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ANALISIS DINAMIK TAK LELURUS RASUK DAN PAPAK KONKRI' T

BERTETULANG GENTIAN KELULI

ABSTRAK

Penggunaan gentian keluli dalam konkrit telah memdkan beberapa faedah
terhadap peningkatan kekuatan lenturan, kemulleltykuhan, keupayaan kawalan
keretakan dan penyerapan kapasiti tenaga terhaglzgndinamik yang dikenakan
seperti hentaman dan letupan. Dalam analisis strakhamik menggunakan kaedah
elemen terhingga, kesan hubungan juzuk bahan basihntagi tidak diuji dengan
meluas sama ada konkrit gentian keluli biasa atsibah aspek bercampur konkrit
bergentian keluli. Dalam kajian ini, satu percubaselah dibuat untuk
membangunkan satu elemen terhingga yang menganthpagi-nod untuk analisis
dinamik tak lelurus bagi rasuk dan papak konktitleeng bergentian keluli dan biasa
dengan menggunakan model bahan baru. Hinton prokoamputer telah diubahsuai
dan dibangunkan menggunakan FORTRAN untuk anadisigktur dinamik unsur
terhingga tak lelurus konkrit tetulang gentian kehasuk dan biasa seperti yang
bahan dicadangkan dan mempertimbangkan dan kdatlaksan geometri. Kaedah
Newmark telah digunakan untuk mendapatkan waktegnasi persamaan gerakan.
Ujian hentaman telah dijalankan untuk mengkaji kdnalas dinamik rasuk dan
papak konkrit nisbah aspek bercampur gentian kédgputusan-keputusan terhadap
anjakan dinamik, pemecutan, halaju, tegasan daatedhan tenaga telah direkodkan.
Keserasian dapat diperhatikan antara keputusamsigndbn hasil ujikaji makmal
serta data-data lain yang berkaitan. la ditemuiaba@h penggunaan pengerasan
terikan mampatan model, model tegangan |, mula-metkk modulus ricih dan bar

keluli dwilinear model tingkah laku memberikan kgman analisis yang terbaik.
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NONLINEAR DYNAMIC ANALYSIS OF STEEL FIBER REINFORCE D

CONCRETE BEAMS AND SLABS

ABSTRACT

The use of steel fibers in concrete has shown abeurof advantages such as the
improvement of the flexural strength, ductilityiffstess, cracking control and energy
absorption capacity against the applied dynamidifegs such as impacts and blasts.
In structural dynamic analysis by finite elemenibe teffect of new material
constitutive relationships either for ordinary,edtéber or mixed aspect ratios steel
fiber concretes has not been investigated extelysiire this study, an attempt has
been made to develop an eight-noded finite eleni@ntthe nonlinear dynamic
analysis of ordinary and steel fiber reinforced @ete beams and slabs using new
material models. Hinton computer program was medifand developed using
FORTRAN for the nonlinear finite element dynamiabsis of ordinary and steel
fiber reinforced concrete beams and slabs accotdinige proposed and considered
material and geometrical nonlinearities. Implicéewmark method was used in these
programs to obtain time integration of the equatadnmotion. Impact test was
carried out to study the dynamic response of theechiaspect ratios steel fiber
concrete beams and slabs. Results on dynamic despknts, accelerations,
velocities, stresses and fracture energies of trerete members were recorded.
Good agreement has been observed between anabgsidisrand the outputs of
experiment and other related data. It is found that use of compressive strain
hardening model, tensile model |, first crackedashmodulus and bilinear steel bar

behaviour model gives the best analysis results.
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CHAPTER ONE

INTRODUCTION

1.1 An Overview

During the progress of human civilization in thelgaenturies, constructing
strong and durable structures was the problem wfiackd the human. Thus, the
Assyrians and Babylonians have employed bitumebind the bricks and stones
together as appeared in winged bull (Fig. 1.1aktvltan be regarded as a primitive
symbol for the columns to support structures. Theent Egyptians started to mix
the mud with straw to produce the binder materetiMeen the dried bricks in the
building. In addition they also introduced the naost of gypsum and lime in the
pyramids construction which depicted in Fig. 1.1b. China, people used the
cementitious materials in the building of the Grééall (Fig. 1.1¢c). The Romans
produced hydraulic mortar using the brick dust anldanic ash with lime. They also
used the wood formwork in the construction. Lamreeks used lime mortars which
were much suitable than that used by Romans. Nuw nortar is also in evidence
in Crete and Cyprus. The Greek temples (Fig. 1héde been constructed based on
the classical architecture rule of the safe sparstiine beams which require closely

spaced columns and proper proportions for lintels.

