aeration in the case of free cells and with 1% (v/v) of 4 × 10
5
 spores/ml 

inoculum size, 2.0 vvm aeration and 200 pieces of nylon scouring mesh cubes in the 

immobilized cells. The enzyme produced was then purified 12.75 folds with a 0.77% 

yield through ammonium sulfate precipitation and Sephadex G-200 gel filtration 

column chromatography. The molecular weight of the purified tannase was 

estimated to be 89 kDa through sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS-PAGE). A study on the effects of temperature and pH was also 

carried out on the activity of the purified tannase. The pH and temperature optimum 

of the enzyme activity were found to be at pH 5.0 and 40
o
C, respectively. The 

enzyme also showed good stability up to 50
o
C for 1 hour and was stable over a 

narrow pH range of pH 5.0 to 6.0. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 INTRODUCTION 

 

Tannin acyl hydrolase (E.C. 3.1.1.20) is commonly referred to as tannase and is an 

enzyme that hydrolyzes the ester bonds of tannic acid, to produce gallic acid and 

glucose (Haworth et al., 1958; Mondal et al., 2000). This unique enzyme was 

accidentally discovered by Tieghem (1867) in an experiment to demonstrate that the 

formation of gallic acid during fermentation is due to the action of fungus, and not to 

enzymes pre-existing in the galls, nor to oxidation by the air (Tieghem, 1867). He 

further identified the organisms as Penicillium glaucum and Aspergillus niger 

(Knudson, 1913; Lekha and Lonsane, 1997). Besides these microorganisms, various 

filamentous fungi (Hadi, et al., 1994; Bradoo et al., 1997; Seth and Chand, 2000; 

Banerjee et al., 2001), bacteria (Deschamps et al., 1980; Skene and Brooker, 1995; 

Lekha and Lonsane, 1997; Kumar et al., 1999; Mondal and Pati, 2000) and yeast 

(Aoki et al., 1976a; Lekha and Lonsane, 1997) have also been reported to produce 

tannase.  

 

Tannase is also an important enzyme and has various industrial applications 

including in the manufacture of instant tea (Coggon et al., 1975) and wine (Aguilar 

and Gutierrez-Sanchez, 2001; Vaquero et al., 2004). It is also used in the 

manufacture of gallic acid (Pourrat et al., 1985, 1987; Misro et al., 1997; Kar et al., 

1999) and also as additive for detannification of food (Lekha and Lonsane, 1997). In 

addition to that, it is also used as a sensitive analytical probe for determining the 
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structure of naturally occurring gallic acid esters (Haslam and Tanner, 1970). The 

enzyme is also important for treating tannery effluents (Bradoo et al., 1997) and 

decomposition of plant organic matter (Garcia-Conesa et al., 2001). Recently, the 

enzyme has also been found to be useful in improving vegetable fermentation and 

also to treat vegetable waste such as olive mill waste waters (Ayed and Hamdi, 

2002; Kachouri et al., 2005). 

 

Based on preliminary screening of various local isolates, Aspergillus niger FETL 

FT3 was found to be the most potential tannase producer and thus was selected for 

this study. Studies on tannase production by Aspergillus niger FETL FT3 was 

carried out extensively in submerged fermentation system and the regulatory aspects 

of tannase production by this fungus in submerged fermentation showed that 

tannases are induced by tannic acid or by some of its derivatives (Knudson, 1913). 

However, the initial concentration of tannic acid used was found to be a crucial 

factor for growth and tannase induction, as high concentration of tannic acid may be 

toxic to the microorganism. Bajpai and Patil (1997) reported that the optimum 

concentration of gallotannin to induce tannase production by Aspergillus niger was 

10% (w/v) concentration, while its tolerance limit to gallotannin was 20% (w/v) 

concentration, whereas Bhat et al. (1997) found Aspergillus niger to tolerate up to 

