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SIFAT FIZIKAL, MEKANIKAL DAN PERSEKITARAN 

PELANDAS DENTURE POLI(METIL METAKRILAT)                                      

TERISI HIDROKSIAPITIT 

 

 

ABSTRAK 

Dalam bidang pergigian, resin poli(metil metakrilat) PMMA mampu bertahan 

sebagai bahan paling sesuai dan popular untuk fabrikasi asas dentur bagi prostodontik 

boleh tanggal. Walau bagaimanapun, retak pada asas dentur berlaku secara intra-oral 

disebabkan intensifikasi tegasan semasa fungsi atau apabila dentur terjatuh secara tidak 

sengaja pada permukaan yang keras. Dalam kajian ini, pengisian serbuk seramik 

hidroksiapatit (HA) ke dalam PMMA dilakukan untuk menentukan kesan kandungan 

pengisian HA terhadap sifat fizikal, mekanikal serta alam sekitar  pada asas dentur 

akrilik. Hal ini sama seperti mengkaji kesan beberapa faktor lain yang dianggap faktor 

penting dalam menentukan sifat rencam secara keseluruhan, iaitu kesan daripada 

campuran fizikal sebagai fungsi masa, nisbah agen gandingan dan kepekatan pengisi 

HA. Serbuk HA diolah dengan  dalam nisbah yang berbeza, 3-(trimetoksisili) propil 

metakrilat (agen gandingan silana) (iaitu 0, 5, 7, dan 10% berdasarkan berat) untuk 

mengkaji  kesan nisbah agen gandingan. Tiga nisbah yang berbeza (iaitu. 5, 10, dan 15% 

berdasarkan berat) daripada pengisi yang diolah ditambah ke dalam matriks (PMMA dan 

0.5% BPO) untuk dibandingkan dengan PMMA tulen dan bahan lazim. Komponen 

serbuk dicampur berdasarkan teknik pengisar bebola planet (PBM) bagi 10, 20, 30 dan 

40 min masing-masing untuk mengkaji kesan masa kisaran. Campuran serbuk pada 

cecair dilakukan berdasarkan penggunaan makmal gigi yang standard. Dalam kajian 

campuran, ditemui bahawa saiz partikel rencam PMMA/HA terkesan melalui 
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penggunaan teknik PBM sebagai suatu fungsi masa. Berasaskan ujian mekanikal, masa 

kisaran 30 minit dianggap masa optimum untuk mencapai imbangan yang baik bagi sifat 

mekanikal rencam. Secara amnya, penggunaan agen gandingan silana γ-MPS mampu 

meningkatkan sifat mekanikal rencam HA/PMMA. Sebagai tambahan, 10% daripada    

γ-MPS dianggap jumlah optimum untuk mencapai imbangan yang baik bagi sifat 

mekanikal. Suatu penambahbaikan sifat mekanikal yang munasabah dicapai pada 

muatan pengisi yang amat rendah, iaitu  5 % berat selepas suatu penurunan diperhatikan 

sebagai suatu fungsi peningkatan muatan pengisi. Pendedahan pada alam sekitar boleh 

melemahkan sifat rencam PMMA/HA kerana pengambilan air dan SBF secara 

maksimum akan bertambah dengan peningkatan muatan pengisi. Nilai  KIC bagi sampel 

pengisi  dengan  5, 10 dan 15  % berat  HA berkurangan sebanyak 1.26%, 4.44% dan 

6.06%, masing-masing, selepas direndam dalam SBF selama 2 bulan. Penambahbaikan 

yang signifikan dalam radiopasiti PMMA dicapai melalui penggabungjalinan 

hidroksiapatit. Sebagai tambahan, ditemui bahawa radiopasiti rencam ditambah baik 

sebagai suatu fungsi dalam peningkatan muatan HA.   
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PHYSICAL, MECHANICAL AND ENVIRONMENTAL 

PROPERTIES OF DENTURE BASE POLY(METHYL 

METHACRYLATE) FILLED WITH 

 HYDROXYAPATITE 

 

 

