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tn - Neutral temperature / thermal neutrality (ºC) 

to - Operative temperature (ºC) 

tr - Mean radiant temperature (ºC) 

Uref - Reference wind speed 

V - Total volume 

N - Numbers (units) 

E - Exhaust capacity of turbine ventilator (l/s) 

Vₐᵣ - the relative air velocity (relative to the human body), in m/s 
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POTENSI PENGALIHUDARAAN TURBIN HIBRID UNTUK 
MEMPERBAIKI KEADAAN IKLIM DALAMAN DI PERSEKITARAN 

PANAS-LEMBAP 

 

ABSTRAK 

 

Tesis ini membincangkan hasil kajian empirikal mengenai kemungkinan memperbaiki 

keadaan iklim dalaman bangunan di persekitaran panas-lembap melalui penggunaan 

pengalihudaraan turbin hibrid (HTV). Berdasarkan kajian literatur, didapati strategi 

pengudaraan tingkat berbantukan kipas seperti pengalihudaraan turbin hibrid (HTV) 

adalah antara strategi yang paling berpotensi untuk digunakan dalam keadaan radiasi 

solar tinggi dan kelajuan angin rendah seperti yang dialami Malaysia. Melalui satu 

kajian rintis, konfigurasi optimum HTV telah dikenalpasti, dengan konfigurasi baru yang 

disertakan saluran ventilasi dalaman dan ruang ventilatisi terbuka yang lebih luas di 

bahagian atas turbin telah dilihat menunjukkan keupayaan terbaik dalam meningkatkan 

pergerakan udara dalam bangunan. Kemudian, satu siri kajian lapangan yang 

dijalankan di bangunan dan di bawah keadaan cuaca sebenar telah mengesahkan 

kepentingan HTV dalam memperbaiki keadaan iklim dalaman bangunan. Hasil kajian 

telah menunjukkan strategi mengaplikasikan HTV untuk pengudaraan ruang hunian 

telah berhasil mengurangkan tahap suhu udara dan kelembapan relatif dalaman 

bangunan dan juga signifikan dalam meningkatkan pengerakan udara di zon hunian 

sehingga purata maksimum 0.38m/s dalam kes tingkap dan pintu terbuka. Walaupun 

kesemua strategi pengaplikasian HTV berjaya mengurangkan tahap Suhu Operatif 

(OT) dan Suhu Efektif Standard (SET*) berbanding dengan keadaan asal bangunan, 

namun hasil keseluruhan kajian menunjukkan yang ianya masih belum berupaya untuk 

menjamin tahap keselesaan terma penghuni dalam kebanyakan masa, apabila OT 

yang dicapai telah melebihi had maksimum keselesaan terma 30.0°C sebanyak 21% 

hingga 45% sepanjang waktu kajian. Namun berdasarkan hasilan kajian, satu strategi 
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yang mungkin berkesan untuk meningkatkan keberkesanan HTV ini ialah dengan 

mengaplikasikannya untuk kedua-dua ruang atap dan ruang hunian secara serentak 

dan memastikan bukaan bangunan dibiarkan terbuka. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xxii 
 

THE POTENTIAL OF HYBRID TURBINE VENTILATOR TO 
IMPROVE INDOOR CLIMATIC CONDITIONS IN HOT-HUMID 

ENVIRONMENT 

 

ABSTRACT 

 

This thesis presents the results of the empirical studies regarding the possibilities of 

improving indoor climatic conditions in the hot-humid environment with the use of 

hybrid turbine ventilator (HTV). From the literature, it is found that the fan assisted 

stack ventilation strategy like the HTV is one of the most potent strategies to be applied 

in this high solar radiation and low wind velocity region of Malaysia. Through the pilot 

experiment study, an optimum configuration of the HTV has been determined, which is 

the new configuration with inner duct and larger free upper outlet area is found to show 

the best performance in inducing indoor air movement. Then, a series of full-scale field 

measurement studies conducted in the real building and under real weather conditions 

confirmed the significance of the device in improving indoor climatic conditions. The 

study shows that the strategy of applying HTV for occupied space achieved to reduce 

indoor air temperature and relative humidity (RH) level significantly and succeeded to 

induce air movement in the occupied level of up to 0.38m/s in the windows and doors 

are kept opened case. However, although all the HTV application strategies succeeded 

to reduce the Operative Temperature (OT) and Standard Effective Temperature (SET*) 

level compared to the existing condition, the overall results revealed that it is still not 

able to ensure occupants’ thermal comfort level at most of the time, when the OT 

achieved were above the upper comfort limits of 30.0°C for about 21% to 45% during 

the study period. One possible improvement of the device derived from the results is by 

applying the HTV for both attic and occupied spaces at the same time and ensure that 

openings are kept opened. 
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CHAPTER 1 
 

INTRODUCTION 
 
 

1.1 Background 

 

Generally, building sector consumes about 30-40% of the world‟s energy demand and 

it is expected to increase rapidly in the near future (Santamouris, 2005). In South-East 

Asian countries, example of the hot and humid tropical region, the average energy 

consumption of building is 233kWh/m²/yr of which about 50% is for air-conditioning 

(Zain-Ahmed, 2008). This scenario of high energy consumption due to the extensive 

use of air-conditioning system is quite frustrating since various studies indicated that 

people in hot-humid tropical climate are more tolerable to higher temperature due to 

the acclimatization factor (Givoni, 1992; Nicol, 2004). 

