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PERSEDIAAN DAN PENCIRIAN POLI(L-LAKTIK ASID) (PLLA) 

PERANCAH DAN GAULAN PLLA  

 

ABSTRAK 

 

Pengoptimunan gaulan poli(L-laktik asid) (PLLA) telah dihasilkan melalui 

pengaulan polimer bio liat seperti poli(kaprolakton) (PCL), poli(butil suksinat-ko-L-

laktad) (PBSL) dan poli(butilena suksinat-ko-e-kaprolakton) (PBSC) dan 

penambahan agen perserasian seperti lysine triisosianat (LTI) dan tiga blok 

kopolimer polietilena oksida - polipropilena oksida - polietilena oksida (PEO-PPO-

PEO). Penyediaan perancah berasaskan PLLA juga dipertimbangkan dalam kajian 

ini. Dalam siri pertama, kesan komposisi campuran (100/0, 90/10, 80/20, 70/30, 

50/50, 25/75 dan 0/100 % berat) ke atas sifat morfologi, mekanikal dan haba bagi 

campuran PLLA/PCL, PLLA/PBSL, dan PLLA/PBSC telah dilakukan. Didapati sifat 

kelenturan menurun dengan peningkatan kandungan PCL atau PBSL atau PBSC. Ini 

telah dikesan menerusi pelekatan antara muka yang tidak baik di antara PLLA dan 

PCL atau PBSL atau PBSC seperti yang diperhatikan dalam morfologi fasa 

pemisahan. Siri kedua adalah melibatkan kesan kandungan LTI ke atas sifat gaulan 

PLLA/PCL. Sifat mekanikal bagi gaulan PLLA/PCL telah didapati meningkat 

dengan kehadiran LTI dengan sifat optimum ditunjukkan pada penambahan 5 phr 

LTI. Ini adalah disebabkan oleh tindak balas antara kumpulan isosianat LTI dan 

kumpulan OH pada kedua-dua PLLA dan PCL. Kesan penserasian kandungan LTI 

ke atas gaulan PLLA/PCL telah terbukti melalui peningkatan sederhana dalam 

keliatan pecah dan disahkan melalui morfologi keliatan yang diperhatikan melalui 

FE-SEM. Nilai tenaga pecah gaulan PLLA/PCL meningkat dengan peningkatan 

kandungan LTI. Kesan keliatan optimum telah diperhatikan dalam gaulan 

PLLA/PCL (50/50) terserasi dengan 5phr LTI. Dalam siri ketiga, kesan penambahan 

kandungan tiga blok kopolimer PEO-PPO-PEO (0.5, 1 dan 2phr) ke atas PLLA/PCL 

(70/30 % berat) telah dijalankan. Penambahan kopolimer ke dalam PLLA/PCL 

meningkatkan keliatan pecah. Suhu peralihan kaca (Tg) dan suhu peleburan (Tm) 

PLLA dan PCL beralih berdekatan sedikit, ini menunjukkan keserasian gaulan 

meningkat dan seterusnya meningkatkan mod sifat pecah. Sebagai tambahan, 

pemisahan fasa pepejal-cecair dan teknik beku-kering (SPS-FD) boleh digunakan 

dalam penyediaan bahan perancah dengan keliangan yang tinggi dengan sifat 

mampatan yang tinggi. Dengan teknik fabrikasi ini perancah PLLA yang 

berkeliangan tinggi dan bersambung telah di fabrikasi dengan jayanya, didapati 

PLLA dengan kepekatan di bawah 10% mempamerkan potensi yang bagus untuk 

aplikasi kejuruteraan tisu. 
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PREPARATION AND CHARACTERIZATIONS OF POLY(L-LACTIC 

ACID) (PLLA) BLENDS AND PLLA SCAFFOLD 

 

ABSTRACT 

Optimization of poly(L-lactic acid) (PLLA) blends was carried out by 

blending with ductile biopolymers such as poly(ε-caprolactone) (PCL), 

poly(butylene succinate-co-L-lactate) (PBSL) and poly(butylene succinate-co-e-

caprolactone) (PBSC) and addition of compatibilizer such as lysine triisocyanate 

(LTI) and polyethylene oxide-polypropylene oxide-polyethylene oxide (PEO-PPO-

PEO) triblock copolymer. Preparation of PLLA based scaffold was also been 

considered in the present study. In the first series, the effects of blend composition 

(100/0, 90/10, 80/20, 70/30, 50/50, 25/75 and 0/100 wt%) on the morphological, 

mechanical and thermal properties of PLLA/PCL, PLLA/PBSL, and PLLA/PBSC 

blends were carried out. It is found that the bending properties decreased with 

increasing PCL or PBSL or PBSC contents. This was traced by the poor interfacial 

adhesion between PLLA and PCL or PBSL or PBSC as observed in the phase 

separation morphology. The second series were on the effects of LTI content on the 

properties of PLLA/PCL blends. The mechanical properties of the PLLA/PCL blends 

were observed to increase with the presence of LTI with optimum properties shown 

at LTI loading of 5phr. This was attributed to the interaction between isocyanate 

group of LTI and OH group of both PLLA and PCL. The compatibilizing effects of 

LTI content on the PLLA/PCL blends were proven by moderate improvement in the 

fracture toughness and confirmed by the ductile morphology as observed by the FE-