ABSTRACT 

In the field of dental materials, poly(methyl methacrylate) PMMA resin 

maintains itself to be the most popular and suitable material for the fabrication of 

denture bases in removable prosthodontics. However, the fracture of acrylic denture base 

occurs intra-orally because of the stress intensification which is subjected during the 

function or when the dentures are accidentally dropped on a hard surface. In this study, 

the incorporation of hydroxyapatite ceramic (HA) powder into PMMA was carried out 

in order to find out the effect of HA incorporation on the physical, mechanical and 

environmental properties of the acrylic denture base. This is as well as investigating the 

effect of some other factors which are considered key factors in determining the overall 

properties of the composite, i. e. effect of physical mixing as a function of time, coupling 

agent ratio and HA filler concentration. The HA powder was treated with different ratios 

of the silane coupling agent 3-(trimethoxysily) propyl methacrylate (i. e. 0, 5, 7, and 

10% by weight) with respect to the HA powder in order to evaluate the effect of 

coupling agent ratio. Three different ratios (i. e. 5, 10, and 15% by weight) of the treated 

filler were added into the matrix (PMMA and 0.5% BPO) to be compared with pure 

PMMA and the conventional material. The powder components were mixed using the 

planetary ball milling technique (PBM) for 10, 20, 30 and 40 min respectively to study 

the effect of mixing time. The powder to liquid mixing was done according to standard 

dental laboratory usage. In the mixing study, it was found that the particle size of 
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PMMA/HA composite was affected by using planetary ball milling technique (PBM) as 

a function of time. Based on the mechanical testing, the mixing time of 30 minutes was 

considered to be the optimum time to achieve a good balance of mechanical properties 

of the composites. Generally, the use of γ-MPS silane coupling agent led to improved 

mechanical properties of HA/PMMA composites. In addition, 10% of γ-MPS was 

considered to be the optimum amount to achieve a good balance of mechanical 

properties. A considerable improvement of the mechanical properties was achieved at 

very low filler loading, i. e. 5 wt% after which a decrease was observed as a function of 

increasing the filler loading. The environmental exposure has a weakening effect on the 

properties of the PMMA/HA composites whereby, both maximum water and SBF 

uptakes increased with increasing the filler loading. In addition, the KIC values for the 

filled samples with 5, 10 and 15 wt% of HA decreased by 1.26%, 4.44% and 6.06%, 

respectively, after being immersed in SBF for 2 month. A significant improvement in the 

radiopacity of the PMMA was achieved by the incorporation of hydroxyapatite. 

Additionally, it was found that the radiopacity of the composite was improved as a 

function of the increase of HA loading. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Polymeric Denture Base Materials  

Polymers can be produced either in rigid or flexible state by changing the 

composition of monomers. Most of clinicians consider that denture base should be rigid. 

Poly(methyl methacrylate) is a rigid resin that provides sufficient structural integrity to 

be used as a denture base. The reaction of the methyl methacrylate monomer with other 

monomers can produce a much softer polymer which can be used to line the underside 

of a denture for improved fit and comfort for some patients. The rigid acrylic can also be 

used to produce a custom-made tray for carrying the impression material into the 

patient’s mouth to maximize accuracy (Ahmed et al., 1990). 

  There has been a continuous research to fabricate denture base material of 

natural appearance that would withstand the deterioration during the service life. Before 

the advent of acrylic, vulcanite rubber had been the most satisfactory material available 

for almost 75 years. Apart from that, celluloid was also used as it had a more pleasing 

initial appearance than rubber. But it soon warped and discolored and was otherwise 

unsatisfactory. Currently, the denture bases available are largely acrylic resins. Since its 

introduction for the use in dentistry there has been a continual search for modified 

practices in processing the resins which will lead to improved qualities in finished 

structure (Kramer, 2004).  
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PMMA is an acrylic colorless and transparent material used widely as a denture 

base material (Anusavice, 2003). The adequacy of PMMA’s physical properties proved 

the material’s feasibility for dental applications and hence gained its popularity in 

dentistry. Its inherited characteristics are the ones needed for use in oral cavity, and their 

performance features are related to their biological, physical, aesthetic, and handling 

characteristics (Schricker et al., 2006). Nowadays, PMMA is the material of choice for 

denture base fabrication. Most research activity in the field of denture base materials, 

has concentrated on attempts to improve fracture toughness and impact strength of 

acrylic materials. Moreover, the favorable working characteristics, processing ease, 

accurate fit, and superior esthetics of the PMMA make it the most suitable material for 

the fabrication of denture base (Mohamed et al., 2008). Even though PMMA has these 

good combinations of properties, there is a need for improvements in the fracture 

resistance of PMMA. In denture, most of these fractures occur inside the oral cavity 

during service, primarily because of resin fatigue (Meng and Latta, 2005).  