 

Concerning this issue, various studies have been done in order to find out possible 

alternatives to air-conditioning system without compromising the environment and 

people‟s thermal comfort. One of the most significant strategies which have gained 

attention from most of the architects, engineers and energy-conscious researchers is 

the use of natural ventilation as a passive cooling technique in the building. In contrast 

with air-conditioning system which is usually associated with global warming, 

acidification and sick building syndrome (SBS) (Seppanen and Fisk, 2002; Liping and 

Hien, 2007), natural ventilation offers several merits in terms of reducing building 

energy consumption, improving indoor air quality (IAQ), allowing natural daylighting 

and providing occupants‟ thermal comfort (Allard, 1998; Abdul Rahman and Abdul 

Samad, 2009). 

 

In hot-humid climate region, various studies have clearly shown that natural cross 

ventilation is much more effective ventilation strategy compared to stack ventilation in 
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order to improve indoor thermal environment. The shortcoming of stack ventilation 

which is based on thermal force can be referred to several constraints such as this 

region‟s climate conditions (with very low outdoor-indoor temperature differential and 

outdoor low-wind velocity) (Tantasavasdi et al., 2001) and inappropriate architectural 

design (insufficient inlet-outlet opening and unsuitable stack ventilation elements) 

(Brown and DeKay, 2001). 

 

However nowadays, in the conditions of the warmer climate and densely built 

environment, the conventional concept of natural cross ventilation does not always 

successfully apply. The need for a compartmentation of spaces in a deep plan building 

and more compact layout of planning where buildings are laid closely like in the terrace 

houses have resulted in limited openings for crossflow (Abdul Rahman, 1995; Sadafi et 

al, 2008). For these situations, the main solution could lie on providing effective outlet 

area at the top of the building to induce vertical air movement. 

 

These issues and needs are prompting researchers to investigate advanced stack 

ventilation strategy as an alternative to cross ventilation. These include the research 

and development in solar induced ventilation, wind assisted stack ventilation and fan 

assisted stack ventilation strategies. 

 

Solar induced ventilation strategies like solar chimney, solar roof and double façade 

rely upon the heating of the building fabric by solar radiation resulting into a greater 

temperature difference to enhance the stack effect (Awbi and Gan, 1992). Although 

most of the studies regarding these strategies showed that they have significant 

influence in increasing airflow and ventilation rate, its effectiveness in inducing ample 

air movement within the occupants‟ zone were found to be inadequate to create 

physiological cooling (Barozzi et al., 1992; Khedari et al., 2000). 
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On the other hand, many studies revealed that the use of wind-driven ventilation 

techniques like wind cowl, wind tower, windcatcher, wind jetter and turbine ventilator 

are very helpful to induce vertical air movement, thus enhancing the stack ventilation 

significantly (Khan et al., 2008). However, these strategies which can be considered as 

wind assisted stack ventilation strategy are found to be only effective in moderate to 

high-wind velocity condition. This constraint limits its function to be effectively used in 

low-wind velocity region like hot-humid Malaysia. 

 

In an effort to make it more reliable, consistent and efficient, several fan-assisted stack 

ventilation strategies which maximize the natural energy sources available from both 

the sun and wind have been developed. This includes the prototype development of 

some hybrid energy generated stack ventilation devices such as solar-powered 

windcatcher and solar-powered turbine ventilator. In this context, hybrid energy can be 

described as ‘a complementary operation of multiple renewable energy sources 

available from the local natural environment to achieve optimum energy generation’ 

(Lai, 2006). From the previous studies, it has been proven that this stack ventilation 

strategy, especially hybrid solar-wind driven turbine ventilator (HTV) is very promising 

and synergetic techniques since the effectiveness of the system to induce airflow 

increased as solar irradiation increased, which is proportional to the cooling needs of 

the building. 

 

However, it is realized that the effectiveness of this ventilation strategy in terms of 

thermal comfort has not been well studied especially when applied for real building in 

hot-humid region. For country like Malaysia, which is characterized by erratic and 

outdoor low-wind speed and is blessed with high solar radiation but cloudy sky 

condition (MMD, 2008), uncertainties of its effectiveness in real building need further 

investigations. Therefore, a comprehensive empirical study to obtain quantitative data 

on the performance of such device when it comes to the real application should be 
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done first, before it can be widely accepted by building design community as one of the 

energy efficient means to ventilate their building. 