SEM. The fractured energy values of the PLLA/PCL blends increased with the 

increasing of LTI contents. The optimum toughening effect was observed in 

PLLA/PCL (50/50) blend compatibilized with LTI at 5phr. In the third series, the 

effects of addition of PEO-PPO-PEO triblock copolymer contents (0.5, 1 and 2phr) 

into PLLA/PCL (70/30 wt%) were carried out.  The addition of the copolymer into 

the PLLA/PCL improved its fracture toughness. The glass transition temperature (Tg) 

and melting temperature (Tm) of PLLA and PCL shifted slightly closer together, 

indicating that the blend miscibility slightly increased and hence increased mode I 

fracture properties. In addition, solid-liquid phase separation and freeze-drying 

techniques (SPS-FD) is able to be used in preparing highly porous scaffolds with 

higher compression property. With this fabrication technique, highly porous and 

interconnected PLLA scaffolds were successfully fabricated, suggesting that PLLA 

concentration below 10 wt% exhibits great potential for tissue engineering 

applications.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background  

The last two decades of the twentieth century saw a paradigm shift from 

biostable biomaterials to biodegradable (hydrolytically and enzymatically degradable) 

biomaterials for medical and related applications (Shalaby and Burg, 2003; Domb and 

Wiseman, 1998; Piskin, 1995). In the current trend, many of the permanent prosthetic 

devices used for temporary therapeutic applications will be replaced by biodegradable 

devices that could help the body to repair and regenerate the damaged tissues. There are 

several reasons for the favorable consideration of biodegradable over biostable materials 

for biomedical applications. The major driving force being the long-term 

biocompatibility issues with many of the existing permanent implants and many levels 

of ethical and technical issues associated with revision surgeries. A biomaterial can be 

defined as a material intended to interface with biological systems to evaluate, treat, 

augment or replace any tissue, organ or function of the body (Williams, 1999).  

Biodegradable polymeric materials are being investigated in developing 

therapeutic devices such as temporary prostheses, three-dimensional porous structures as 

scaffolds for tissue engineering and for pharmacological applications, such as drug 

delivery (both localized and targeting systems). Some of the current biomedical 

applications of biodegradable polymeric materials include: (1) large implants, such as 

bone screws, bone plates and contraceptive reservoirs, (2) small implants, such as staples, 

sutures and nano- or micro-sized drug delivery vehicles, (3) plain membranes for guided 

tissue regeneration and (4) multifilament meshes or porous structures for tissue 
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engineering (Vert, 2005). A tissue engineering approach uses a biodegradable construct 

to assemble cells in three-dimensions to ultimately develop into functioning tissue. 

Polymeric materials with a wide range of mechanical and degradation properties are 

required to mimic the properties of various tissues. In controlled drug delivery, bioactive 

agents are entrapped within a biodegradable polymer matrix from which they are 

released in an erosion- or diffusion-controlled fashion or a combination of both. The 

release characteristics of the bioactive agents can be effectively modulated by suitably 

engineering the matrix parameters. 

Due to the versatility of polymeric materials, they are rapidly replacing other 

material classes, such as metals, alloys and ceramics for use as biomaterials. In 2003, the 

sales of polymeric biomaterials exceeded $7 billion, accounting for almost 88% of the 

total biomaterial market for that year (Medical Device and Diagnositc Industry, 2005). 

Nair et al., (2007) predicted huge market for polymeric biomaterials in the coming 

decades. 

Polyester such as polyglycolide (PGA) and polylactide (PLA) has been studied 

and were used as biodegradable suture since 1970 (Park et al., 2003). PGA was first 

selected as a biodegradable material due to its good biodegradability and 

biocompatibility (Velde and Kiekens, 2002). However, rapid hydrolytic degradation and 

poor mechanical properties associated with PGA has limited its applications as porous 

scaffold material. Since then, PLA was developed as a promising alternative due to its 

good mechanical properties, good biodegradability and biocompatibility. However, 

despite the high modulus, PLA is low in toughness which consequently limits its 

processibility and commercialization (Jamiolkowski and Dormier, 2006). Therefore, 

copolymerization technique has been introduced to optimize the properties of various 
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biodegradable polymers. Copolymers of lactide and glycolide have been most 

extensively studied and commercialized for several medical applications such as suture, 

skin, cartilage, and bone regeneration (Bertoldi, 2008).  

 

1.2 Problem Statements 

Poly(L-lactic acid) (PLLA) is a promising synthetic biopolymer derived from 

biomass through bioconversion and polymerization (Sodergard et al., 2002). PLLA has 

great potential of applications as bioabsorbable medical devices (Bhattarai et al., 2004). 