 

1.2 Characteristics of the Ideal Denture Base Material 

A denture base material must make the production of denture effortless and bring 

them within the reach of the average person. It must also combine easiness and speed of 

preparation with high resistance of contamination and worsening in oral cavity 

environment. An ideal denture base material should be capable of matching the physical 

and the mechanical properties of the natural oral soft tissues (McCabe and Walls, 2008). 

The appearance is one of the most important aspects of the physical properties that 

should be taken in consideration when a material is chosen to fabricate the denture base. 



3 

 

However, this depends on whatever the base will be visible when the patient opens 

his/her mouth. Although, the normal temperature in the mouth varies only from 32ºC to 

37ºC, accounts must be taken of the fact that patients take hot drinks at temperature up 

to 70ºC and cleaning dentures in very hot water or even boiling water. Thus, a polymer 

which is used to fabricate a denture base should have a high enough value of glass 

transition temperature (Tg) to prevent softening and distortion during the function (Bhola 

et al., 2010).  

The denture base should have a good degree of dimensional stability in order for 

its shape not to change over a period of time, to avoid the distortions which may occur 

due to the thermal softening and other mechanisms such as relief of internal stresses also 

continued polymerization and water absorption may contribute to dimensional instability 

(Ferracane, 2001). Normally, denture base materials are supposed to have a low value of 

specific gravity in order for it to be as light as possible. This reduces the gravitational 

displacing forces which may occur especially on the upper denture. A high value of 

thermal conductivity would enable the denture user to maintain a healthy oral mucosa 

and retain a normal reaction to hot and cold stimuli. If the base is a thermal insulator, it 

is possible that the patient may take a drink which the patient would normally detect as 

being too hot to bear’, and undergo a painful experience as the drink reaches the throat 

and gut (Hussain, 2004).  

Ideally, the denture base should be radiopaque and capable of detection using 

normal diagnostic radiographic techniques. Occasionally, patients may swallow their 

dentures and even inhale fragments of dentures if involved in a violent accident, such as 

a car crash. Early radiological detection of the denture or fragment of denture is 
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considered immense help in deciding the best course of treatment (Davy, 1997 & 

McCabe and Walls, 2008). Although opinion varies slightly, most clinicians are of the 

view that denture base should be rigid. It is therefore advantageous to have a high value 

of modulus of elasticity. Thus, to ensure that stresses encountered during biting and 

mastication does not cause permanent deformation, a high value of elastic limit is 

required. A combination of a high modulus and high value of elastic limit would have 

added advantage that it would allow the base to be fabricated in relatively thin section. 

Fracture of upper denture bases invariably occur through the midline of the denture due 

to the flexing (Elshereksi et al., 2009). The denture base should have sufficient flexural 

strength to resist fracture. Fracture of denture base in situ often occurs by a fatigue 

mechanism in which relatively small flexural stresses, over a period of time, eventually 

lead to the formation of small crack which propagates through the denture resulting in 

fracture. Therefore, the base material should have an adequate fatigue life and high value 

of fatigue limit. When patients remove dentures for cleaning or overnight soaking, there 

is a danger of fracture if the denture is accidentally dropped onto a hard surface. The 

ability of the denture to resist such fracture is a function of the impact strength 

(Ferracane, 2001).  

A denture base material should be chemically inert. It should, naturally, be 

insoluble in oral fluid and should not absorb water or saliva since this may affect 

negatively on the mechanical properties of the material and cause it to become 

unhygienic. In the unmixed or uncured states, the denture base material should not be 

harmful to the person involved in its handling. An ideal denture base material should be 

relatively inexpensive and have a long shelf life so that material can be purchased in 
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bulk and stored without deteriorating. The material should be easy to manipulate and 

fabricate without having to resort to using expensive processing equipment. If fractures 

do occur they should be easy to repair (McCabe and Walls, 2008).  