 

1.2 Problem Statement and Hypothesis 

 

The use of stack ventilation strategy to induce upward air movement and extracts it out 

through the upper part of the building is indeed very important for a deep-plan building, 

like in the case of terrace houses. However, due to the climatic constraints of the hot 

and humid region possesses i.e. very low indoor-outdoor temperature differential, low 

outdoor wind velocity and cloudy sky conditions that limits the potential of solar 

radiation, this type of ventilation strategy is often regarded as insignificant to be used in 

this type of climate. However, if an appropriate strategy that can maximize both natural 

sources of wind and solar energy can be developed, it is expected that the 

performance of stack ventilation in improving indoor thermal environment could be 

significantly improved. 

 

Therefore, in this study, it is hypothesized that by combining the wind-driven turbine 

ventilator and solar powered extractor fan, it will produce a more consistent and higher 

rotation speed of turbine ventilator. Hence, the induced upward air movement will be 

affected and thus, improving the indoor climatic conditions. As a result, this stack 

ventilation strategy will provide acceptable indoor thermal comfort level at most of the 

time in this climate. 

 

1.3 Research Questions 

 

Due to the fact that the hybrid turbine ventilator (HTV) can simultaneously utilize both 

wind and solar energy to rotate, it would seem logical to consider the device as one of 

the most possible means to enhance stack ventilation in hot-humid climate. However, 
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since the effectiveness of this strategy is totally dependent on local ambient wind and 

solar conditions, its practical applicability in Malaysian building need further 

investigation. Therefore, more specific research questions have been formulated as 

follows:- 

Q1: Is the Hybrid Turbine Ventilator (HTV) possible to be used in Malaysian 

low-wind and cloudy sky condition? 

 Q2: What is the appropriate HTV model in inducing maximum vertical air 

movement? 

 Q3: Does the proposed HTV model as determined at Q2 effective to improve 

stack ventilation in the real building and how effective the device would 

be in comparison with other conventional ventilation strategies? 

Q4: What is the most appropriate application strategy of the HTV in 

Malaysian building in relation with certain architectural parameters like 

the effects of openings and vented or unvented attic? 

 Q5: Is the HTV application significant to provide acceptable Malaysian 

thermal comfort level at most of the time? 

Q6: What are the limitations of the proposed HTV model towards improving 

indoor climatic conditions in hot-humid tropical Malaysia? 

 

1.4 Research Objectives 

 

The main objective of this study is to investigate the applicability and limitations of a 

hybrid turbine ventilator (HTV) as a stack ventilation strategy in inducing vertical air 

movement and thus improving indoor climatic conditions and thermal comfort in hot-

humid tropical Malaysia. 

 

The specific objectives of this study are: 
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i) To investigate the reliability of solar radiation based on Malaysian climatic 

conditions on the consistency and workability of the HTV 

ii) To obtain quantitative results of the effectiveness of the HTV in improving 

indoor climatic conditions in comparison with other conventional ventilation 

strategies. 

iii) To determine the appropriate application strategy of the HTV in hot-humid 

tropical building, particularly in relation with certain architectural parameters like 

the effects of openings and vented or unvented attic. 

 

1.5 Research Approach and Methods 

 

In accomplishing the objectives as stated in Section 1.4 and in answering specific 

research questions as mentioned in Section 1.3, this study has involved some stages 

of research works, as shown in Figure 1.1. 

 

 

Figure 1.1: Summary of methodology used in investigating the possibilities of using 
Hybrid Turbine Ventilator (HTV) for enhancing stack ventilation and improving indoor 

climatic conditions 
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Firstly, a literature review on the various aspects of stack ventilation concepts and 

strategies has been done to find out the most potential and suitable stack ventilation 

strategy to be applied in hot-humid tropical building. The literature surveys led to the 

conclusion that the fan assisted stack ventilation strategy is the best mean to enhance 

vertical air movement in the building, especially in the occupied zone. One of the most 

potent devices is the Hybrid Turbine Ventilator (HTV) which maximizes both free wind 

and abundant solar energy available in this region. 

 

Then, the real investigations should be carried out to determine the appropriate 

configuration of the device and to examine its potential in improving indoor climatic 

conditions in the real building and under the real Malaysian climate conditions. This has 

been conducted through empirical studies or physical experimental methods, which 

consist both pilot study and field studies.  

