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PENGARUH SUDUT PENGUJAAN PERGERAKAN TANAH DENGAN 

KESAN TERARAH KEHADAPAN TERHADAP TINDAKBALAS 

BANGUNAN KONKRIT BERTETULANG BIASA YANG BERSIMETRI 

 
 

ABSTRAK 

 

Prosedur sedia ada analisa seismik hanya mengatakan arah gerakan dasar bumi perlu 

dikenakan pada arah utama bangunan, yang berkemungkinan tidak menghasilkan 

tindakbalas struktur  maksima. Untuk memastikan tahap analisa kebolehterimaan 

apabila merekabentuk bangunan, amat perlu mengenalpasti sudut pengujaan kritikal 

yang menghasilkan tindakbalas struktur maksima dalam terma nisbah anjakan-

tingkat. Untuk mengkaji nilai nisbah anjakan-tingkat, kajian ini mengaplikasi analisa 

dinamik tak lelurus tak anjal terhadap bangunan konkrit bertetulang 6 tingkat dengan 

4 tempoh asas yang berbeza dengan merubah nilai inersia model tanpa sebarang 

rekabentuk  semula bangunan. Tujuh gerakan dasar bumi dikenakan pada pelbagai 

sudut pengujaan ( dalam julat 0o hingga 170 o) ke setiap bangunan, yang mewakili 

kesan terarah ke hadapan dan rekod pecutan diskalakan dengan nilai tinggi dan 

rendah untuk mengambilkira pelbagai kesan buruk gerakan dasar bumi dari rekod 

yang sama. Lengkungan Analisa Tokokan Dinamik juga telah dijalankan untuk 

mengkaji kesan sudut pengujaan kritikal terhadap tindakbalas struktur dan 

mengenalpasti sudut pengujaan kritikal. Kebarangkalian struktur gagal juga dikaji 

menggunakan lengkok  kerapuhan. Kajian dijalankan untuk mencerap bagaimana 

tempoh asas model memberi kesan terhadap sudut pengujaan kritikal dan 

kebarangkalian struktur gagal. Keputusan sudut pengujaan kritikal pada sudut 140o 

atau 150 o untuk komponen seismik utama dan 50o atau 60 o untuk komponen 

sekunder. Tindakbalas struktur maksima boleh mencapai sehingga 25%  untuk 

komponen seismik utama dan menjangkaui 75% untuk komponen sekunder,  



 xiv

berbanding tindakbalas yang terhasil dalam arah utama bangunan. Keputusan juga 

menunjukkan sudut pengujaan kritikal dipengaruhi oleh tempoh asas bangunan. 

Tambahan pula lengkok kerapuhan menunjukkan pecutan spektra di titik alah 

mempunyai nilai yang berbeza untuk setiap jenis gerakan dasar bumi pada bangunan 

yang sama jenis dan mempunyai nilai yang berbeza untuk tempoh asas yang 

berlainan. Diperhatikan juga bahawa apabila denyutan besar gerakan dasar bumi 

mengenai struktur lebih awal dari denyutan yang terdapat dalam rekod, 

kebarangkalian struktur gagal bertambah. 
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INFLUENCE OF EXCITATION ANGLES OF GROUND MOTION WITH 

FORWARD DIRECTIVITY EFFECT ON THE RESPONSE OF REGULAR 

AND SYMMETRIC REINFORCED CONCRETE BUILDINGS 

 

 

ABSTRACT 

 

Existing procedure of seismic analysis was to apply ground motion components at 

the principal axes, which may not produce a maximum structural response. In order 

to ensure an acceptable level of reliability of analysis when performing a design, it is 

important to find the critical excitation angle that produces the maximum structural 

response. To investigate values of inter-story drift ratio, the current research applied 

nonlinear inelastic dynamic analysis to a six story RC building with four different 

fundamental periods, by adjusting the inertia value of the models without redesigning 

the building. Seven sets of ground motions were applied at various angles (ranging 

from 0° to 170°) to each building. These ground motions exhibiting the forward 

directivity effect and the acceleration records were scaled up and down to account for 

more or less severe ground motions from the same record. Incremental dynamic 

analysis (IDA) curves were formed to study the effects of different excitation angles 

on the structural responses and to specify the critical excitation angle. The 

probability of structural failure was studied with fragility curves. An investigation 

was carried out to observe how the fundamental period of the model affects the 

critical excitation angle and probability of structural failure. The critical excitation 

angles were found to be 140˚ or 150˚ for the main seismic component and 50˚ or 60˚ 

for the secondary one. The maximum structural response can be up to 25% and up to 