Currently, it has not yet been achievable to develop a denture base material 

which fulfils all these requirements. Though, a number of materials were used to 

conduct testing but they have been discarded because they were considered 

unsatisfactory from many aspects. It is time that dentists stopped accepting the 

manufactures’ word that the best possible denture base materials are now available. If 

the tissues covered by the denture were hard then no dentures would fit. Until we are 

able to control absolutely the changes in our impression materials and denture bases, we 

can never produce a really perfect set of dentures (Darvell and Clark, 2000). 

 

1.3 Problem Statement  

There is no ideal denture base, although poly(methyl methacrylate) resin is 

regarded by most practitioners as the best approach to date. Previously, where it fell 

short of the idealness, it still falls short today, although there have been numerous of 

attempts and suggestions made to improve it. Its major disadvantages are that of relative 

softness when compared with tooth enamel, dimensional changes on processing, and 

susceptibility to attack by organic liquids still applies (Akan et al., 2010). One of the 

criticisms of methyl methacrylate type of dental resin is a tendency to fracture. This 

tendency is thought to be coupled with the flexural fatigue resistance of the material, 

such that the greater the value of flexural fatigue resistance in the material, the greater 

will be its resistance to mid-line fracture. Even though PMMA has good combinations of 
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properties, there is a need for improvements in the fracture resistance. Most of fractures 

of the denture occur inside the oral cavity during service, primarily because of resin 

fatigue (El-Sheikh and Al-Zahrani, 2006).  

The denture base resin is subjected to various stresses during the function, these 

include tensile and shear stresses. Some of the factors responsible for denture fracture 

include stress intensification, increased ridge leading to an unsupported denture base, 

sharp changes at the contours of the denture base (Elshereksi et al., 2009). However, 

further significant improvements are needed to produce a denture base material with 

good combinations of mechanical, physical and biological properties in order to reduce 

the chance of denture base fracture which occurs inside the oral cavity. However, it is 

clear that the ideal situation of a completely acceptable dental polymer is still far from 

being reached (Köroğlu et al., 2009). Dentures made from acrylic resin are radiolucent 

because Carbon, Oxygen and Hydrogen atoms are poor X-ray absorbers. This is a 

serious disadvantage of these materials. If a patient swallows or inhales a denture or 

fragment of a denture it is difficult to detect using simple radiological techniques 

(McCabe and walls, 2008). 

 

1.4 Research Objectives  

The aim of this study was to produce a denture base material with a good 

combination of mechanical, physical and environmental resistance properties. Apart 

from that, the effect of filler incorporation into poly(methyl methacrylate) PMMA as a 

denture base material in term of process ability, physical, morphology and mechanical 
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properties were evaluated. As such, the research project was divided into the following 

segments: 

  

 To investigate the effect of mixing time on the physical and the mechanical 

properties of PMMA matrix filled by HA ceramic powder. 

 To study the influence of coupling agent ratio on the mechanical properties 

of PMMA matrix filled by HA ceramic powder. 

  To evaluate the effect of HA filler concentration on the physical and the 

mechanical properties of PMMA denture base material. 

  To investigate the influence of the incorporation of HA ceramic powder into 

PMMA matrix on the absorption of water and simulated body fluid. 

  To evaluate the effect of environmental exposure on some mechanical 

properties of the modified PMMA denture base material. 

 

1.5  Outline of the Thesis  

Chapter one provides a brief introduction to polymeric denture base materials 

along with the historical developments of the polymers which are used in the fabrication 

of denture bases. Specifically, they are poly(methyl methacrylate), and the ideal 

properties that are needed in denture base materials. Some of the significant 

improvements that are needed to produce a denture base material with good 

combinations of mechanical, physical and biological properties are also included. The 

objectives behind the present study are listed. 
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Chapter two gives an overview on the definition of the denture base, a historical 

review of denture base materials, and some of the materials that are used in the 

profession of prosthetic dentistry. The factors that affect the mechanical, physical, and 

environmental resistance properties of the denture base materials with particular 

reference to acrylic resin. A review of the recent literature on denture base materials is 

also included in order to link the findings of a large number of experiments were 

conducted under different environment on large conditions with a view to the correlating 

results of a large number of experiments that have been conducted. 

Chapter three contains the raw materials that were used in the present study and 

its step by step description of the employed experimental procedures, the details of the 

laboratory equipment used along with the processing techniques of data that were 

employed during the present study. 