The disadvantage of PLLA is that it is too soft above its glass transition temperature (60 

ºC) and has low toughness, which limits its applications. Its brittleness is also a 

disadvantage for its application in various commercial items.  

Blending PLLA with others ductile biodegradable have been investigated by 

many researchers (Shibata et al., 2006a; Harada et al., 2007; Todo et al., 2007b). It is 

known that in general these PLLA polymer blends exhibit phase-separation if directly 

blended without any additives (Todo et al., 2007a). Copolymerization of PLA/PCL is 

reported to decrease the brittleness of PLLA (Hiljanen-Vainio et al., 1996; Grijpma et 

al., 1991). Various compatibilizers have been used to increase the miscibility of the 

blend composites (Aslan et al., 2000).  

In the present study, LTI and triblock PEO-PPO-PEO copolymer have been 

ultilized as compatibilizers in PLLA blends. It is expected that the addition of these 

compatibilizers will increase the chance of reaction at the PLLA blend interface and 

hence increase its physical properties.   
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1.3 Research objective  

This study is focused on the preparation and characterization of PLLA blends 

and scaffolds. The primary objectives of these studies are divided into the following 

categories: 

(i) To determine the effect of blend compositions on the mechanical, thermal 

and morphological properties of PLLA/PCL, PLLA/PBSL and PLLA/PBSC 

blends. 

(ii) To study the effects of LTI as a reactive processing agent and triblock PEO-

PPO-PEO copolymer as a compatibilizer on the best composition of PLLA 

blend (PLLA/PCL system).  

(iii) To fabricate and characterize porous PLLA scaffold produced with different 

parameters such as solid-liquid phase separation and freeze-drying 

techniques. 

 

1.4 Dissertation Overview  

This thesis deals with incompatible pairs of polymer, compatibilization and the 

morphology of the PLLA blends. 

Chapter one starts with a brief introduction on biodegradable polymer based 

biomaterials for medical applications. Issues concerned that generated the ideas and 

energies to this work are also stated. The primary objectives and the general flow of the 

whole research program are also carefully outlined. 

Chapter two is a literature survey pertaining to recent progress in the 

biodegradable polymers. Their definition, classifications, blends, characterizations of the 

blends and applications are discussed in this chapter.  
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Chapter three focuses on the explanation of the raw materials used in the present 

study, i.e. PLLA, PCL, PBSL, PBSC, additives LTI and PEO-PPO-PEO copolymer. 

Fabrication methods of the PLLA blends and characterization of the samples are 

explained in this chapter.  

Chapter four discusses on the properties of various PLLA blends, effect of 

additions of LTI and copolymer in PLLA/PCL blend and production of PLLA porous 

scaffold using solid-liquid phase separation and freeze-drying techniques. The influence 

of PLLA solution concentration, polymer molar mass and relative humidity on pore 

dimensions in producing is discussed.  

Chapter five presents some conclusive remarks on the present works as well as 

some suggestion for future works.  
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Introduction to Biodegradable Polymers 

Biodegradable polymer is an emerging area of science crucial in the current 

situation with depleting fossil residues and increasing environmental burden caused by 

non degradable polymers. These polymers are set to solve both problems by providing a 

renewable resource for degradable green polymers with minimal environmental 

repercussions. In addition, due to their biodegradability and biocompatibility, some of 

these polymers are also useful for new emerging medical applications. Type and 

properties of the polymers have been discussed in the recent works (Akaraonye et al., 

2010; Grabow et al., 2010; Hay et al., 2010; Thompson et al., 2010; Yunos et al., 2010; 

Wang et al., 2010; Sato et al., 2010). 

The definition of the words biodegradable, bioerodable, bioresorbable and 

bioabsorbable are described as follow (Hutmacher, 2000): 

(i) Biodegradable are solid polymeric materials and devices which break down 

due to macromolecular degradation with dispersion in vivo but no proof for 

the elimination from the body (this definition excludes environmental, fungi 

or bacterial degradation).  

(ii) Bioresorbable are solid polymeric materials and devices which show bulk 

degradation and further resorb in vivo; i.e. polymers which are eliminated 

through natural pathways either because of simple filtration of degradation 

by-products or after their metabolization.  
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(iii)  Bioresorption is thus a concept which reflects total elimination of the initial 

foreign material and of bulk degradation by-products (low molecular weight 

compounds) with no residual side effects. The use of the word “bioresorbable” 

assumes that elimination is shown conclusively.  

(iv) Bioerodible are solid polymeric materials or devices, which show surface 

degradation and further, resorb in vivo.  

(v) Bioerosion is thus a concept, too, which reflects total elimination of the 

initial foreign material and of surface degradation by-products (low 

molecular weight compounds) with no residual side effects.  

(vi)  Bioabsorbable are solid polymeric materials or devices, which can dissolve 

in body fluids without any polymer chain cleavage or molecular mass 

decrease. For example, it is the case of slow dissolution of water-soluble 

implants in body fluids. A bioabsorbable polymer can be bioresorbable if the 

dispersed macromolecules are excreted. 