 

Through the pilot study done experimentally in the enclosed space, the reliability of the 

device in inducing vertical air movement relying only to the outdoor solar intensity 

without the encouragement of wind force is investigated and its optimum configuration 

is determined. On the other hand, the applicability of the device to provide an 

acceptable comfort level for occupants in the real low-rise building is investigated 

through a series of field studies done in typical Malaysian institutional building. For this 

purpose, the thermal environments of open plan science laboratory have been studied 

for the different cases and types of ventilation. Several parameters such as ambient 

climatic conditions, the effects of the openings, different configurations of the modified 

turbine ventilators and the influence of different HTV application strategies on 

improving indoor climatic conditions have been studied. The thermal comfort conditions 

of each case have been compared and evaluated by measurements of air temperature, 

mean radiant temperature, relative humidity and air velocity levels in the occupied zone 
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using two thermal comfort indices i.e. the Adaptive Comfort Standard (ACS) and the 

Standard Effective Temperature (SET*). 

 

1.6 Scope and Limitations 

 

This thesis presents a study on the potential of turbine ventilator driven by hybrid 

energy to enhance the effectiveness of stack ventilation strategy in improving indoor 

thermal environment in hot-humid climate region. Although there are many possible 

combinations of different renewable energy sources e.g. biomass, photovoltaic 

systems, solar thermal, micro hydro and wind energy, which can be combined to form a 

hybrid configuration, only a combination of solar energy through polycrystalline 

photovoltaic (PV) panels and natural wind energy will be studied in this thesis. 

 

In this respect, the concept of simple hybrid energy studied should be differentiated 

from common understanding of more complex and expensive ‘hybrid energy system’, 

which usually consists of two or more energy systems, an energy storage system, 

power conditioning equipment and a controller. The term hybrid energy used in this 

thesis is also different from the term of ‘hybrid ventilation’ which generally has been 

described as a system providing a comfortable internal environment using different 

features (modes) of both natural ventilation and mechanical systems at different times 

of the day or season of the year (Heiselberg, 1999). 

 

With respect to the simplicity of the ventilation strategy and environmental concern, 

none of the advanced stack ventilation strategies or technologies reviewed in this 

thesis uses a refrigerant, chemical or too complex system to operate. However it must 

be recognized that non-availability of the state-of the art stack ventilator based on 

renewable energy existed in Malaysian market limited the scope of the study. 

Therefore, only commonly used of lightweight extractor fan powered by the solar 
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energy (through photovoltaic) and conventional turbine ventilator driven by the wind 

energy will be combined and studied. 

 

As was mentioned earlier, the study will focus on the applicability of the HTV for 

enhancing stack ventilation in hot-humid region. In this context, a hot-humid climate 

can be defined as a region which located in a belt extending roughly 15° either side of 

the equator which the main function of the building is to simply moderate the daytime 

heating effects of the environment (Givoni, 1998). For this study, special reference was 

given to Malaysian climate conditions with generally characterized by very low outdoor-

indoor temperature differences and windless condition, which make natural stack 

ventilation almost negligible and make most conventional stack ventilation devices 

inefficient. 

 

The study will concentrate on the effectiveness of the proposed HTV in improving 

indoor climatic conditions, thus increase occupants‟ thermal comfort level. However, 

possible effects of the device on other important aspects of indoor environmental 

quality (IEQ) like indoor air quality (IAQ), acoustic comfort, visual comfort and lighting 

quality as contained in the MS1525:2007 (DSM, 2007) or evaluation of purchased 

building energy consumed will not be comprehensively covered in this thesis. 

 

1.7 Significance of Research 

 

The study on the effectiveness of the stack ventilation strategies, especially HTV in hot-

humid tropical buildings is significant for several reasons: 

 

i) This study responds to Malaysian energy policy i.e. Fifth Fuel Policy (EPU, 

2006) and MS1525:2007 (DSM, 2007) that emphasizes to increase the use of 
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renewable energy (RE) and energy-efficiency (EE) in the built environment. 

With the wide use of the device, it is expected that the HTV could significantly 

increase the demand for photovoltaic (PV) panels, thus reduce the long-term 

cost of the technology through product development and competitive 

manufacturing. 

 

ii) This study produces a new stack ventilation strategy (device) which has several 

advantages in terms of technical function and aesthetical concern. Therefore, 

the significance of this product is not only important in terms of ventilation 

functionality in deep plan building like in the terrace house, but also important 

for enriching the aesthetical value of the building itself. These advantages 

therefore could be the added values for the purpose of commercialization. 

 

iii) This study provides general information about natural stack ventilation 

strategies and detail description on hybrid turbine ventilator (HTV) that is not 

only useful for architects, researchers and manufacturers but also can help to 

raise public awareness of environmental friendly cooling techniques. 

Consequently, this will help to create more sustainable and healthier living 

environment. 