Chapter four includes the outcome of the present study along with the results and 

discussion. Specifically it reports, the effect of γ-MPS coupling agent ratio, mixing time, 

and filler concentration on the mechanical properties of poly(methyl methacrylate) filled 

by HA as denture base material. The influence of filler incorporation on the absorption 

and solubility of PMMA in water and simulated body fluid are reported along with the 

influence of environmental exposure on mechanical properties of poly(methyl 

methacrylate) denture base material. Finally, the result of filler loading on the 

Radiopacity of PMMA is presented.  

Chapter five summarizes the concluding remarks on the outcome of the present 

study along with some suggestions for future studies. 
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CHAPTER 2 

LITERATURE REVIEW  

 

2.1 Introduction 

The loss of teeth by accident or disease plagued mankind throughout the ages. In 

order to restore a degree of function and appearance, it has been necessary always to 

adapt contemporary materials to dental applications as they are available in one period 

of history. As civilization progressed, there has been continued refinement of the 

materials available for dental practice. As the time passed, the civilization advanced with 

the development of biological, chemical and physical science. As a result, there occurred 

a slow but steady increase in both the quantity and quality of useful materials available 

for dental prostheses. For this reason, the material should be biologically compatible, 

readily available, reasonably inexpensive and simple to manipulate with a readily 

controlled technical procedure, to develop prosthesis that is functionally effective and 

pleasing in appearance (Phoenix, 1996). The means of replacing missing tooth structure 

by artificial materials continues to account for a large part of the application of material 

sciences. Denture base materials have always been a matter of research in the field of 

dental materials (Stanley, 1992). We need a sound foundation for a strong building, 

similarly for fabricating long lasting, esthetically and biologically acceptable dentures; 

we need a favorable denture base. 
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2.2 Definition of Denture Base 

According to The Glossary of Prosthodontic Terms (Gpt-8) (2005) a denture 

base could be defined as the part of the denture that rests on the foundation and to which 

teeth are attached.  

 

2.3 Historical Review of Denture Base Materials 

The review of different denture base materials provides a clear picture about the 

various developments that have taken place in this field. The polymers, especially 

acrylic resins, after entering this field more than 70 years age seem to be undergoing 

constant change and are the materials of choice. By the 8th century the Japanese were 

masters of the art of woodcarving and it was possible that the earliest wooden denture 

was made at that time. Dentures were carved from a single piece of wood, usually sweet 

smelling species such as box and cherry (Engelmeier, 2003). Natural teeth were fixed 

with the help of screws. George Washington also had a set of dentures made from wood. 

The drawbacks were that denture bases warped and cracked in the presence of moisture 

and posed esthetic and hygienic challenges (Johnson, 1959). Further progress was slow 

until the 17th century. It has been said that modern dentistry begun with Pierre Fauchard 

(1678-1761) who developed many prosthetic techniques. He used human teeth or teeth 

made from hippopotamus or elephant ivory in the denture as shown in Figures (2.1- 2.3). 

He carved dentures from a single piece of ivory or bone.  Although bone displayed 

better dimensional stability than wood, esthetic and hygienic concerns remained. 

Whereas ivory was stable in the oral environment, and offered significant esthetics but 
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its drawbacks were that it was not readily available, and was relatively expensive 

(Engelmeier, 2003). 

 
Fig. 2.1: Ivory upper denture, c.1760, this upper denture set made of hippopotamus ivory 

(http://www.namibiadent.com/History/HistoricPictures.html). 

 

 

 
Fig. 2.2: Two full upper dentures. The plates of these dentures made of hippopotamus 

ivory; the anterior teeth are human teeth 

(http://www.namibiadent.com/History/HistoricPictures.html). 

 

 

  
Fig. 2.3: Spring retained ivory denture dating to the early 18th century. 