Fra Giocondo introduced pozzolanic mortar in ther @if the Pont de Notre
Dame in Paris in 1499. This is considered as tisé fieasonable usage of concrete in
modern times. In 1776, James Parker gained a pfaiemroducing the hydraulic
cement by burning clay that contained veins cataasenaterial. In 1800, William

Jessop has used a concrete on a large scale touobiise West India Dock in Great



Britain. The first engineering application of Parti cement was credited by Brunel
in 1828 that used the Portland cement to fill csaickthe Thames Tunnel. In 1891,
George Bartholomew made the first street of corcietBellefontaine, Ohio in the

USA which is still available today. The basic cemexperiments have been

standardized in 1900 (Youkhanna, 2009).

Fig. 1.1(c): Great wall Fig. 1.1(d): Greek temple

Fig. 1.1: Ancient civilization symbols (Britannic2Q11; 123RF,
2006)



The employment of fiber reinforcement is not a ipatarly new concept.
Fibers were employed in brittle building materisisce old times. In fact, the use of
dried grass in production of clay bricks regardedne of the earliest inventions of
mankind. Straws were used also in bricks in Assgmid Egypt. While Romans used
horse hairs in plaster walls and clay made prod{tsikhanna, 2009). Fibers have
been used in concrete later in 1970. The reinfoecgrbars were firstly introduced in
the concrete by Joseph Monier in 1849, who embeddextsh of thin iron rods in
concrete to make flower pots or rather large tudysofange trees (Gordon, 1971).
Then, the introduction of reinforcing steel bargyorted by design models for their
use, turned concrete into one of the most sigmificanstruction materials and used
more widely in various civil engineering structuré@ie efficiency, the economy, the
stiffness and the strength of reinforced concretkamit an attractive building
material for many structures. For its utilizatios @ construction material, concrete
must satisfy the conditions hereunder:

l. The concrete structures must be safe and strorggpiidper consideration
of principles for basic analysis and studying a thechanical properties
of the concrete component materials lead to s@tabld safe design of
concrete structures to resist the accidental Igadin

. The structures must be stiff. Attention should besidered in analysis of
concrete structure to control the deformation untEding and to
decrease the cracking width.

Il. Concrete structures must be economical. Becausédigif cost for
reinforced concrete components, concrete materiadt lbe consumed

reasonably.



Plain concrete has weak tensile strength comparéd tompressive strength
due to its low ductility and small resistance taaking. Micro-cracks exist in the
concrete during its preparation and even beforéigtipn of loading, because of the
changes in micro structure which produce brittlelufa in tension. Thus,
deformation and cracking reduced the using of cgiecmaterial. Therefore, the
concrete experts tried to improve these weak ptigseof this material in order to
suit the design requirements. The improvement oicegie properties was done in
the last century (Bentur and Mindess, 1990) byoohicing short fibers such as steel,
carbon, glass etc to reinforce the concrete. Itesyithe availability of construction
fibers in various types according to producing matg€as shown in Fig. 1.2), steel
fibers are the most commonly used in concrete coctsdns than others. Further
development has led to increase in usage of sbewlrieinforced concrete (SFRC) as
a building material either with or without introdng of reinforcing steel bars. Steel
fiber reinforced concrete was utilized at the fiiste in the construction of defense
related buildings such as shelter structures. Nay&dsteel fiber reinforced concrete
is commonly employed in diverse construction agioans (Fig. 1.3) such as patios,
slabs on grade, shotcretes for slopes and staimlizaf tunnels, pre-cast concrete
members, seaboard structures, airport runwaysinfpaf machine, explosive and

Impact resistance structures and seismic resisttnoeures.
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Worldwide use of these composite materials is feploat 150,000 metric
tons per year (Banthia et al.,, 1998). The widespnaidlizations of steel fibers in

reinforced concrete members were in beam and siattsres.