75% larger than the response produced when the main and secondary seismic 

components, respectively, are applied along the principal axes. The results also 

showed how the critical excitation angle has different values with different 
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fundamental building periods. Also, the fragility curves showed that the spectrum 

acceleration at the yield point has different values with different ground motions on 

the same building type, and has different values at different fundamental building 

periods. It is also noticed that when the large pulse of ground motion hits the 

structure sooner than the rest of the pulses in the record, the probability of structural 

failure is increased.   
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CHAPTER 1 

INTRODUCTION 

 

1.1  Overview 

An earthquake is defined as a sudden movement in a segment of the earth’s crust 

along fault lines and it occurs because of a sudden release of stored energy. The 

earth’s crust consists of a number of plates which move continuously in relation to 

each other. When the strain becomes great enough to overcome the friction between 

the plates, rock masses crack and slip past each other causing an earthquake (Abas, 

2007).  

Strong ground motion occurs at close range, less than 50 km from the fault that 

caused the shaking. The strength of the shaking involved in the strong ground motion 

usually overwhelms a seismometer, forcing the use of accelerographs (or strong 

ground motion accelerometers) to record it. 

Since the beginning of time, there have always been earthquakes of different 

strengths, at different locations, with different effects. Some of these events have 

changed the shape of the map; some have killed hundreds or thousands of people and 

destroyed their belongings, whereas in some events people have not even felt them.  

The biggest measured earthquake since 1900 according to (USGS, 2009) had a 

magnitude of 9.5 on the Richter scale and took place in 1960 in Chile, causing more 

than 2,000 deaths, with 3,000 injured, two million homeless and $550 million of 

damage in southern Chile. The tsunamis which followed the earthquake measured as 

high as 25 meters close to the epicentre. They killed 61 people in Hawaii, 138 in 

Japan, 32 in the Philippines, and caused $500,000 worth of damage on the US west 

coast. 
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To avoid such losses in lives and reduce the damages as much as possible, the 

discipline of earthquake engineering was developed. Many seismic variables, 

analysis methods, design criteria and specifications were developed to try to reduce 

and control earthquake damage. 

Some of these variables are building type, importance, weight, height, soil type, 

seismic zone, direction of ground motion e.g. horizontal and/or vertical, etc.  

Applying multiple components to represent the ground motion along different 

directions is an option the researcher has to made. Generally, it is common to use 

bidirectional components; these include two horizontally perpendicular components 

as shown in Figure 1.1, or three directional components where a vertical component 

is added on top of the two bidirectional components. 

  

 

Figure 1.1: Bidirectional Components of Ground Motion Applied at the Centre of 
Mass of a Regular Building 

   

Vertical component of ground motions is generally lower than the corresponding 

horizontal components. Most of the building codes including e.g. UBC 97 assume 

the vertical component of the ground motion to be ½ to ⅔ of the horizontal 

component. The vertical component is not of great significance to structural design 

of most kinds of structures, but usually it is considered for bridges (Priestley et al., 
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1996). Figure 1.2 shows the direction of three seismic components applied at the 

centre of mass of a regular building. 

 

Figure 1.2: Three Seismic Components of Ground Motion Applied at the Centre of 
Mass of a Regular Building 

 

There are some characteristics that could govern the ground motions; these include 

the forward directivity effect, fling-step effect, or just simple ground motion. Ground 

motions with forward directivity effect occur when the velocity of rupture is close to 

the velocity of shear waves in the rock mass near the source and produce pulse-type 

motions that differ significantly from ordinary ground motions that occur at greater 

distances from the causative fault (Rodriguez-Marek and Bray, 2006).  