15% (w/v) tannin in a test medium. The production of tannase by microorganisms 

was also found to be highly dependent on environmental conditions and therefore, 

the best combinations of various physical (cultural conditions) and physiological 

parameters (medium compositions) for maximum tannase production was 

determined by step by step improvement by changing one control variable at a time 

while holding the rest constant. Besides freely suspended cells, immobilized cells 
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system was also considered for tannase production because immobilized cell 

systems was reported to offer many advantages over freely suspended cells such as 

simple reuse of the biomass, easier liquid-solid separation and minimal clogging in 

continuous-flow systems (Arica et al., 1993; Tieng and Sun, 2000). Further, due to 

wide applications of tannases in many industries, quick purification procedure to 

keep the process inexpensive and characterization with respect to optimum 

temperature and pH conditions required for maximum tannase activity and stability 

was also carried out. Tannase has many potential applications in the food, 

pharmaceutical and chemical industries but due to the shortage, high cost and 

limited knowledge of the enzyme, the use of tannase in large-scale application is 

limited at present. Therefore, it is hoped that the economic benefits of tannase 

production and sufficient information of the enzyme can help improve the overall 

viability of the process. 

 

1.2 RESEARCH OBJECTIVES 

 

The present study was aimed to achieve the following objectives:  

 

1. To isolate, screen and identify a new potential fungal tannase producer from 

hydrolysable tannin extract of Rhizophora apiculata barks. 

2. To improve various physical parameters (cultural conditions) specifically 

temperature, initial medium pH, agitation speed and inoculum size and 

physiological parameters (carbon and nitrogen sources) of tannic acid 

concentration, various sugars as second carbon source and various inorganic 



 4 

nitrogen sources for the maximum production of extracellular tannase by the 

selected isolate in submerged fermentation systems in shake flask.  

3. To improve inoculum size and aeration rate for the maximum production of 

extracellular tannase by the selected isolate in a 2 liter tubular air lift laboratory 

bioreactor. 

4. To purify and characterize the tannase produced by the selected isolate.  
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 TANNASE  

 

Tannase (Tannin acyl hydrolase, E. C. 3.1.1.20) is an extracellular hydrolase enzyme 

that is induced in the presence of tannic acid with gallic acid as an end product (Kar 

et al., 2003). It catalyzes the hydrolysis of ester bonds in hydrolysable tannins such 

as tannic acid, thereby releases gallic acid residues from glucose (Lekha and 

Lonsane, 1997; Ramirez-Coronel et al., 2003). Tannase can be obtained from 

various sources and is used commercially in many industries.  

 

2.1.1 ISOZYMES OF TANNASE 

 

Beverini and Metche (1990) reported that tannase is composed of a mixture of two 

separate isoenzymes, tannase I and tannase II. Tannase I has been reported to have 

specificities for ester linkage of galloyl esters of alcohol moiety, whereas tannase II 

has been reported to have strong affinity for galloyl esters of gallic acid (Beverini 

and Metche, 1990) in substrates such as tannic acid, methylgallate and m-digallic 

acid. Among these enzymes, gallic acid esterase is predominant (Lekha and 

Lonsane, 1997). The identities of these two enzymes were also confirmed by 

Haslam et al. (1961) and Haslam and Stangroom (1966).  
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2.1.2 SUBSTRATE SPECIFICITY OF TANNASE 

 

Tannase hydrolyses only ester compounds of gallic acid. However, not all ester 

compounds of gallic acid are hydrolyzed by tannase. Some ester compounds of 

gallic acid which are insoluble in water such as stearyl, lauryl and cetyl gallate are 

not hydrolyzed by tannase (Iibuchi et al., 1972). Examples of substrates that are 

hydrolyzed by tannase are tannins such as tannic acid, methyl gallate, ethyl gallate, 

n-propylgallate and isoamyl gallate (Belmares et al., 2004; Aguilar et al., 2007). 

Tannase activity also appears to be related to the number of ester bonds in galloyl 

esters in which galloyl esters with more ester bonds were better substrates for 

tannase (Farias et al., 1994).  