 

1.8 Organization of Thesis 

 

This thesis comprises 5 chapters, which can be explained as follows:- 

 

Chapter 1 introduces why and how the issues of improving indoor climatic conditions 

by using the Hybrid Turbine Ventilator (HTV) as a potent stack ventilation strategy is 

studied and presented in this thesis. It starts by addressing the problem statement, as 

well as hypothesis, research questions, objectives, research approach, scopes and 



11 

 

significance of the research. Then, the outline of the thesis is briefly described in the 

final part of this chapter. 

 

In Chapter 2, fundamental concepts of stack ventilation are described, including the 

aspects of ventilation functions, principles and some important factors affecting its 

performance. The real applications of various stack ventilation strategies in the 

architectural context are also discussed for both passive and active techniques. Based 

on the previous academic research, the effectiveness of these conventional and 

advanced stack ventilation strategies are compared with the intention to determine 

several possible strategies to be applied in hot-humid tropical building. Then, the 

chapter focuses on some experimental and analytical work that evaluated the 

effectiveness of turbine ventilator as a stack ventilation strategy. This comprehensive 

review is done to have a clear understanding of every important aspect of its 

application, optimum configuration, modifications, limitations and its possible 

improvements. Then, special focuses were given to the potential usage of the hybrid 

solar and wind-driven turbine ventilator (HTV) to be applied in the hot-humid tropical 

region, with special reference given to Malaysian climate conditions. 

 

In Chapter 3, the research methodologies implemented in this research work are 

discussed. The reasons why and how the selected methodologies are used for this 

study are also described based on the previous literature. The detailed physical 

research investigations which encompass a pilot study and a series of field studies in 

the real building are also explained.  

 

Next, the analyzed results of the empirical studies on HTV are discussed and 

presented in Chapter 4. For pilot study which was conducted in an enclosed space 

with no-wind condition, several different configurations of the HTV were tested and the 

performances of each configuration to induce vertical air movement relying solely on 
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solar energy are compared. Some conclusions lead to the determination of the 

appropriate model of the device. Then, the chapter elaborates the outcome of the field 

study on the effectiveness of the HTV application in the real building and under real 

climate conditions. Monitoring results of indoor climatic conditions like air temperature, 

mean radiant temperature, relative humidity and air velocity in a Biological laboratory 

are shown. In addition, further in-depth analysis regarding the comparative study of the 

different HTV application strategies is also discussed. Some parameters, which should 

be taken into consideration when applying HTV in the building like the impact of 

openings and specific ventilation for the attic, on both ventilation performance and 

occupants‟ thermal comfort are examined and the final optimum application strategy is 

then figured out. 

 

Finally, overall research findings are concluded in Chapter 5, which also summarizes 

the potential and limitations of the HTV in the real building in the hot-humid climate 

region. The chapter also recommends future research on this ventilation strategy, 

especially on areas beyond the scope of this study. 
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CHAPTER 2 
 

PRINCIPLES AND STRATEGIES OF STACK VENTILATION 
 

 

2.1 Introduction 

 

This chapter presents a review of literature on the topics related to stack ventilation. It 

starts with the main concepts and functions of natural ventilation, as well as the 

principles and basic equations used to quantify the airflow induced by the natural stack 

ventilation. It is followed by a review on the applications of stack ventilation in the real 

building, covering the aspects of history, main passive techniques and advanced 

strategies that have been developed and tested. Finally, the chapter presents a 

comprehensive review on some experimental and analytical work that evaluated the 

effectiveness of turbine ventilator as a stack ventilation device in different climates, 

different research methods and variable configurations. Results of these different 

studies then are discussed based on its possibility to be applied in hot-humid climate of 

Malaysia. 

 

2.2 Main Concept of Natural Ventilation 

 

2.2.1 Ventilation Functions 

 

From the architectural point of view, ventilation can be described as a process of 

supplying fresh air to an enclosed space and removing hot and stale air from the 

interior to the outdoor by natural or mechanical means. Basically, the main functions of 

the ventilation in building are for health, structural cooling and thermal comfort (Evans, 

1980; Givoni, 1981; Allard, 1998; Awbi, 2003). The ventilation process and methods for 
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all these 3 main distinct functions can be briefly described as in Table 2.1 and are in 

order of increasing air flow requirements: 

 

Table 2.1: Summary of ventilation process and functions 

Ventilation Function Process Objective 

Health 

 
The process by which fresh and 
clean air is intentionally provided to 
a space and stale air is removed. 

 
To improve better indoor air quality 
(IAQ) by providing sufficient air 
change rate (ACH) and ventilation 
rate (m³/s). 

Structural Cooling 

 
The process whereby the structure 
or thermal mass of the building is 
cooled during dawn or over night 
when the outdoor air is coolest. 

 
To reduce the cooling load of the 
building during daytime by cooling 
the building structure during the 
night-time (often called the ‘night 
ventilation’ strategy. 