(http://www.namibiadent.com/History/HistoricPictures.html). 

http://www.namibiadent.com/History/HistoricPictures.html
http://www.namibiadent.com/History/HistoricPictures.html
http://www.namibiadent.com/History/HistoricPictures.html
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During the later part of the 19th century, polymers entered the field of denture 

base materials. Charles Goodyear (1839) developed the art of producing rubber and in 

1851 his brother Nelson Goodyear invented a process for making hard rubber called 

vulcanite. In 1854 Thomas Evan introduced vulcanite as a denture base material (Figure 

2.4). He made vulcanite-based dentures for Charles Goodyear senior and a year later for 

Charles Goodyear junior. It was produced by heating natural rubber in the presence of 

sulfur to produce a hard, reddish-brown rubber with many desirable properties (Ring, 

1985 & Rueggeberg, 2002). The introduction of the vulcanite into dentistry is like the 

discovery of the fire in the history of mankind. Vulcanite was almost the answer to the 

dentist’s problems in the fabrication of the dentures. Despite its displeasing appearance, 

vulcanite dentures fitted the ridges of the patient more exactly, so that dentures could be 

worn with comfort. Other advantages were economy, durability, light weight, and ease 

of fabrication (Anusavice, 2003). After its introduction, the vulcanite remained the 

principal denture base material for the next 75 years. Until the introduction of PMMA in 

1930, vulcanite and porcelain teeth were standard materials for fabrication of prostheses 

(McCabe and Walls, 1998).  

  
Fig. 2.4: Vulcanite dentures, also called ‘Rubber Plates’ c. 1851 

(http://www.namibiadent.com/History/HistoricPictures.html). 

http://www.namibiadent.com/History/HistoricPictures.html
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The first known casting of a complete aluminum base (Figure 2.5) was made in 

1867 by Dr. Bean who invented the casting machine. In 1888 Carroll presented a 

method for casting aluminum bases under pressure. Although accuracy of fit and other 

advantages made aluminum the material of choice, the other difficulty of relining, 

increased cost of fabrication and a potential relationship between aluminum and 

Alzheimer’s disease had discouraged the use of aluminum and its alloys (Halperin, 

1980).  

 

 

Fig. 2.5: Partial dentures made from aluminum, latter half of the 19th century 

(http://www.namibiadent.com/History/HistoricPictures.html). 

 

 

In 1937, methyl methacrylate was clinically evaluated by Wright and found to 

fulfill virtually all the requirements of what seemed to be an ideal denture materials by 

that time (Peyton, 1975). By 1946, the acrylic resin represented such significant 

improvement in its application. It was estimated that 95% of all dentures were fabricated 

using methyl methacrylate polymers. Initially, acrylic resins were polymerized by heat. 

In Germany (1947), acrylic resins were developed using chemical accelerators for 

polymerization and termed as self or auto polymerization resins (Khindria et al., 2009). 

http://www.namibiadent.com/History/HistoricPictures.html
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The PMMA and its copolymers continued to be the most popular non-metallic materials. 

Its advantages were economy, simple processing technique, stable colors, optical 

properties, adequate strength and other physical properties which make them ideal 

materials of choice, free from toxicity and easily pigmented (Craig, 2003).  

 

2.4 Dental Materials and Their Applications 

There are four major classes of materials used in dentistry: metal, ceramics, 

polymers and composites. Composites are a mixture of two or more of the first three 

classes in which the different components remain distinct from one another in the final 

structure. A well-known example is fiberglass, a polymer reinforced with fine glass 

fibers that remain physically separate and uniformly distributed throughout the polymer 

matrix (Ferracane, 1995).  

 

2.4.1 Metals 

Metals consist of aggregate of atoms regularly arranged in a crystalline structure.  

It is the oldest of the three main categories of materials used as dental materials. Metal is 

defined by a particular set of characteristics, including high thermal and electrical 

conductivity; flexibility (they can be designed without breaking); blackout or opacity 

(they have a surface that reflects light strongly and looks bright and shiny). Among its 

features is that elements classified as they tend to like these dissolve in water or other 

aqueous solutions, and produce atoms with a positive charge. Most of the tools and 

equipments used in dentistry are usually made of metal steel. It is popular because it is 

plentiful and economic (Noort, 2002). In addition, they are strong, corrosion resistant, 
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biocompatible, cleanable, easily sterilized, and can be sharpened to produce cutting 

edges. Nearly 80% of the elements in the periodic table are classified as metals. All 

metals are white color with the exception of gold which is yellow and copper which is 

reddish. Metals harden with their atoms in a very regular or crystalline arrangement, 

often in the form of a cube. The great strength of the metallic bond that holds the atoms 

together leads to the high melting temperatures of metals. With the exception of 

mercury, metals are generally hard and lustrous at ambient temperatures (O'Brien, 

2002).  