While it is technically possible to produce a fibsoconcrete of very high
tensile strength using high fiber content (Tjiptor and Hansen, 1993; Li and
Fischer, 1999), it is generally not feasible tosdofor structural applications, mainly
owing to practical reasons. The use of high fibesadje may lead to severe reduction
of the workability of the fresh concrete. Therefare load bearing structures, steel
reinforcing bars are predominantly used while fibeinforced concrete (FRC) is
limited to applications where crack distributiordareduction of crack width are the
main aims. However, the combined use of reinforcegnbars and FRC may yield
synergetic effects because of the improved bongeptes (Stang and Aaree, 1992;

Noghabai, 1998).

The positive effects of FRC are documented for sacharge span of
applications that it could be anticipated to be muowre widely used than what is
currently the case. It is often argued that thatretly high material cost of fibers is
the reason for the low employment, but since thal tproduction cost may be
lowered in many cases, this is not the sole expilamaA more important reason is
the current lack of design rules and guidelinesclvifully utilize the advantages of

fibrous concrete.



The use of FRC as a building material has beengthed of extensive
researches during the last decades with numerdaerstific reports as an output. Still,
the resulting impact on existing codes of this makdnas been sparse in relation to
the effort which was put into research (Groth, 20@0reason for this, in a general
meaning, may be that conventionally reinforced cetecis treated as an ideal elasto-
plastic material characterized by only two paramsestiffness and strength. On the
other hand, fiber reinforced concrete is definewugh its toughness, or softening,
and in most practical cases it is assumed thaast dpproximately the resembled
stiffness and strength as plain concrete. Therpfaaeture mechanic models can be
used in order to establish design rules for fibromscrete that consider the softening
behaviour. However, the problem is that fracturecima@ic models are till-now not
fully implemented in the design codes currentlyuise. Furthermore, the use of
fracture mechanical methods often leads to moded¢ &re not possible to be
presented analytically. Instead, they are resttidte numerical treatment through
finite element models, which in turn are not readixplained in design code

formulations.

Another reason for fibrous concrete not being eygrdomore plentifully is
because of its still being a new construction niatehis expression may be
surprising concerning the large amount of researctks that have been done till
now, but it is important to discern different typefsmaterials in fibrous concrete. In
fact, the term covers a whole range of kinds okMbwhich are mixed in as

reinforcement.



Numerous reinforced concrete structures are availabsociety as natural
infrastructure parts or as various types of myitand civilian facilities (Magnusson,
2006). So in specific cases, reinforced concretecttres should be designed to
withstand static and dynamic loadings. The possgibif exposure of the concrete
constructions to dynamic actions like impact anakbis increased during their life
span. The failure of concrete structures under myndorces is considered more
complex than their failure which results from thgpked static loading. However, it
has been mentioned that the dynamic analysis otrets structures can be
performed via using of modified factor of safety eqjuivalent static loading case.
There are many developed procedures led to so aecumvestigation of the
structural dynamic performance such as the imposinmore severe live loading
cases as high speed machines which applied on whestory buildings, involving
the extreme wind loading states in the analysikigi tower, big bridge structures
etc, including advanced design of structures tistrdsgh intensive blast load and

improvement of specific structures to withstandtegrake actions.

Steel fiber concrete composite is able to absodrggnproduced from the
applied dynamic loadings on structure more thanctierentional concrete material
because of suitable high tensile strength of SFRCi®s good resistance to failure
under tensile loadings. Thus, SFRC material wadizedi in many concrete
constructions to resist severe dynamic actions cgspe in military or defense
concrete constructions and concrete containmentsudear materials. Hence, it is
important to introduce the effect of many formsdghamic forces in the analysis of

these concrete structures to get more durablemlesig



Linear approach is usually used in the analysisreshforced concrete
structures, where geometrical nonlinearity is djarded and small deformations are
considered. In specific structural analyses, atiplasehaviour of the reinforced
concrete material should be considered in the sitianl of the structural
performance. Thus many factors should be consideredhalysis to represent this
plastic nonlinear stress-strain relationship sushbanding between concrete and
steel materials, cracking of concrete, yieldingtloé reinforcing bars, bond slip
between concrete and reinforced steel bars orsfiaed interlock of aggregate. The
modeling of non-linear response of reinforced cetermaterial becomes more

important for the analysis and design of SFRC sines (Thomee et al, 2005).