 

2.1.2.1 TANNINS AS SUBSTRATE FOR TANNASE 

 

Tannins are defined as naturally occurring water-soluble polyphenolic compounds of 

varying molecular weight in the plant kingdom. These phenolic compounds differ 

from others by having the ability to precipitate proteins from solutions (Aguilar et 

al., 2007). In plant kingdom, these tannins are found in leaves, fruits, bark and wood 

(Albertse, 2002; Vaquero et al., 2004; Aguilar et al., 2007). Tannins also occur in 

many fruits and vegetables (Chung et al., 1998) and in nutritionally important forage 

trees, shrubs, legumes, cereals and grains (Sabu et al., 2006). Tannins are often 

considered to be nutritionally undesirable because they often form complexes with 

protein, starch and digestive enzymes and cause a reduction in nutritional values of 

food (Chung et al., 1998; Sabu et al., 2006). These tannins bind readily with 

proteins and other macromolecules to form indigestible or insoluble complexes, 
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thereby not only reducing nutritional value of the animal feed (McLeod, 1974; 

Rhoades and Cates, 1976) but also presenting undesirable taste and colouration in 

tea (Sanderson and Coggon, 1974) and beer (Lekha and Lonsane, 1997). Tannins are 

also considered to be the plant’s secondary metabolic products because they play no 

direct role in the plant metabolism (Bhat et al., 1998; Albertse, 2002; Aguilar et al., 

2007).  

 

Tannins can be divided into four major groups: gallotannins, ellagitannins, 

condensed tannins and complex tannins (Aguilar et al., 2007) on the basis of their 

structure and properties (Figure 2.1).  

 

2.1.2.1(a) GALLOTANNINS AND ELLAGITANNINS (HYDROLYSABLE 

TANNINS) 

 

Hydrolysable tannins are polyphenolic compounds composed of esters of gallic acid 

(gallotannin) or ellagic acid (ellagitannin) with a sugar as a central core (Bhat et al., 

1998). In the gallotannin (Figure 2.1), each molecule is usually composed of a core 

of D-glucose and 6 to 9 galloyl (single monomer of gallic acid) groups. These 

simple esters are extended by attachment of additional galloyl residues to the 

phenolic galloyl-OH groups to yield side-chains of variable length (Niehaus and 

Gross, 1997). Upon hydrolysis, gallotannin yields glucose and gallic acid (Lekha 

and Lonsane, 1997; Chen and Chung, 2000). The ellagitannin (Figure 2.1), in 

contrast, contain one or more hydroxy-diphenol residues, which are linked to 

glucose as a diester in addition to gallic acid (Chen and Chung, 2000). Therefore, 

gyt 
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Figure 2.1: Main chemical structures of the tannin. (adapted from Aguilar et 

al., 2007). R, gallate; G, digallate. 

 

 

 

 

 

 

 

 

 

 



 9 

hydrolysis of ellagitannins yields glucose and ellagic acid together with gallic acid 

(Lekha and Lonsane, 1997). 

 

2.1.2.1(b) CONDENSED TANNINS 

 

Condensed tannins are also known as proanthocyanidins, and consist of phenols of 

the flavon type flavonoids (Lekha and Lonsane, 1997; Bhat et al., 1998). Condensed 

tannin may also contain 2 to 50 or greater flavonoid units and can have complex 

structures because the flavonoid unit can differ for some substituents and because of 

the variable sites for interflavan bonds. Typical condensed tannin can be represented 

by the dimer procyanidin, to which molecules of flavan (catechin moieties) can be 

added as indicated (Figure 2.1). A very interesting difference between condensed 

tannins and hydrolysable tannins is the fact that condensed tannins do not contain 

any sugar residues as a core (Goodwin and Mercer, 1983) and are not readily 

degraded by tannase (Skene and Brooker, 1995). 