A number of standards authorities have sought to produce definitions for 

biodegradable plastics. In ISO 472 (1999), plastic is designed to undergo a significant 

change in its chemical structure under specific environmental conditions resulting in a 

loss of some properties that may vary as measured by standard test methods appropriate 

to the plastics and application in a period of time that determines its classification. A 

committee on “Environmentally Degradable Plastics and Bio-based products” defined 

degradable plastics as materials that undergo bond scission in the backbone of a polymer 

through chemical, biological and/or physical forces in the environment at a rate which 

leads to fragmentation or disintegration of the plastics. Moreover, Japanese 
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Biodegradable Plastic Society (Fukada, 1992) defined biodegradable plastics as 

polymeric materials that are changed into lower molecular weight compounds where at 

least one step in the degradation process is through metabolism in the presence of 

naturally occurring organisms.  

 

2.2 Classification of Biodegradable Polymers 

Biodegradable polymers (hereafter called biopolymers) are classified according 

to their origin; natural polymers, polymers coming from natural resources and synthetic 

polymers based on polymers synthesized from crude oil. Biopolymers from natural 

origins used on chemical point of view induces, six sub-groups: polysaccharides, 

proteins, lipids, polyesters produced by micro-organism or by plants, polyester 

synthesized from bio-derived monomers and a final group of miscellaneous polymers 

(Ray Smith, 2005). Biopolymers from natural resources include four sub-groups: 

aliphatic polyesters, aromatic polyesters or blends of the two types, polyvinylalcohols, 

and modified polyolefins (polyethylene or polypropylene with specific agents sensitive 

to temperature or light). Here, modified polyolefins are referred to the polyolefins which 

are produced from sugarcane. Biopolymers based on natural resources will be discussed 

in the following sections since the materials are used in the present study.   

 

2.3 Biopolymer from Mineral Resources 

The polymers are divided into four groups: aliphatic polyesters; aromatic 

polyesters, polyvinylalcohols and modified polyolefins. Polyesters represent a large 

family of polymers having in their structure the potentially hydrolysable ester bond 

(Figure 2.1). The polyesters can be classified following the composition of their main 
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chain. They are aliphatic and aromatic polyesters (Table 2.1). In the family of aliphatic 

polyesters there are polymers of natural resources such as polyhydroxyalkanoate (PHA), 

polyhydroxybutyrate (PHB), poly(hydroxylbutyrate-hydroxyvalerate) (PBH/HV) PHV, 

polyhydroxyhexanoate (PHH), mineral origin such as Poly(butylenes succinate) (PBS), 

poly(butylenes succinate adipate (PBSA), poly(ε-caprolactone) (PCL) or those which 

originate from both polylactic acid (PLA) and polyglycolic acid (PGA). In the family of 

aromatic polyesters, those coming from polyethylene terephthalate (PET) or from 

polybutylene terephthalate (PBT), polybutylene adipate terephthalate (PBAT), 

polybutylene succinate terephalate (PBST), polytetramethylene adipate terephthalate 

(PTMAT) and copolymers are separately classified.  

* C O *

O

 
Figure 2.1: Structure of ester bond (Clarinval and Halleux, 2005). 

 

Table 2.1 Biodegradable polyestrs (Clarinval and Halleux, 2005). 

Group Type Derivate Origin Production 

 

 

 

 

Polyesters 

 

 

 

aliphatic 

 

PHA 

PHB Natural Natural 

PHV Natural Natural 

PHH Natural Natural 

PGA Double Synthetic  

PLA Double Synthetic 

PBS PBSA Mineral Synthetic 

PCL Mineral Synthetic 

 

aromatic 

 

PBT 

PBAT Mineral Synthetic 

PBST Mineral Synthetic 

PTMAT Mineral Synthetic 



 10 

2.3.1 Aliphatic Polyesters 

Aliphatic polyesters are generally sensitive to hydrolysis and are biodegradable 

(Gross and Bhanu, 2002). They are formed by polycondensation reaction of an aliphatic 

glycol with an aliphatic dicarboxylic acid. Among the aliphatic polyesters there is family 

of polymers, the poly(α-hydroxy acids) such as polyglycolic acid (PGA), polylactic acid 

(PLA), and some of their copolymers, which have been used in a number of clinical 

applications; sutures, plates and fixtures for fracture fixation devices and scaffolds for 

cell transplantation. 

PGA is a rigid thermoplastic material with high crystallinity (45-50%) produced 

by ring opening of glycolide, a diester of glycolic acid. The structure of PGA is shown 

in Figure 2.2. The glass transition is 36 °C and the melting temperature is 225 °C. PGA 

is not soluble in most organic solvents but has high sensitively to hydrolysis. It can be 

processed by extrusion, injection and compression molding. The attractiveness of PGA 

as a biopolymer in medical applications is the fact that its degradation product (glycolic 

acid) is a natural metabolite.  

 

* O CH2 C *

O

n
 

Figure 2.2: Structure of polyglycolic acid. 