However, mercury metal which is in liquid form at room temperature is used in 

dentistry to repair decayed teeth. These powdered silver-tin alloys are mixed with drops 

of mercury for the production of hard material called amalgam restorative. The reaction 

between mercury and alloy which follows mixing is termed amalgamation reaction. For 

many years, dental amalgam was the most commonly used of all filling materials with a 

large measure of success.  They can be formed or cast into many different shapes 

because of the forming ease, high strength and stability (McCabe and Walls, 2008).  

Metals are widely used in dentistry as structural components to either fix or 

restore the tooth structure. Crowns which replace the outer coronal structure of a tooth 

can be made of metal; the metallic color is not undesirable. Therefore, the metallic 

restoration is preferred exclusively in the back section of the oral cavity. They can also 

be used more conventionally to replace portions of a tooth. When a portion of the tooth 

within the cusp is replaced, this type of restoration is called an inlay. If one cusp or more 

are included in the restoration and the entire crown is not replaced; it is called an onlay 

(Ferracane, 1995). Whenever a dentist  replaces a lost teeth, the remaining teeth is used 



16 

 

to support the metallic bridges that span the empty spaces to fill in the oral arch. These 

bridges are permanently fixed on the teeth with dental cement and are often called fixed 

partials because they replace only a part of the dentition. The missing teeth are replaced 

by metallic teeth called pontics, which are attached to the bridge either by casting it as 

one entire unit or by soldering the individual pieces together. In any case, it is the 

rigidity of the metal that allows it to be used in this way, similar to the manner in which 

it is used in bridges that span rivers and canyons (Ferracane, 2001).  

It is common to veneer the surface of the metal with porcelain, producing a 

porcelain-fused-to-metal (PFM) restoration, because a dental bridge made entirely of 

metal is not esthetically satisfactory. The porcelain must be baked onto the metal 

framework in an oven, just like pottery and dinnerware are produced. In this case, it is 

high melting temperature of certain metals that allows them to be used for these 

applications without melting or deforming at the high firing temperatures used to bake 

the porcelain. When a patient has several missing teeth, or when it is necessary to 

simulate lost gingival tissue with the dental prosthesis which often called a dental 

appliance, a removable partial denture is an option for this case (Craig et al., 2000). 

  

2.4.2 Ceramics 

A ceramic is compound formed by the union of a metallic and a nonmetallic 

element. Most of these materials are oxides, formed by the union of oxygen with metals 

such as silicon, aluminum, calcium and magnesium. Glass, concrete, fine crystal and 

gypsum are all ceramics. Porcelain is a specific type of ceramic used extensively in 

dentistry and in other industries. Ceramics may be crystalline or noncrystalline. The 
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atoms that make up a ceramic may be bonded together by ionic or covalent bonds. 

Ceramics are generally very brittle materials; they cannot be bent or deformed to any 

extent without actually cracking and breaking. Everyone is aware of what happens when 

a ceramic dish or cup is dropped onto a hard surface; contrast that behavior to what 

happens when a metal fork or knife is dropped. It is easy to understand the difference 

between brittle ceramics and ductile metals (O’Brien, 2002).  

Ceramics are characterized by high melting points and low thermal and electrical 

conductivity. Therefore, they are used as insulators in many industries. Ceramics are 

manufactured by fusing oxide powders together in ovens at high temperatures. Most 

pigmenting agents used in dentistry are ceramic oxides. Their inclusion in appropriate 

ratios enables the ceramist to produce nearly any color imaginable. This quality also 

provides the dentist with the ability to match almost any tooth color with esthetic results 

that are unachievable with other materials (Ferracane, 2001).  

Finally, the fact that these materials are oxides meant that they are very inert (not 

very chemically reactive). This distinct quality provides ceramics with an unequaled 

biologic compatibility. Sometimes, the patient’s body treats them as if they were 

actually the same as the natural bone or teeth, which in essence are biologically, 

produced ceramics. Glass ceramics are used extensively as reinforcing agents, or fillers 

for dental composites. They are also used in several dental cements and temporary 

restorative materials (Tham et al., 2010). 