 

2.1.2.1(c) COMPLEX TANNINS 

 

Complex tannins (Figure 2.1) are generated through reactions between gallic or 

ellagic acids with catechins and glucosides (Aguilar et al., 2007). Therefore, 

complex tannins are considered to be an intermediate group that combines both 

characteristics of hydrolysable tannins and condensed tannins. This family of tannins 

is also called catechin tannins (Bhat et al., 1998).  
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2.1.3 MECHANISM OF ACTION OF TANNASE  

 

Tannase is known to catalyze the breakdown of ester bonds from hydrolysable 

tannins and gallic acid esters (Figure 2.2). When the reaction substrate is the methyl  

gallate, tannase gives gallic acid and methanol as final products (Iibuchi et al., 

1972). When the reaction substrate is methyl-m-digallate, the enzyme produces 

methyl gallate and gallic acid, without any traces of m-digallic acid as intermediate 

compounds and finally gives gallic acid and methanol as final products. This 

suggests that the enzyme liberates gallic acid from m-digalloyl esters first (Iibuchi et 

al., 1972) prior to other reactions. This is clearly shown in the main pathway of 

hydrolysis of tannic acid by tannase (Figure 2.3) where R1 and R2 are gallate and m-

digallate, respectively. When the reaction substrate is tannic acid, tannase gives 

glucose and gallic acid as final reaction products (Haworth et al., 1958). Tannase 

hydrolyses tannic acid completely to gallic acid and glucose through intermediate 

compounds of 2,3,4,6-tetragalloyl glucose and two kinds of monogalloyl glucose 

(Iibuchi et al., 1972). However, the position of gallic acid of the two kinds of 

monogalloyl glucose is not known (Iibuchi et al., 1972) and has not been determined 

(Lekha and Lonsane, 1997). The monogalloyl glucoses are then hydrolyzed 

completely by the enzyme to glucose and gallic acid as final products of hydrolysis 

(Iibuchi et al., 1972).  
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Figure 2.2: Mechanism of tannase action (adapted from Aguilar et al., 2007). 

a, m-digallic acid; b, methyl gallate; c, tannin; d, gallic acid;  

e, polygalloyl glucose. 
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Figure 2.3: The main hydrolysis pathway of tannic acid by tannase (adapted 

from Iibuchi et al., 1972; Ong, 2005). R1, gallate; R2, digallate. 
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2.1.4 BIOSYNTHESIS OF TANNASE 

 

Tannase is an inducible enzyme produced only in the presence of tannic acid or its 

end product, gallic acid (Knudson, 1913). Therefore, the minimum structural 

requirement for adaptive tannase formation is gallic acid. However, due to the fact 

that tannase is an esterase and that gallic acid contains no ester linkage, a test on 

induction of tannase by gallic acid as sole carbon source showed that it did not 

induce tannase activity (Aguilar et al., 2001a). Thus, tannase is produced only in the 

presence of tannic acid and this is evident from all the media reported for tannase 

production, where tannic acid was present as an inducer (Lekha and Lonsane, 1997). 

The minimum concentration of tannic acid that could stimulate the formation of 

tannase was found to be 0.1% (Knudson, 1913). Van de Lagemaat and Pyle (2005) 

reported that the mechanism of induction by tannic acid may have two phases. In the 

first phase, the presence of tannic acid or a combination of tannic acid and gallic 

acid in the growth medium induces the formation of intracellular and low levels of 

extracellular tannase, whereas in the second phase, the exhaustion of glucose in the 

medium increases the rate of extracellular tannase formation (Van de Lagemaat and 

Pyle, 2005). 

 

2.2 SOURCES OF TANNASE 

 

Tannase is known to be obtained from plant, animal and microbial sources (Vaquero 

et al., 2004). However, the most important source to obtain the enzyme is by 

microbial way, because the enzymes produced are more stable than similar ones 

obtained from other sources (Bhat et al., 1998; Purohit et al., 2006; Sabu et al., 
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2006). Microorganism can also be cultured in large quantities in a short time by 

established methods of fermentation, thus they can produce an abundant and regular 

supply of the enzyme. Microbes can also be subjected to genetic manipulation more 

readily than plants and animals (Walsh and Headon, 1994; Aguilar and Gutierrez-

Sanchez, 2001; Purohit et al., 2006; Sabu et al., 2006).  