It should be mentioned that the forward directivity effect in the velocity record has 

the signature of a long period, short duration and high pulse amplitude in the 

direction of rupture (BSSC, 2003). But the fling-step effect causes a permanent 

ground displacement which occurs across the rupture fault. This static displacement 

occurs over a finite time interval of several seconds in which the fault-slip is 

concentrated (Agarwal and Shrikhande, 2006) and the difference between these 

characteristics is seen more clearly in Figures 1.3 to 1.5. 
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Figure 1.3: Velocity Record for Ordinary Ground Motion 
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Figure 1.4: Velocity Record for Ground Motion with Forward Directivity Effect  
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Figure 1.5: Velocity Record for Ground Motion with Fling-Step  

 

The properties of a building influence its responses to ground motion. The most 

significant properties are: mass, fundamental period of structure, and damping ratio 

of structure. No building could resist a major earthquake without some kind of 

damage. Hence, it is necessary to define various kinds of damage and tolerable levels 

of damage. The most critical damage is the total collapse of a building, or some 

significant part of it. More often, there is some damage which does not result in the 

collapse of the building or injury to the occupants but causes the building to be 

unusable. Lastly, minor but undesirable damages, such as cracked plaster, jammed 

doors and broken window glass are known to occur. Although it is important to 

prevent all forms of damage, the injury of the building’s occupants is the major 

concern. Apparently, the collapse of the structure is a major concern in order to 

protect the safety of occupants and prevent hazards to the surroundings of the 
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building. Ideally designers prefer buildings which respond to earthquakes with 

minimal damage and with the lowest possible risk of injury or loss of life of 

occupants. 

There are many analyses methods such as 30% rule, SRSS combination, and 20% 

rule, IDA method …etc. and design methods such as the ultimate strength design 

method. 

IDA method is a parametric analysis method to estimate more thoroughly the 

structural performance under seismic loads. It involves subjecting a structural model 

to one or more ground motion records, each record being scaled to multiple levels of 

intensity. 

There are many responses which can be obtained and studied from the analysis 

carried out for any structure. Such responses are: axial force, bending moment, shear 

force, displacement, and inter-story drift ratio. 

The axial force is the resultant longitudinal internal component of force that acts 

perpendicular to the cross-section of a structural member and at its centroid, 

producing uniform stress, and is shown in Figure 1.6. 

 

 

Figure 1.6: Axial Force 
 

The bending moment can be calculated by multiplying the force by the distance 

between the centroid and the point of application of the force and Figure 1.7 shows 
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an example for this force. The shear force is an external force that acts parallel to a 

plane as shown in Figure 1.8. 

 

 

Figure 1.7: Bending Moment 

 

 

Figure 1.8: Shear Force 

 

The displacement and inter-story drift ratio are shown in Figures 1.9 and 1.10 

respectively. Many researchers (Vamvatsikos and Cornell, 2002a, Vamvatsikos and 

Cornell, 2002b, Vamvatsikos and Cornell, 2004, Kalkan and Kunnath, 2006) who are 

interested in incremental dynamic analysis and excitation angles use the inter-story 

drift ratio as the structural response. 

 

 



 7 

 
Figure 1.9: Displacement 

 
 
 

 
Figure 1.10 Inter-Story Drift Ratio 

 

One of the ways to use the above mentioned structural responses is studying the 

probability of failure. The probability of failure is the probability of reaching the 

capacity point and this probability depends on the amount of demand (Wen et al., 

2003). And this probability can be extracted from the fragility curve. 

 

θ= (∆i −∆i−1 ) / hi 
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1.2  Problem Statement 

One issue which has been neglected by seismic codes so far is that they do not state 

in what direction to apply the ground motion components to get maximum structural 

responses (Beyer and Bommer, 2007). Structural engineers used to apply the ground 

motion on the principal axis to get the structural responses and design the structure 

according to these responses. Researchers have started to carry out investigations 

into critical excitation angle/s that produce critical structural responses, where the 

critical responses are defined as maximum and minimum structural responses for any 

ground motion incident angle (Marinilli and Lopez, 2008). 

According to ASCE 7-05 and FEMA 368, the seismic components must be applied 

in the direction that will produce the worst structural response. Figure 1.11 shows the 

excitation angle (α) measured from the principal axis. 

 

 

 

Figure 1.11 Bidirectional Ground Motion Components Applied at the Excitation 
Angle (α)  

 

 

Several combination rules such as the 30–100% rule shown in Figure 1.12, 40–100% 

rule and other methods were used to distribute the combinations of ground motions 
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along orthogonal directions. In this way, the analysis was based primarily on the 

horizontal components of ground motion applied along the principal axes of the 

buildings.  