 As mentioned earlier, ceramics have been used routinely as coatings or veneers 

to improve the esthetics of metallic dental restorations. The use of ceramics in dentistry 
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is somewhat limited to date, because of their lower fracture resistance compared to that 

of metals. Recently, materials with improved fracture resistance have been developed for 

inlays, onlays and full crown restorations because of their good biologic properties. 

Ceramics are also used extensively as implant materials, either alone or as coatings for 

metal substructures made from titanium that are placed directly into the mandible or 

maxilla (AL Amri, 2004).  

 

2.4.3 Polymers 

Usually, polymers are expressed in terms of structural unit (or monomer) and 

have two or more of the available sites and links related to each other by covalent bonds 

in the polymer molecule. These units can be arranged and connected in a variety of 

ways. Types in the straightest forward of the polymer and the units are connected to one 

another in straight chain arrangement (Bower, 2002). A polymer can either be natural or 

synthetic. Synthetic polymers are formed by addition or condensation polymerization 

reactions of monomer. If two or more different monomers are involved, a copolymer 

(such as ethylene vinyl acetate) is obtained (Harper et al., 2003).  

 

2.4.3.1 Natural Polymers 

Polymers derived from plants and animals are called natural polymers, have been 

used for many centuries, this material includes wood, rubber, cotton, wool, leather, and 

silk. Other natural polymers such as cellulose, starches, enzymes and proteins are 

important biological and physiological processes in plants and animals. The tools of 

modern scientific research made a possibility of the determination of the molecular 
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structures of this group of materials and the development of numerous polymers, which 

are assembled from small organic molecules (Callister, 2006).  

 

2.4.3.2 Synthetic Polymers 

Man- made polymers can be produced inexpensively and their properties can be 

tailored to a higher degree of the superiority to natural counterparts. Plastics which has 

the characteristics of a satisfactory and may produce a lower cost replaced other 

materials such as metal and wood in some applications. The synthetic polymers 

intricately linked to the properties of the structural elements of the material. We have 

many useful plastics, rubber, and fibrous materials and synthetic polymers. In fact, since 

the end of World War II, the area of materials has been virtually revolutionized by the 

advent of synthetic polymers (Callister, 2006).  

In comparison to metals and ceramics, the relatively weak interaction between 

the polymer chains reduces the structural and thermal stability of the materials 

(Ferracane, 2001 & Jordan et al., 2005). Due to their good stability and strength, 

polymers have been used extensively in dentistry as permanent materials. They are used 

to make both the teeth and base of dentures, appliances that completely replace the teeth 

and gums of an edentulous person.  Polymers are also used extensively as temporary 

restorative materials for single restorations and bridges to be worn while the permanent 

metallic or ceramic restoration is being fabricated by laboratory (Ferrance, 2001). They 

are used as adhesive agents to enhance the bonding between various materials and tooth 

structure, or as sealants of the pits and fissures present on occlusal surfaces of permanent 

teeth. When mixed with glass particles, polymers are formed into a dental composite that 
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used as an anterior or posterior restorative material much in the same way as amalgam. 

Their limited structural stability still restricts their use, but improvement in fracture and 

wear resistance have greatly expanded their application (Abudalazez, 2008).  

 

2.5 Factors Influencing the Properties of Polymers  

2.5.1 Molecular Weight  

The molecular weight of a polymer is equal to the number of repeating units (i.e. 

the degree of polymerization) multiplied by the molecular weight of the repeating unit.  

Thus, the degree of polymerization describes the molecular size. High molecular weight 

polymers have varying degree of polymerization or molecular weight distribution among 

the chains within individual polymer batch (Yu et al., 2004). In both addition and 

condensation polymerization, the length of the chain is determined by purely random 

events, not all of the chains will be of the same length. In general, many different chain 

lengths will be present; thus, the molecular weight can only be represented by an 

average value.  

There are a number of ways in which the molecular weight can be determined for 

a polymer. The two main ones are the number average molecular weight and the weight 

average molecular weight. Number average molecular weight is obtained by counting 

the number of molecules in a given weight of sample. Weight average molecular weight 

is obtained by measurement of the weight of the molecules in the total sample weight 

(Noort, 2002). The molecular weight distribution of polymers plays an important role in 

the physical properties of the polymer. In general, a narrow molecular weight 

distribution gives more useful polymers (Bajpai et al., 2008). The softening point and 