The formulation of reasonable analytical approackesinvestigate the
behaviour of concrete material is difficult becaubkes behaviour include many
nonlinear phenomena interact each another. Theinsamity property produces
several complexities in the analysis and designstetl fiber and conventional
concrete structures because of their nonlinear whetna steel and concrete
interaction, pull-out and debonding of steel fihbesind the effect of the concrete
cracking under varying loads with time. Thus, tlomlimear response of concrete is
mainly attributed to inelastic or plastic defornoati and progressive cracking
phenomenon. In structural analysis, it is prefexatd introduce the geometrical
nonlinearity influence because of large displacasmémat may produce changing in
geometry of structures and their elements shamnatysis. Incorporation of these
material and geometrical complexities into a mathgral formulation with
depending on the continuum mechanics theories @€amt al, 1996; Hatzigeorgiou

et al, 2001; Koh et al, 2001; Lu and Xu, 2004) sashthe yield line theory is

10



impossible because of the difficulty in consideratof in-plane forces and geometric
nonlinearity in the analysis. New approaches oflinear structural analysis have
been introduced with the invention of the developad powerful computers, where
the structural response can be investigated thrdhghentire loading range of
structure. The finite element approach is regardsdone of these advanced
numerical procedures for analyzing structural peoid with complicated boundary
conditions and complex material behaviours whichdse to produce a rational
structural analysis with consideration of both mateand geometrical nonlinearities.
Thus, finite element method was used as an efficeshnique in precise dynamic
analysis and design of reinforced concrete membech as beams, slabs, shear-
walls and box-girder bridges. The geometrical nudrity approaches have been
already given and known in standardized mannersicéleto provide a developed
finite element procedure which suit the specifieatenials behvaiour of any structure
it is necessary to propose new material constegutienlinear models. In other words,
the numerical simulation of the actual material d@burs in the nonlinear finite
element method lies primarily in the improvementsttee mathematical material

constitutive models.

Reinforced concrete beams and floor slabs are dicpkar interest, being
common structural elements in building and bridgeksd which are exposed to the
effect of blast and impact loadings. These strattetements are a form of the
complex structures which are designed to servestiatic and dynamic purposes by
using finite element approach. The dynamic respaisine concrete structures is
significantly affected when steel fibers are addegnitudes and modes of the

deflection are affected. The stresses and thegctiins are also influenced which

11



leads to produce different modes of yielding andows cracking directions that
occurred depending on the location, volumetric desand shape of the used fibers.
Several works on steel fiber reinforced concretent® and plates for static loads
employing the finite element method have been edrout with some material
models. Unlike conventional reinforced concretelyoa limited amount of
information is available with regard to dynamic aelour of steel fiber reinforced
concrete. Investigations have been done to formuthe material constitutive
relationships for concrete without checking thadig} of these models in the case of
both ordinary concrete and SFRC which contain warishapes of steel fibers. This

formulation leads to unreasonable results.

1.2 Problem Statement

According to literature, only few studies have beenmducted dealing with
nonlinear finite element dynamic analysis of sfd®r concrete structures compared
to conventional concrete structures. Most of theeaechers who investigated the
nonlinear dynamic analysis of SFRC structures udade dimensional finite
elements rather than using of two dimensional efgsespecially eight-noded plate
element. Thus, in this study, eight-noded eleméaige been adopted for dynamic

analysis purpose.

The inclusion of the material constitutive relasbips which are suitable for
both conventional and steel fiber concrete matersah case in point. Some material
constitutive models have been proposed by manyoeithsing specified type of
fibers in their formulations. The reliability of weral material constitutive models for

SFRC material and plain concrete material availaivie literature has been

12



investigated recently by many researchers. Theygardhat these available material
constitutive relationships are valid and compatitidy with specified experimental
test results which are dependent in formulatiothose material models, while these
models do not give good agreement with other tesults. Other researchers
concluded that the formulation of new material ¢ibaive models is needed for
SFRC material, because the formulation of SFRC t¢atige relationships is not
limited and is dependent on the shape of steel tibed. Hence farther investigations

and studies in this direction are considered esgdent

Varying level of sophistication and adoption of thppropriate material
constitutive nonlinear models of concrete matedaepend on the problem to be
solved, for example finding and selecting propertemal constitutive models
suitable for SFRC material should be made via the aof steel fibers of different
shapes, aspect ratios and volume fractions. This fermulate more sophisticated
general models to fit most types of SFRC materRésgity of research is observed in
proposing nonlinear material constitutive modelsadle for both conventional plain
and fibrous concrete materials. Thus, the roleest nesearch must become clear to
solve this problem which represented in the fortota of new material
nonlinearities to suit the simulation of plain adifferent fibrous concrete material

behaviours.