 

Polylactic acid (PLA) (Figure 2.3) can be synthesized from lactic acid or by ring-

opening polymerization of lactide (a cyclic dimer of lactic acid). The lactide exists as 

two optical isomers, lord-isomers, both polymerizations give semi-crystalline polymers, 

in addition, its stereochemical structure can be easily modified by polymerizing a 
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controlled mixture of both isomers to yield amorphous or semi-crystalline polymers 

(Nair and Laurencin, 2007; Garlotta, 2001). PLA can be found in two forms as poly(L-

lactic acid) (PLLA) and poly(D-lactic acid) (PDLA) synthesized from L-lactic acid 

(natural occurring) and D-lactic acid. PLLA is a semi-crystalline polymer while PDLA 

is an amorphous polymer. The preferred route for producing high molecular weight PLA 

is the catalytic ring-opening bulk polymerization of lactide (dilactone of lactic acid). The 

chemistry of PLA involves the processing and polymerization of lactic acid monomer. 

Lactic acid COCH3CHCOOH is a simple chiral molecule which exists as two 

enantiomers, L- and D-lactic acid (Figure 2.4), different in their effect on polarized light. 

The L isomer rotate the plane of polarized light clockwise, the D isomer rotates it 

counterclockwise. The optically inactive D, L or meso form is an equimolar (racemic) 

mixture of D and L isomes (Lunt, 1998a; Lunt et al., 2000b). Lactic acid is produced in 

mammalian muscles during glycogenolysis and it involved in the Kreb’s cycle through 

pyruvic acid and acetcyl-CoA (Fambri et al., 1997). Lactic acid is easily prepared in 

high yield by fermentation of molasses or potato starch or of dextrose from corn (Gupta 

et al., 2007; Eling et al., 1982). 

 

* O CH C

CH3

O

*
n

 
Figure 2.3: Structure of polylactic acid.  
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Figure 2.4: Optical isomers of lactic acid. 

 

Poly(L-lactide) (PLLA), which is derived from pure L-lactide, has a high melting 

temperature (175 ºC), poor processability, and crazes easily because of its high 

crystallinity. The D, L-PLA is an amorpous polymer with 60 ◦C, which is low for many 

packaging uses. Properties, such as melting point, mechanical strength, and crystallinity, 

are determined by the polymer architecture (determined by different proportion of L, D) 

and the molecular mass. Similarly, the time for degradation is also affected by the 

crystallinity and molecular mass of the polymer; higher values require longer time for 

degradation. On the contrary, poly(ld-lactide) (PLDA) is an amorphous polymer due to 

the random distribution of l- and d-lactide units and has a Tg of 55–60 ºC (Garlotta, 

2001). In this review we used PLA as a general term indicating either amorphous or 

crystalline polymers, whenever necessary, the specific structure is indicated as PLLA, 

PDLA or PLDA.  

Poly(L-lactide) (PLLA) has gained clinical attention in recent years due to its 

biocompatibility and biodegradability, therefore, it has been used extensively for 

biomedical applications including orthopedic fixation devices, three dimensional 

scaffolds, sutures, and drug delivery matrix materials. During metabolization by the 
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human body, PLLA can be degraded by hydrolysis into lactic acid, which under aerobic 

conditions can be further metabolized into water and carbon dioxide and finally excreted 

by the organism. However, the in vivo degradation of PLLA occurs predominantly by a 

cellular process, as a result of local inflammatory reactions. One drawback of PLLA is 

its brittleness and stiffness, these mechanical properties could be improved by blending 

or by copolymerization with more flexible polymer components (Nair and Laurencin, 

2007; Mothé et al., 1999; Garlotta, 2001). 

Poly(butylenes succinate) (PBS) has properties similar to PET. It has a 

crystallinity of 35 - 45%, a glass transition temperature of -32 °C and a melting 

temperature of 114-115 °C. PBS is generally blended with other compounds, such as 

starch and adipate copolymers (to form PBSA). PBSA has a crystallinity of 20-35%, a 

Tg of -45°C and a Tm of 93-95 °C. Its properties are closed to those of LDPE (linear low 

density polyethylene). These polymers can be processed via conventional melt 

processing techniques (blow moulding, extrusion, injection) and application include 

mulch film, packaging film, bags and ‘flushable’ hygiene products. Bionolle’s (Showa 

Denko) are a family of aliphatic polyesters synthesized by polycondensation of glycols 

and dicarboxylic acids. There are two series: the 1000 series with PBS obtained from 1,4 

butane diol and succinic acid and the 3000 series consisting of PBSA copolymer from 

1,4 butane diol and a mix of succinic acid and adipic acid (Figure 2.5). The structure of 

PBSA is linear or branched (Showa High Polymer Ltd, 1998; Kettle Belinda, 1998).  