Thermal Comfort 

 
The process by which airflow in 
building can improve occupants‟ 
thermal comfort by providing the 
cooling effect resulted from 
convection and evaporation of 
sweat from the skin. 

 
To provide acceptable thermal 
comfort level (usually associated 
with the level of air velocity (m/s)) 

 

 

However in hot-humid climate region like Malaysia where the daily diurnal temperature 

is low, the main purposes of the ventilation are mainly for health and thermal comfort 

(Szokolay, 1998). As for health requirement, sufficient air change rate (ACH) is needed 

to ensure the exchange of hot, stale and unpleasant smell of internal air with fresh 

outdoor air. On the other hand, for the purpose of comfort ventilation, adequate air 

movement is compulsory to ensure occupant‟s thermal comfort in the building by 

means of physiological cooling. 

 

Figure 2.1 summarized these two main ventilation functions as classified by Straaten 

(1967), who included the function of structural cooling as a part of the comfort 

ventilation. 
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Figure 2.1: Schematic illustration of ventilation functions (Source: Straaten, 1967) 

 

2.2.2 Comfort Ventilation and Air Movement 

 

In hot and humid region, ensuring an indoor environment which meet occupants 

thermal comfort level is one of the most crucial factors to be considered when 

designing a building since the outdoor air temperature exceeds 30°C at most of the 

time and relative humidity is always more than 70%, even during the daytime. 

 

In this context, thermal comfort can be defined as ‘the condition of mind which 

expresses satisfaction with the thermal environment’ (ASHRAE, 1992; ISO 7730, 

1994). It also can be explained as the state in which the body adapts itself to the 

environment by spending the least amount of energy (ASHRAE, 2001), or can be 

termed as thermal neutrality for a person (Fanger, 1972). The main factors affecting 

thermal comfort can be divided into two groups which are environmental factors and 

subjective factors (Fanger, 1972). Environmental factors are air temperature, humidity, 

air velocity and radiation, which the effect of all these microclimatic elements on human 

thermal comfort can be visualized in Figure 2.2. 
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Figure 2.2: Environmental variables and their effects on thermal comfort (Source: 
Yannas, 1994) 

 

 
On the other hand, the subjective factors are the activity level, metabolic rate, clothing, 

dieting habits, sex, age, health condition, skin color, human size and acclimatization. 

Regarding the acclimatization factor, many researches (Sharma and Ali, 1986; Givoni, 

1992; Nicol, 2004) indicated that people who lived in hot-humid tropical climates over 

long periods generally feel thermally comfortable at higher temperatures than those 

prescribed by ASHRAE Standard 55 (1992) for summer comfort requirements of 

temperate climate. This is due to the physiological fact that warm condition sensed 

mentally in the brain reacts stronger than cold receptor exists in human skin (Mayer, 

1993). In South-East Asian countries, examples of hot-humid tropical region, this 

significant effect of acclimatization factor on thermal comfort has been verified by 

several field studies, which can be briefly described as follows: 
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i) De Dear et al. (1991) investigated the thermal comfort level of 583 subjects 

from naturally ventilated (NV) apartments and 235 subjects from air-conditioned 

(AC) office buildings in Singapore. The study found that the neutral temperature 

for NV building and AC building were 28.5°C To and 24.2°C Ta, respectively. 

ii) Busch (1992) compared the thermal comfort conditions of Thais who work in 

NV office buildings with those who work in AC office buildings. The study which 

involved more than 1100 subjects revealed that the neutral temperature for NV 

buildings was 27.4°C ET* while for the AC building was 24.7°C ET*. 

iii) Zain-Ahmed et al. (1997) carried out a thermal comfort study of Malaysian 

tertiary students aged 21 years old in both NV and AC institutional buildings in 

Shah Alam, Selangor. The study discovered that the optimum comfort 

temperature was 26.3°C, with the comfort temperature range was 24.5°C to 

28°C with 73%RH.  

iv) Abdul Rahman and Kannan (1997) conducted a field survey to determine the 

comfort condition of Malaysian college students in NV classrooms in Kuala 

Lumpur. The results showed that the range of comfort temperature was 23.4°C 

to 31.5°C with the neutral temperature to be 27.4°C. The study also indicated 

that with the mean air movement of 0.27m/s and average humidity was 65%RH, 

a mean temperature of 29.8°C was experienced by the subjects. 

v) Karyono (1996) carried out a thermal comfort study on 600 office workers from 

7 office buildings in Jakarta (1996). The study which covered three types of 

building i.e. one naturally ventilated, one hybrid and five air-conditioned 

buildings have discovered that the subjects‟ comfort temperature was 26.4°C 

Ta, and 26.7 °C To. 

vi) Ismail and Barber (2001) studied thermal comfort condition in 11 Malaysian air-

conditioned offices in Penang, Malaysia and found that the comfort temperature 

for Malaysian office workers was 24.7°C with the comfort temperature range 

between 20.8°C to 28.6°C. 
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vii) Wong et al. (2002) conducted a field study on occupants‟ thermal comfort in NV 

apartment buildings in Singapore and found that the dwellers generally 

experienced relatively warmer neutral temperature of 28.9 To since they have 

more opportunity to adapt themselves with their environment compared with 

occupants in AC buildings. 