In this respect, the use of steel fibers has nenhavestigated widely for
structural engineering purposes; therefore theyaisaland design procedures of
SFRC structures are still in the development stagpecially in dynamic analysis

aspect. Thus, there was a scarcity of researchsnarkhe literature that deal with
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finding and selecting the proper new material dtutste models suitable for
numerical dynamic analysis of both plain and SFR&niners by using many shapes,

sizes and volume fractions of steel fibers.

According to literature review no conclusive eviderhas emerged to study
dynamic performance of mixed aspect ratio stedrfiieinforced concrete members.

Thus, experimental and theoretical studies areideresd essential in this direction.

1.3 Aims of the Present Study

The main objectives for this work are four-fold:

1. To formulate of new material constitutive models éonventional and steel
fiber concretes based on experimental results mogsxial compression and
splitting tension load tests and other biaxial logdests. The effect of shape,
size and volumetric fraction of the steel fibers aonsidered in formulating
these new models.

2. To incorporate new material constitutive models thre finite element
dynamic analysis procedure using degenerated amted plate elements
with consideration of geometrical nonlinearity.

3. To investigate experimentally the dynamic perforoerof mixed aspect
ratios steel fiber reinforced concrete beams aabssWhich are subjected to
patch impact loading.

4. To check the validity of the present proposed diitement dynamic analysis
results by comparing them with the outputs of hm#sent experimental tests
and other related studies considering three typesmcrete members which

are ordinary, single aspect ratio steel fiber anxeth aspect ratios (i.e. 0%
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short fibers content, 25% short fibers content &0& short fibers content)
steel fiber reinforced concrete slabs and beamas, Tind the best material

models in analysis with respect to this comparisiomly.

1.4 Scope of Work

In this study, an attempt was performed to devedoprocedure for the
dynamic analysis of ordinary, single aspect rateelsfiber and mixed aspect ratios
steel fiber reinforced concrete members (i.e. synsplpported or clamped slabs and
beams). In the formulation of new material mod#ig, considered steel fibers have
different shapes, sizes, properties and volumeidrae The finite element method
has been developed considering new material catigétrelationships which were
used to investigate the dynamic behaviour of caeamember in the pre- and post-
cracking levels of the concrete material. To ovaredhe problem of shear locking
in dynamic analysis, the technique of reduced natisgn was applied in the
formulation of degenerated quadratic thick platrent which is the general shear

deformable eight-noded element.

Experiments have been performed to study the ctendsehaviour under
compressive and tensile loadings for formulating neaterial finite element models.
Present models can be considered as general maitancanstitutive equations for
developing finite element program required for dyi@analysis of fibrous concrete
beams and slabs which contain different fiber shagoed volumetric fractions, in
addition to investigate the dynamic response aflinary concrete members. In the
case of reinforcement bars the materials are cereidto resist only the uni-axial

loading condition. The stress-strain curves foeldbars are represented by the linear
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and bilinear elastic perfectly plastic models. IRp&imental and numerical
approaches, the influence of steel fiber asped m the dynamic response of
mixed shapes steel fiber reinforced concrete mesnbebjected to impact loading

has been studied.