 

H O (CH2)4 O (CO (CH2) CO)
m

 
Figure 2.5: Structure of poly(butylenes succinate). 
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Polycaprolactone (PCL) is a semi-crystalline polymer with a glass transition 

temperature of about -60 °C and a melting temperature of 59-64 °C. The structure o PCL 

is shown in Figure 2.6 (Gunatillake et al., 2003). PCL degrades at a much lower rate 

than PLA and is used as a base polymer for developing long-term, implantable drug 

delivery system.  PCL is prepared by ring-opening polymerization of ε-caprolactone 

with catalysts such as stannous octoate and initiators such as low molecular weight 

alcohol to control the molecular weight of the polymer. PCL can be slowly degraded (2–

3 years) by hydrolysis of its ester linkages in physiological conditions (such as in the 

human body) and has therefore received a great deal of attention for use as an 

implantable biomaterial in drug delivery devices, bioresorbable sutures, adhesion 

barriers, and scaffolds for injury repair via tissue engineering (Castillo and Muller, 

2009). Compared to other biodegradable aliphatic polyesters, PCL has several 

advantageous properties, including: high permeability to small drug molecules; 

maintenance of a neutral pH environment upon degradation; facility in forming blends 

with other polymers; and suitability for long-term delivery afforded by slow erosion 

kinetics as compared to polylactide (PLA), polyglycolide (PGA), and polylactic-co-

glycolic acid (PLGA) (Nair and Laurencin, 2007; Ghoroghchian et al., 2006; Zhou et al., 

2003). However, the rather high crystallinity of PCL decreases its compatibility with 

soft tissues and lowers its biodegradability. These drawbacks may obstruct its 

application in drug-controlled release systems. This problem can be overcomed by the 

copolymerization of ε-caprolactone (ε-CL) with other monomers (Zhou et al., 2003). 
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Figure 2.6: Structure of polycaprolactone. 

 

2.3.2 Aromatic Polyester  

 Aromatic polyesters are formed by the polycondensation of aliphatic diols and 

aromatic dicarboxylic acids. The aromatic ring gives the polymer an excellent resistance 

to hydrolysis and chemical agents. They are difficult to hydrolyse and therefore not 

renewable. For example, polyethylene terephthalate (PET) and polybutylene 

terephthalate (PBT) are well-known polyesters obtained by polycondensation of 

aliphatic glycols and terephthalic acid. They can be modified by addition of hydrolysis 

sensitive monomers (ether, amide or aliphatic groups) giving a family of biodegradable 

polyesters. 

 

2.3.3 Polyvinylalcohols (PVA) 

The structure of PVA is shown in Figure 2.7. PVA is produced by 

polymerization of vinylacetate to polyvinylacetate (PVAC), followed by the hydrolysis 

of PVAC in PVA. The degree of polymerization determines the molecular weight and 

viscosity of PVA in solution. The degree of hydrolysis (saponification) signifies the 

extent of conversation of the PVAC to PVA. Partially hydrolysed PVA has a Tg of 58 °C 

and a Tm of 180 °C. Totally hydrolysed PVA has a Tg of 85 °C and a Tm of 230 °C. PVA 

can be used in the production of paper, clothes, glues, paints, pharmaceutical products, 

building materials, ceramics, etc.  
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Figure 2.7: Structure of polyvinylalcohol. 

 

2.3.4 Modified Polyolefins 

Polyolefins like polypropelene (PP) and polyethylene (PE) are very resistant to 

hydrolysis and are totally non-renewable. It is possible to alter their structure by the 

addition of an agent that will, by an oxidative radicalaire mechanism, degrade the cabon 

chain of the polymer. Heat or light can be initiating the mechanism. The agent 

containing transition metal ions transform the polymer into low molecular mass carboxyl 

acids and alcohols. Bacteria, fungi and enzymes of the milieu then degrade the residues 

into biomass and CO2. Used photosensitisers include diketones, ferroccene derivatives 

(aminoalkyferrocene) and carbonyl-containing species (Nolan-ITU Pty Ltd, 2002).  

 

2.4 Polymer Blends   

A polymer blend is a mixture of at least two polymers or two copolymers 

(Utracki 1990). Synthetic polymers, including polymer blends, are useful in designing 

tailor made materials with good properties, processability and price/ performance ratio 

(Seidenstucker and Fritz, 1998). Currently, many engineered biodegradable polymers 

have excellent product properties and performance, however, their widespread use is 

limited by high cost. There are many commercially available polymer blends and 
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common ones include blend of poly(vinyl chloride) (PVC) and acrylonitrile rubber 

(NBR), acrylonitrile-butadiene-styrene copolymer (ABS) and starch/polyethylene. 

According to Utracki, (1990), the most sought after properties for engineering blends are 

high impact strength, processability and tensile strength. Quite notably, biodegradability 

is not listed under any of the categories. Blending to achieve biodegradability is only a 

relatively new concept and is largely still in the developmental phase. However, starch-

based materials are now industrial products and are leading the still small market of 

biodegradable products (Bastioli, 1998). 

The blends of biopolymers and additives became the first class of biodegradable 

materials, as classified by Huang et al., (1990). To date, most research on biodegradable 

blends has concentrated on blends containing a non-biodegradable component, making 

them not 100% biodegradable. There are many examples of starch in these types of 

blends including starch and polyethylene (St-Pierre et al., 1997). However, little 

research has been undertaken into the blending of 100% biodegradable blends.  