 

Table 2.2 below summarized the results of these thermal comfort studies done in this 

region which clearly showed higher neutral temperatures than the value of 24.5C 

recommended by ASHRAE (1992) and ISO 7730 (1994) and a wider range of comfort 

than the range of 23C to 26C recommended by MS 1525:2007 (DSM, 2007). 

 

Table 2.2: Summary of previous field studies on indoor thermal comfort in South-East 
Asian region 

Study Year Country 
Comfort 

Range (°C) 
Comfort Value 

(°C) 
Type of Study 

De Dear et. al 1991 Singapore - 
28.5 To (NV) 
24.2 To (AC) 

Field Study 
(NV & AC) 

Busch 1992 Thailand 22.0–30.5 
27.4 ET* (NV) 
24.7 ET* (AC) 

Field Study 
(NV & AC) 

Zain-Ahmed et al. 1997 Malaysia 24.5–28.0 26.3 
Field Study  
(NV & AC) 

Abdul Rahman & 
Kannan 

1997 Malaysia 23.4–31.5 27.4 Field Study (NV) 

Karyono 2000 
Indonesia 
(Jakarta) 

- 
26.4 Ta 
26.7 To 

Field Study  
(NV & AC) 

Ismail & Barber 2001 Malaysia 20.3–28.9 24.6 Field Study (AC) 

Wong et al. 2002 Singapore - 28.9 To (NV) Field Study (NV) 

ASHRAE Std 55 1992  23.0-26.0 To 24.5 To 
Climate 

Chamber 

ISO 7730 1994  23.0-26.0 To 24.5 To 
Climate 

Chamber 

DSM 2007 Malaysia 
23.0-26.0 with 
55-70%RH 

na 
For AC non-
residential 
building 

To = Operative Temperature, ET*=Effective Temperature, NV=Naturally Ventilated, AC=Air Conditioned 

 

From the Table 2.2, it can be observed that thermal comfort studies on the natural 

ventilated (NV) buildings showed a higher neutral temperature and higher thermal 
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comfort zone than air-conditioned (AC) buildings. These values are in a good 

agreement with the value estimated with Adaptive Comfort (de Dear and Brager, 2002) 

approach which recommended a higher comfort temperature for natural ventilated 

buildings. According to this theory: ‘If a change occurs such as to produce discomfort, 

people react in ways which tend to restore their comfort’ (Nicol and Humphreys, 2002). 

The major effect of this approach is it increases the wider range of the temperatures 

that occupants feel comfortable, since they have a greater degree of control over their 

thermal environment, including by opening a window or adjusting its blinds (Humphreys 

and Nicol, 1998). Therefore, it is obvious that designing a naturally ventilated building is 

not only advantageous in terms of energy conscious and environmental concerns, but 

also meets the preferable custom of the people who like to open their windows during 

daytime, especially in this hot and humid region (Kubota et al., 2009). 

 

Moreover, many researchers found that these upper limits of indoor comfort 

temperature can be extended by about 4C to 33.2C with the aid of ample air 

movement of 1.0m/s (Abdul Rahman, 1999), since the sufficient air velocity can provide 

physiological cooling, especially in the very humid conditions (MacFarlene, 1958; 

Szokolay, 1998). This is due to the fact that when the humidity is high, only higher air 

velocities can overcome the problem of the high vapor pressure that prevent 

evaporation and restricting the cooling effect. In this principle, the increased air 

movement past through the human skin will increase the process of convection and 

evaporation of sweat from the skin, thus maintain the normal human body temperature 

to be at 37C. From the literature, it was reviewed that the optimum air velocity 

recommended for this climate is between 1.0m/s to 1.5m/s (Salleh, 1989; Auliciems 

and Szokolay, 1997) while the value of 0.25m/s is found to be the minimum air velocity 

needed for giving significant cooling effect (Szokolay, 1998), as graphically shown in 

Figure 2.3. 
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Figure 2.3: Comparative analysis of cooling effect through air movement (Source: 
Szokolay, 1998) 

 
 

However, although the importance of ample air movement is obvious, the question now 

is how to increase air movement in the occupied zone without resorting to mechanical 

ventilation which absolutely consumes more energy and adversely affect the 

environment. To answer this question, the strategy of using natural ventilation 

technique which maximizes natural free energy sources seems to be a good option to 

explore. 
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2.2.3 Principles of Natural Ventilation 

 