 

2.2.1 PLANTS 

 

The role of tannase in green leaves has been reported to be much less obvious 

(Niehaus and Gross, 1997). Tannins in plants deter microorganisms, either by 

increasing resistance against pathogens or by protecting essential tissues such as 

wood against decay (Scalbert, 1991). It has also been recognized, that condensed 

tannins of Acacia nigrescens acted as an anti-defoliating agent against browsing by 

giraffe (Furstenburg and Van Hofen, 1994) and it was concluded from studies with 

Epilobium, Cornus or Alnus that the tannins in these plants were important in the 

defense against ruminants (Robbins et al., 1987). Thus, a tannin degrading enzyme 

in leaves would not make much sense as hydrosable tannins play a protective role in 

plant by direct astringency avoidance of herbivorous animals (Niehaus and Gross, 

1997). However, the existence of this enzyme has been reported in the leaves of 

pedunculate oak (Niehaus and Gross, 1997). The existence of tannase in such green 

leaves thus is believed to play a role indirectly through their degradation products. 

Evidence has also been presented that the ellagitannin preferentially acted as a 

protoxin that releases insect growth inhibitor, particularly ellagic acid, upon 

hydrolytic cleavage (Klocke et al., 1986). In contrast to leaves, however, tannase has 

been discussed as major deastringency mechanism in fruit ripening (Ozawa et al., 
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1987), whereby it contribute to these processes by loss of astringency through 

simple degradation of tannins (Niehaus and Gross, 1997). This is evident from a 

report on purification of tannase from divi-divi (Caesalpinia coriaria) fruit pods 

(Madhavakrishna and Bose, 1961). 

 

2.2.2 ANIMALS 

 

Low levels of tannase has been reported to be present in the rumen of cattle by 

Begovic and Duzic (1976), who also purified bovine tannase from the mucosal 

membrane of the rumen and small intestine of the cattle for the first time (Begovic 

and Duzic, 1977). The gall larvae that undergo development in plant galls also 

produce tannase to hydrolyze the tannic acid abundant in plant galls (Nierenstein, 

1930). However, evidence suggests that animals depend mostly on symbiotic 

relationship with tannase producing gastrointestinal microbes to counter the anti-

nutritional effects of dietary tannins (Bhat et al., 1998; Sasaki et al., 2005).  

 

2.2.3 MICROORGANISMS  

 

It has long been known that many microorganisms (Lewis and Starkey, 1969) 

especially several fungal species such as Aspergillus sp. (Lekha and Lonsane, 1997; 

Banerjee et al., 2001) and Penicillum sp. (Rajakumar and Nandy, 1983; Lekha and 

Lonsane, 1997) are capable of producing large amounts of tannase. Isolation of 

tannase from Rhizopus oryzae has also been reported (Hadi et al., 1994). Other 

tannase producers include bacteria (Deschamps et al., 1980; Skene and Brooker, 

1995; Lekha and Lonsane, 1997; Kumar et al., 1999; Mondal and Pati, 2000) and 
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yeast (Aoki et al., 1976a; Lekha and Lonsane, 1997). Some of the tannase producing 

fungi, bacteria and yeast are shown in Table 2.1 (Aguilar et al., 2007). 

Microorganisms produce tannases, probably as a mode of invasion into the host 

plant by hydrolyzing tannins that are present in many herbaceous and woody plants 

(Lekha and Lonsane, 1997). 

 

2.2.3.1 FILAMENTOUS FUNGI 

 

Various filamentous fungi, mainly Aspergillus niger (Yamada et al., 1968; Pourrat 

et al., 1985; Barthomeuf et al., 1994; Lekha and Lonsane, 1994; Bhat et al., 1996; 