 

2.5 Aliphatic Polyester Blends 

As been mentioned in Section 2.4, aliphatic polyesters have been recognized for 

their biodegradability and susceptibility to hydrolytic degradation. Examples of this 

group are PLAs, which also have the advantage of controllable crystallinity and 

hydrophilicity, and therefore overall degradation rate (Tsuji et al., 2000a; Albertsson, 

2002; Tsuji et al., 2002b; Yu et al., 2006). Another family of polyesters being studied 

widely are poly(hydroxyalkanoate)s (PHAs) that occur in nature. They are produced by 

a wide variety of micro-organisms as an internal carbon and energy storage, as part of 

their survival mechanism (Yu et al., 2006; Scholz and Gross, 2000). Bacterially 
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synthesized PHAs have attracted attention because they can be produced from a variety 

of renewable resources and are truly biodegradable and highly biocompatible 

thermoplastic materials. Biosynthesis and characterization of various copolymers, 

including copolymers of hydroxybutyrate (HB) with 3-hydroxyvalerate (3HV) (Holmes, 

1985; Doi et al., 1998a), 3-hydroxypropionate (3HP) (Nakamura et al., 1991), 3-

hydroxyhexanoate (3HH) (Doi et al., 1995b) and 4-hydroxybutyrate (4HB) (Kunioka et 

al., 1988) have been developed. Over 90 different types of PHA consisting of various 

monomers have been reported and the number is still increasing (Yang et al., 2002).  

Among the family of biodegradable polyesters, polylactides (i.e. PLA) have been 

the focus of much attention because they are produced from renewable resources such as 

starch and they have very low or no toxicity and high mechanical performance, 

comparable to those of commercial polymers. However, the thermal stability of PLAs is 

generally not sufficiently high enough for them to be used as an alternative in many 

commercial polymers applications (Tsuji and Fukui, 2003c). Ikada et al., (1987), studied 

various PLA blends to improve their thermal properties. A stereocomplex is formed 

from enantiomeric PLAs, poly(L-lactic acid) (PLLA) and poly(D-lactic acid) (PDLA) 

due to the strong interaction between PLLA and PDLA chains (Ikada et al., 1987). The 

stereocomplexed PLLA/PDLA blend has a melting temperature (Tm) (220–230 ºC) 

approximately 50 ºC higher than those of pure PLLA and PDLA (170–180 ºC), and can 

retain a non-zero strength in the temperature range up to Tm (Tsuji and Ikada, 1999d).  

On the basis of these findings, enantiomeric polymer blend is expected to 

enhance the thermal stability of the PLLA/PDLA blend in the melt compared with those 

of the pure PLLA and PDLA. An enantiomer is one of two stereoisomers that are mirror 

images of each other that are "non-superposable". Tsuji and Fukui, (2003c) studied the 

http://en.wikipedia.org/wiki/Stereoisomer
http://en.wikipedia.org/wiki/Mirror_image
http://en.wikipedia.org/wiki/Mirror_image
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films of poly(L-lactide) (i.e. PLLA) and poly(D-lactide) (PDLA), and their equimolar 

enantiomeric blend (PLLA/PDLA). The films were prepared and the effects of 

enantiomeric polymer blending on the thermal stability and degradation of the films 

were investigated isothermally and non-isothermally under nitrogen gas using 

thermogravimetry. The enantiomeric polymer blending was found to successfully 

enhance the thermal stability of the PLLA/PDLA films compared with those of the pure 

PLLA and PDLA films (Yu et al., 2006).  

To achieve a similar outcome, Urayama et al., (2002), developed blends of 

polylactides with high and low L-isomeric ratios of the lactate units (PLA 99.0 and 77.0, 

where the numbers correspond to the L-ratios). The crystallinity of the blends was 

similar to that of the blends of PLLA and PDLLA. The glass transition behavior was 

indicative of the compatible nature of both polymers. The tensile modulus of the blends 

was almost identical irrespective of the blend ratio, while their tensile strength decreased 

with decreasing composition of PLA 99.0. Above the Tg, the storage modulus of the 

blends dropped from 2 – 3 x 109 to 1 – 3 x 106 Pa and then increased to a different level 

depending on the crystalline nature of the blends. The biodegradability of the blends 

increased with decreasing composition of PLA 99.0. This difference in degradability can 

be explained by a random packing model of local helices of the L-sequenced chains for 

the L-rich PLA samples (Urayama et al., 2002). 