Since the oil crisis during the 1970‟s, there was a significantly rising interest among 

architects and engineers to reinventing natural ventilation as a sustainable strategy to 

ventilate the building and providing thermal comfort without burning the fossil fuels. In 

this context, natural ventilation can be defined as ‘the movement of air through 

openings in a building fabric due to wind or to static pressures created by the indoor-

outdoor temperature differences (stack effect), or to a combination of these acting 

together’ (BSI, 1991). From this definition, it is obvious that wind effect and/or stack 

effect are the main driving forces that will determine the ventilation rate and configure 

the three major forms of natural ventilation, which can be classified as in Table 2.3: 

 

Table 2.3: Major forms of natural ventilation 

Natural Ventilation 
Strategy 

Typical Sectional Diagram 
Driving Force  
(cross section) 

Single-sided 
ventilation  

 

 
Wind effect, stack effect (and/or 

turbulence) 

Cross ventilation  

 

 
Wind effect 

Stack ventilation 

 

 
Stack effect 
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Single sided ventilation occurs when air enters (inlet) and exits (outlet) the indoor 

space through the same opening. Theoretically, the movement of air by this strategy is 

driven by small difference in building envelope wind pressure, room scale buoyancy 

effect and/or turbulence. Due to these factors, this strategy is thought to be only 

effective for a depth not more than 2.5 times the height of the space (BRE, 1994; Awbi, 

2003), thus making it the less effective strategy compared to other types of natural 

ventilation. 

 

On the other hand, cross ventilation which is the most common natural ventilation 

strategy occurs when air enters the indoor spaces from one side (windward) and exit 

through the opposite side (leeward). As a rough building design guideline, this strategy 

is thought to be effective up to 5 times the height of the space (BRE, 1994) and not 

more than 14m (Awbi, 2003). In theory, the effectiveness of this strategy is a function of 

the size of the inlets and outlets, outdoor air temperature and outdoor-indoor airflow 

resistance. Thus, it is clear that the successful cross ventilation requires a building form 

that provides an adequate inlet and outlet areas with minimal internal obstructions 

(between inlet and outlet) and maximizes exposure to the prevailing wind direction. 

These requirements can be major constraints for a deep plan building and building 

located in the dense built environment (Abdul Rahman, 1995). 

 

Therefore, stack ventilation which is thermal buoyancy-based ventilation could be a 

possible alternative for a more effective ventilation strategy in those particular 

situations. In this context, stack ventilation can be defined as „the upward movement of 

air through openings in a building fabric due to thermal buoyancy (gravity) and/or 

negative pressure generated by the wind over the roof‟. This principle makes this 

ventilation strategy less dependent on outdoor wind condition and makes it more 

significant to improve natural ventilation in a building with limited side openings, like in 

a terrace house. Due to these advantages, this form or type of natural ventilation was 
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selected to be the main focus of this thesis. In doing so, all of its mechanism, 

performance factors and architectural features related to this strategy will be further 

discussed. 

 

2.3 Stack Ventilation Strategies 

 

2.3.1 Mechanism and Factors Affecting Performance 

 

Figure 2.4: Schematic illustration of stack effect principle 
 

In theory, the main mechanism that drives the natural stack ventilation is due to the 

„stack effect‟ principle where the air rises due to thermal force. This principle can be 

demonstrated by the Figure 2.4 above which shows that warm and lighter air rises 

vertically and exits through the upper openings above the neutral pressure level (NPL). 
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As a result, this air is being replaced by cooler and heavier air entering through the 

lower openings. Specifically, the airflow induced by this mechanism is directly 

proportional to the outside-inside temperature differential, the effective area of the 

openings and inlet-outlet height differential (BSI, 1991), as given by Equation 2.1.  

 

   Q = KA  ℎ (tout –  tᵢ)        (2.1) 

 

 
Where,  

Q = airflow (m/s) 

K  = discharge coefficient for the opening (assume K=0.65 for multiple inlet 

openings) 

A = free area of inlets (m²) 

h = height from mid-point of the inlets to mid-point of the outlets (m) 

tout = average temperature of outdoor air (ºC) 

tᵢ = average temperature of indoor air (ºC) 

 

Due to this principle, it is obvious that the effectiveness of the stack ventilation strategy 

is mainly dependent on several parameters like the temperature differential between 

the interior and exterior spaces, the size of inlets and outlets and the height of the 

space, as described below:- 

 

a) The temperature difference between the exterior and interior spaces 

 

As a simple rule of thumb, it is agreed that natural stack ventilation will only work when 

outdoor air temperature is cooler than the indoor temperature. According to Brown and 

DeKay (2001), in order to generate vertical air movement due to the pressure 

differences, the difference between indoor and outdoor needs to be at least 1.7°C, 

while a greater temperature difference can provide more effective air movement and 