In order to accomplish the objectives of the presg#ndy, a number of
activities have been executed which included cotigi@xperiments that are related
with compressive and tensile behaviours of stérfconcrete specimens (i.e. cubes
and cylinders). These samples contained steelsfibedifferent shapes, sizes and
volume fractions to formulate new material consitiel relationships related to the
behaviour of the fibrous and plain concretes ungi@raxial loading conditions.
Then, data collection has been done for experirhesgeondary results from the
literature for biaxial stress-strain curves of coegsive and tensile behaviours for
conventional and steel fiber concrete samples densig various steel fibers shapes
and properties. After that a nonlinear regressinalyais was performed in SPSS-
Program of the available experimental data for oetecbehaviour under uniaxial and
biaxial loadings. Thus, suitable mathematical medel concrete behaviour under
each loading case were found and the validity esé¢hmodels was investigated.
Hinton computer program coded in FORTRAN languagas wnodified and
developed to perform present dynamic analysis afventional and steel fiber
concrete members (i.e. slabs and beams). This mddifrogram incorporates the
effects of material and geometrical nonlinearitiesight-noded degenerated plate
elements formulations. Implicit Newmark method withrrector-predictor algorithm
was employed for time integration of the equatibmotion. Experimental tests have

been conducted for investigating the dynamic peréorce of the slabs and beams
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subjected to impact loading with considering mixegbect ratio steel fibers. Finally,
the validity of both present finite element procedwand the proposed material
models have been checked via comparing the cumtenerical analysis outputs with

the present dynamic test results and other outcawetable in the literature.

1.5 Thesis Outline

Present thesis is comprised of six chapters. A tay@ut of each chapter is given

hereunder:

» Chapter One presents general information on ed@arontaining steel fibers
and the role of fibers in enhancing the concretpgrties and performance
under dynamic loading. It comprises of the probkiatement, objectives, as
well as the scope of work.

» Chapter Two presents the literature review on dheas of present research
work. Nonlinear dynamic analysis of conventionatl asteel fiber reinforced
concrete beams and slabs and development of degedgrlate element in
structural analysis are reviewed and highlightelis Tchapter also includes a
review in the advancement of the fiber reinforcedarete as a constructional
material and its properties in the fresh and haedestate with its applications.

» Chapter Three represents the core of this warkovers the methodology for
experimental and theoretical parts of the presesearch. Thus, explanation
has been given for experimental process includimgaxial compressive and
tensile loading tests of fibrous concrete specimmgaining various shapes,
sizes and volume fractions of steel fibers. Théstessults are used in present
material modeling. This chapter also introduces tbemulation of the

degenerated eight-noded plate finite element whashbeen adopted in present
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study with explanation of the main procedure fomlirear finite element
solution and taking into consideration also thduefice of the geometrical
nonlinearity. The algorithm of the modified computerogram coded in
FORTRAN which assigned for current dynamic analgéisoncrete beams and
slabs has been given. The new material models earsidered in the current
analytical computer program. Details of the gendegenerated plate elements
using eight-noded elements with reduced integratiales and smeared
idealization of reinforcement are also presentdu procedure of the dynamic
analysis test for various SFRC beams and slabsicdamg mixed sizes of steel
fibers are reported in details in this chapter.

» Chapter Four highlights the results and discussimn the material constitutive
relationships for SFRC and ordinary plain concretgerials. Compression and
splitting tensile tests results are utilized witlther secondary published
experimental data in preparation of developed anddifled material
constitutive relationships. There relationships arsed to simulate the
behaviour of both the ordinary and fibrous concretgerials under uniaxial
and biaxial loading conditions based on the thexrplasticity. This chapter
also involves the explanation of the consideredenaltmodeling of both steel
reinforcement and concrete crack pattern approadfesous material models
for representing some concrete behaviours or ptiegesire proposed for using
in the current promised analysis. Furthermore,irstrate sensitivity and
dynamic concrete properties of both concrete andfareement steel bar

materials are also clarified.
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» Chapter Five presents the experimental resultdhfe current dynamic tests
together with numerical applications in using theesent finite element
dynamic analysis procedure. Comparative studiesydsm experimental and
computational results, as well as validation of pgheposed formulations are
given. Results of the present numerical procedigeakso compared with other
related studies. Parametric studies are also peeidrfor nonlinear dynamic
analysis of beam and slab structures with considedifferent variables.
Preferable material constitutive models in analgses found depending on the
present dynamic analysis results.