 

2.5.1 Blends of Hydrophobic and Hydrophilic Polymers 

2.5.1.1 Starch/PLA Blends  

PLA and starch are both biodegradable polymers derived from renewable 

sources. Starch, a hydrophilic renewable polymer, has been used as a filler for 
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environmentally friendly plastics for about two decades. PLA is a biodegradable 

polymer, but its applications are limited by its high cost. Blending starch with PLA is 

one of the most promising efforts, because starch is an abundant and cheap biopolymer 

and PLA is biodegradable with good mechanical properties. Starch granules become 

swollen and gelatinized when water is added or when they are heated, and water is often 

used as a plasticizer to obtain desirable product properties. Ke and Sun, (2001a), 

characterized blends of starch and PLA in the presence of various water contents. It was 

found that the initial moisture content of the starch had no significant effect on its 

mechanical properties, but it had a significant effect on the water absorption of the 

blends. The thermal and crystallization properties of PLA in the blend were not affected 

by moisture content. The blends prepared by compression molding had higher 

crystallinities than those prepared by injection molding. However, the blends prepared 

by injection molding had higher tensile strengths and elongations and lower water 

absorption values than those made by compression molding. The crystallinities of the 

blends increased greatly with annealing treatment at the PLA second crystallization 

temperature (155 °C). The decomposition of PLA indicated that PLA degraded slightly 

in the presence of water under the processing temperatures used. 

Relationship of microstructure and mechanical and thermal properties of the 

starch/PLA blends have been studied by previous works (Ke and sun, 2003b; Park and 

Im, 2000; Willett and Shgren, 2002; Raghavan and Emekalam, 2001). Studies on the 

thermal behavior of starch/PLA blends were carried out by Ke and Sun, (2003c), the 

experimental data was evaluated using the well-known Avrami kinetic model. Talc, a 

nucleating agent, was also blended with PLA at 1% by volume (v/v) as a comparison. 

Starch effectively increased the crystallization rate of PLA, even at a 1% content, but the 
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effect was less than that of talc. The crystallization rate of PLA increased slightly as the 

starch content in the blend was increased from 1 to 40%. An additional crystallization of 

PLA was observed, and it affected the melting point and degree of crystallinity of PLA.  

Ke et al., (2003d), studied on the effect of amylase content in starches on the 

mechanical properties of starch/PLA. Four dry corn starches with different amylase 

content were blended at 185 °C with PLA at various starch:PLA ratios using a lab-scale 

twin-screw extruder. Starch with 30% moisture content was also blended with PLA at a 

1:1 ratio. Each extrudate was ground and dried. The powder was mixed with about 7.5% 

plasticizer and injection molded (175 °C) into tensile test bars. These were characterized 

for morphology, mechanical properties and water absorption. Starch performed as filler 

in the PLA continuous matrix phase, but the PLA phase became discontinuous as starch 

content increased beyond 60%. Tensile strength and elongation of the blends decreased 

as starch content increased, but no significant difference was observed among the four 

starches at the same ratio of starch:PLA. The rate and extent of water absorption of 

starch/PLA blends increased with increasing starch content. Blends made with high-

amylose starches had lower water absorption than the blends with normal and waxy corn 

starches. 

 

2.5.1.2 Compatiblizers used for Starch/PLA Blends 

PLA and starch are reported as two promising candidates for biodegradable 

polymer blends (Wang et al., 2001a, 2002b, 2002c, 2003d; Zhang and sun, 2004; Ke and 

sun, 2003c; Shogren et al., 2003). However, hydrophobic PLA and hydrophilic starch 

are thermodynamically immiscible, leading to poor adhesion between the two 

components, and hence poor and irreproducible performance. Wang et al., (2001a) used 
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methylenediphenyl diisocyanate (MDI) to improve the interface and studied a blend of 

55/45 (w/w) mixture of PLA and dried wheat starch in an intensive mixer with or 

without MDI. Blends with MDI had enhanced mechanical properties that could be 

explained by the in situ formation of a block copolymer acting as a compatibilizer. 

Morphology observed by SEM showed reduced interfacial tension between the two 

phases. The presence of MDI also enhanced the mechanical properties of the blend at 

temperatures above Tg (Wang et al., 2002c). Pure PLA had a tensile strength of 62.7 

MPa and elongation of 6.5%. The blend with 45% wheat starch and 0.5 wt% MDI gave 

the highest tensile strength of about 68 MPa with about 5.1% elongation. The blend with 

20% starch and 0.5 wt% MDI had the lowest tensile strength of about 58 MPa with 

about 5.6% elongation. Dynamic mechanical analysis showed that storage modulus 

increased and tan δ decreased as starch level increased, but almost leveled off when the 

starch level reached 45% or higher. Water absorption of the blends increased 

significantly with starch content. Yet the blend, if waterproofed on its surface, has 

potential for short-term disposable applications. 

 

2.5.2 Chitosan/PLA Blends 

Chitosan is a natural polymer, non-toxic, edible, biodegradable, derived by 

deacetylation of chitin and is the second most abundant biopolymer in nature after 

cellulose. Chitosan has been used in edible coatings or films to extend the shelf life of 

foodstuffs, e.g. fruit, meat, and fish and seafood. However, its high sensitivity to 

moisture limits its applications for packaging. One strategy to overcome this drawback is 

the blending of chitosan with moisture-resistant polymers, while maintaining the overall 

biodegradability of the products. Suyatma et al., (2004) reported on biodegradable film 