Bajpai and Patil, 1997; Pinto et al., 2001; Sharma et al., 2002; Ramirez-Coronel et 

al., 2003; Sharma and Gupta, 2003; Sabu et al., 2005a) and Penicillium (Rajakumar 

and Nandy, 1983) produce the enzyme tannase in the presence of tannic acid. Bajpai 

and Patil (1997) have recently reported the production of tannase by Fusarium 

solani, Trichoderma viride and Aspergillus fischerii. Furthermore, Aspergillus 

japonicus also produces extracellular tannase on simple and complex sugar 

substrates (Bradoo et al., 1997). Tannase have also been purified from culture broth 

of Aspergillus oryzae (Iibuchi et al., 1968; Lane et al., 1997; Garcia-Conesa et al., 

2001), Aspergillus flavus (Adachi et al., 1968; Yamada et al., 1968), Aspergillus 

foetidus (Mukherjee and Banerjee, 2004; Purohit et al., 2006), Aspergillus aculeatus 

(Banerjee et al., 2001) and Aspergillus awamori (Seth and Chand, 2000; Mahapatra 

et al., 2005). It has also been reported that the fungus Rhizopus oryzae could also 

secrete the tannase enzyme (Hadi, et al., 1994; Misro et al., 1997; Mukherjee and 

Banerjee, 2004; Purohit et al., 2006).  
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Table 2.1: Microbial sources of tannase (adapted from Aguilar et al., 2007). 

 

Microorganism References 

Bacteria 

Achromobacter sp.  Lewis and Starkey (1969)  

Bacillus pumilus  Deschamps et al. (1983)  

Bacillus polymyxa  Deschamps et al. (1983)  

Corynebacterium sp.  Deschamps et al. (1983)  

Bacillus cereus  Mondal et al. (2001)  

Klebisella planticola  Deschamps et al. (1983)  

Klebisella pneumoniae  Deschamps et al. (1983) 

Pseudomonas 

solanaceanum  
Deschamps et al. (1983)  

Streptococcus bovis  Belmares et al. (2004)  

Streptococcus 

gallolyticus  
Sasaki et al. (2005)  

Lactobacillus plantarum  Ayed and Hamdi (2002); Kostinek et al. (2007)  

Lactobacillus 

paraplantarum  
Nishitani and Osawa (2003); Nishitani et al. (2004)  

Lactobacillus pentosus  Nishitani et al. (2004); Kostinek et al. (2007)  

Lactobacillus 

acidophilus  
Nishitani et al. (2004); Sabu et al. (2006)  

Lactobacillus animalis  Nishitani et al. (2004)  

Lactobacillus murinus  Nishitani et al. (2004)  

Enterococcus faecalis  Goel et al. (2005)  

Weissella 

paramesenteroides  
Kostinek et al. (2007)  

Leuconostoc fallax  Kostinek et al. (2007)  

Leuconostoc 

mesenteroides  
Kostinek et al. (2007)  

Pediococcus acidilactici  Nishitani et al. (2004)  

Pediococcus pentosaceus  Nishitani et al. (2004)  

Citrobacter freundii  Belmares et al. (2004)  

Selenomonas 

ruminantium  
Belmares et al. (2004)  

Yeasts 

Candida sp.  Aoki et al. (1976b)  

Saccharomyces 

cerevisiae  
Zhong et al. (2004)  

Mycotorula japonica  Belmares et al. (2004)  
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Table 2.1: …Continued 

 

Microorganism References 

Pichia sp.  Deschamps et al. (1983)  

Debaryomyces hansenii  Deschamps et al. (1983)  

Fungi 

Aspergillus niger  

Bradoo et al. (1996); Rana and Bhat (2005); Cruz-

Hernandez et al. (2006); Trevino-Cueto et al. (2007); 

Murugan et al. (2007)  

Aspergillus japonicus  Bradoo et al. (1997)  

Aspergillus gallonyces  Belmares et al. (2004)  

Aspergillus awamori  Bradoo et al. (1996); Mahapatra et al. (2005)  

Aspergillus fumigatus  Batra and Saxena (2005)  

Aspergillus versicolor  Batra and Saxena (2005)  

Aspergillus flavus  Yamada et al. (1968); Batra and Saxena (2005)  

Aspergillus caespitosum  Batra and Saxena (2005)  

Aspergillus oryzae  Bradoo et al. (1996)  