» Chapter Six is the final chapter outlining thenclaisions achieved from the

current observations and some recommendationsiffthrefr future researches.
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CHAPTER TWO

LITERATURE SURVEY

2.1 General Introduction

As early as 2500 B.C., horse hair was reportedate lbeen used in plaster to
increase its tensile strength. Even straw and otbgetable fibers were also used to
reinforce the sun baked bricks. Asbestos fibers lieeh used also to enhance the
flexural and tensile strengths of ceramic in Fidlahhin and short length fibers are
introduced into brittle materials to serve as craglesting mechanisms to improve
the properties of the concrete. Because of regligie improved properties of the
fiber reinforced concrete products, research andeldpment works on fiber
reinforced concrete (FRC) are initiated about fdacades ago for many practical
applications, such as reinforced concrete strusfysavements, overlays of bridge
deck, offshore structures. Fatigue behaviour andluemce limits are significant
because these kind of structures need to be deksiopndatigue loading, and they

benefit most from the addition of fibers to the cate.

Since the early fifties of last century, the mattireory was started to be
applied in the analysis of structures. The stiffnesd flexibility methods were
developed as an extension of classical approatiés: in 1956, the finite element
method was proposed by improvement of the stiffreegkflexibility methods. Until
the late fifties of last century, most structurabblysis methods were dependent on
linear analysis approaches such as working-stresysas method. Nonlinear plastic
behaviour will consider for elastic materials whstructure is analyzed based on its

ultimate strength. Thus, the development of thenalte strength methods has led to
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the consideration of the inelastic behaviour inlgsis and improvement of linear

elastic theory. This method enables engineers &aligtr the accurate structural
strength and behaviour of structure under variamalihgs. Thus, after the first
application of nonlinear finite element analysisctincrete structures in the late of
sixties of last century (Rashid, 1968; Ngo and B8elis, 1967), several new
developments and improvements have been publishddreany researches were
launched to introduce the finite element procedureboth static and dynamic

analyses of reinforced concrete structures. Dutimggpast fifty years ago, various
numerical studies have been performed to studydyimamic analysis of concrete
structures with considering many structural paranset Numerical analysis

approaches in investigation of structural dynanebdviour to the applied dynamic
load are regarded inevitable to represent the peegoce of concrete structural
members with proper degree of preciseness and ityalilhe numerical finite

element approach was used successfully in the dgnasponse analysis of concrete
structures with taking into account the effect afthb material and geometrical
nonlinearities. The modification in the finite elent analysis procedure of concrete
structures was focused in developing new materiahlinearities. Thus, the

formulation of the suitable material constitutivationships for concrete material is

considered as an effective scope of study in #ld of structural engineering.

This chapter is devoted for presenting the histbrmackground of both the
use of fibers to reinforce the brittle concrete dahd development in constitutive
modeling of conventional concrete and SFRC. A suigealso reviewed nonlinear
dynamic analyses of reinforced concrete members [@ams and slabs) in both

types of concrete, namely, conventional and stbets.
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2.2 Steel Fiber Reinforced Concrete

In the development of concrete technology, concsatength exceeding 100
MPa can be easily yielded to fulfill the constroatirequirements. However, the
main concern with high strength concrete is thereasing brittleness with the
increase of strength. Therefore, over the pastdevades a new trend has emerged
in the concrete industry. Fibers of different miglisy sizes, and geometries have
been added to the concrete mixture to produce atmmtion material which is
generally defined as fiber reinforced concrete. SIH8FRC is a concrete composite
made of many components which are hydraulic cenferd, aggregates or coarse
and fine aggregates, steel fibers and water (ACiQidtee 544, 1988a). The
concrete employed in the mixture is of the comman, @lthough the characteristics
should be varied to obtain good workability ashe tase of fibrous concrete. This
may need limited size of aggregates, optimum grawalahigh content of cement and
introducing admixtures to get proper workabilitheTamount of steel fiber required
for the fibrous concrete is usually measured asragm of the total concrete volume.
Generally, the fiber portions introduced into trencrete matrix can be classified
into three groups, namely low, moderate and higlinies. Low volume of fibers
composites are typically being used for applicaiamich containing large volumes
of concrete. The matrix is usually proportioned falblowing the procedures used for
plain concrete, with slight modification done ore tmixture. Volume fractions of
fibers range from 0.5 to 2 percent or more forldtibers, while 0.06 to 0.5 percent
for polymeric fibers. The design of the fiber cagter mixture should consider the
concrete’s workability and good fibers distributias well. Moderate fibers volume
composites are usually being used for special egibns. These composites

normally contain cement and fine aggregates witierfivolume fractions usually

22