Aspergillus aculeatus  Banerjee et al. (2001)  

Aspergillus aureus  Bajpai and Patil (1997)  

Aspergillus fischeri  Bajpai and Patil (1997)  

Aspergillus rugulosus  Bradoo et al. (1996)  

Aspergillus terreus  Bajpai and Patil (1997)  

Aspergillus foetidus  Banerjee et al. (2005)  

Penicillium notatum  Ganga et al. (1977)  

Penicillium islandicum  Ganga et al. (1977)  

Penicillium chrysogenum  Bradoo et al. (1996)  

Penicillium digitatum  Bradoo et al. (1996)  

Penicillium acrellanum  Bradoo et al. (1996)  

Penicillium carylophilum  Bradoo et al. (1996)  

Penicillium citrinum  Bradoo et al. (1996)  

Penicillium charlessi  Bradoo et al. (1996); Batra and Saxena (2005)  

Penicillium variable  Batra and Saxena (2005)  

Penicillium glaucum  Lekha and Lonsane (1997)  

Penicillium crustosum  Batra and Saxena (2005)  

Penicillium restrictum  Batra and Saxena (2005)  

Penicillium glabrum  Van de Lagemaat and Pyle (2005)  

Trichoderma viride  Bradoo et al. (1996)  

Trichoderma hamatum  Bradoo et al. (1996)  
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Table 2.1: …Continued 

 

Microorganism References 

Trichoderma harzianum  Bradoo et al. (1996)  

Fusarium solani  Bradoo et al. (1996)  

Fusarium oxysporium  Bradoo et al. (1996)  

Mucor sp.  Belmares et al. (2004)  

Paecilomyces variotii  Mahendran et al. (2006); Battestin and Macedo (2007)  

Rhizopus oryzae  Hadi et al. (1994); Purohit et al. (2006)  

Cryphonectria parasitica  Farias et al. (1994)  

Heliocostylum sp.  Bradoo et al. (1996) 

Cunnighamella sp.  Bradoo et al. (1996)  

Syncephalastrum 

racemosum  
Bradoo et al. (1996)  

Neurospora crassa  Bradoo et al. (1996)  
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2.2.3.2 BACTERIA 

 

Bacteria have generally been considered to be highly sensitive to tannins, but some 

isolates have been observed to survive and even degrade tannins (Basaraba, 1966). 

Over the past decade, many bacterial species have been reported to produce tannase. 

The production of tannase have been observed in the cultivated strains of Bacillus 

pumilus, Bacillus polymyxa, Corynebacterium sp. and Klebsiella pneumoniae, with 

chestnut bark extract as the sole carbon source (Deschamps et al., 1983). The 

production of tannase have also been reported in Bacillus licheniformis (Mondal and 

Pati, 2000; Mondal et al., 2000). Several studies also reported that bacterial species 

such as Streptococcus gallolyticus (Osawa et al., 1995a) and Lonepinealla koalarum 

isolated from alimentary tracts of koalas, goat or sheep (Osawa et al., 1995b; 

McSweeney et al., 1999) also showed tannase activity. An anaerobic diplococoid 

bacteria that is able to degrade hydrolysable tannins has also been isolated from the 

ruminal fluid of a goat (Nelson et al., 1995), and an enterobacteria that can degrade 

hydrolysable tannin-protein complexes has been isolated from the koala alimentary 

tract (Osawa, 1992). These isolated ruminal bacteria is thought to play a role in the 

anaerobic detoxification of tannin containing feeds and it is possible that these 

bacteria also derive energy from them through syntrophic associations in the rumen 

(Nelson et al., 1995). More recently, tannase activity was found in Lactobacillus 

strains isolated from human feces and fermented food (Osawa et al., 2000) and also 

from Lactobacillus plantarum (Ayed and Hamdi, 2002; Vaquero et al., 2004). 

Lactobacillus with tannase activity have also been isolated from the faeces of the 

Japanese large wood mouse (Sasaki et al., 2005) and  from sheep wastes (Sabu et 

al., 2006).  