 

 

Figure 1.12: Ground Motion Components According to the 30–100% Combination 

 

However these rules have various disadvantages. For example, they do not always 

produce conservative results and are limited to elastic analysis although it is widely 

believed that structures can be expected to behave inelastically during major 

earthquake events (Wilson and Suharwardy, 1995). Such studies primarily 

considered the elastic behaviour of structures (Wilson and Button, 1982); (Wilson 

and Suharwardy, 1995); Fernandez-Davila et al., 2000; Athanatopoulou, 2004).   

In order to determine collapse prevention and immediate occupancy according to 

FEMA 368, elastic analysis is not sufficient and inelastic analysis must be carried 

out.  Although (Alavi and Krawinkler, 2004; MacRae and Mattheis, 2000; Rigato 

and Medina, 2007) have carried out studies using inelastic analysis,   none of them 

apply it on multi story RC building.  

 



 10 

1.3 Objectives 

The main objectives of this research study are: 

i) To investigate the inter-story drift ratio for six stories RC buildings by 

nonlinear inelastic analysis, with each building having a different 

fundamental period and using various excitation angles to apply the seismic 

ground motions. 

ii)   To investigate incremental dynamic analysis curves to find the critical angle/s 

and to investigate the probability of failure with fragility curves. 

iii)   To investigate how changing the fundamental period of the model affects the 

critical excitation angle/s and probability of failure.   

 

1.4  Significance of the Study 

In this research, a group of seismic variables and structural properties were chosen to 

study the performance of multi-story RC buildings affected by ground motions with 

forward directivity effect and these variables have not been applied before in any 

previous study.    This group of variables includes:  

i. seven ground motions with forward directivity effect, each of different 

magnitude,  

ii. bidirectional horizontal ground motion components,  

iii. various excitation angles,  

iv. four symmetrical RC buildings with different fundamental periods, 

v. nonlinear inelastic time history analysis based on the Incremental Dynamic 

Analysis (IDA) method. 
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From the results, the critical angle/s can be determined, the angle that should be 

applied to the components of ground motion in seeking the maximum structural 

responses to a seismic event. Also, it shows whether or not the maximum responses 

can be achieved when the seismic forces are applied along principal axes, and 

whether changing the fundamental period of the building affects the results. 

 

1.5  Scope of the Study 

As mentioned in the previous section, there are many seismic variables and structural 

properties that affect the behaviour of a building during an earthquake. The focus of 

the study is as follows: 

i) Ground motion with forward directivity effect. 

ii) Nonlinearity of materials is considered but not the geometrical nonlinearity 

effect (P-delta effect) since it is usually used for slenderer buildings which 

can undergo large deformations. 

iii) Since the building is symmetrical and the seismic components were applied at 

the centre of mass of the building, the torsional effect is not taken into 

consideration. 

 

1.6  Thesis Layout 

This thesis is organised into five chapters as follows: 

Chapte 1 include introduction for the basic concepts in earthquake engineering. 

Chapter 2 presents an overview as well as highlights of previous work that has been 

carried out in this field of research.  

Chapter 3 presents the methodology adopted in the study.  
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Chapter 4 validates the programs used to run the analysis by regenerating a previous 

study and comparing the results.  It then shows the results of the current study and 

discusses them in detail.  

Chapter 5 contains the conclusion of this study.  
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Overview 

Studying ground motions started with studying the codes around the world, and how 

these codes specify the number of ground motions needed to be used through 

performing seismic analysis. The next step researchers start to concentrate on 

modifying ground motions and finding a guide line to select them. Afterwards 

researchers studied scaling and quantifying ground motion records and the largest 

pulse in these records.  

To study excitation angle some studies compared between the responses of existing 

combinations and rules, then a coparison between the responses obtained from these 

combinations and rules and the responses obtained by applying ground motion along 

the principal axes. Other studies established formulae for determining the critical 

excitation angle and associated critical responses.  

To see the effect of using a different number of components on the structural 

responses, comparison was made by some researchers.  

Most of the previous research studies until 2007 have employed elastic and linear 

analysis. However, during severe seismic events, the building is likely to behave in a 

nonlinear inelastic way. After that some research studies were performed to study 

nonlinear inelastic behaviour on buildings with different heights and materials.  

Some researchers concentrated on finding a guidelines for selecting the magnitude of 

the response spectrum and investigating a complete quadratic. In 2008, a comparison 

between both methods of analysis (RSA and THA) was made to show which 

methods gives better accuracy in results. Studies on how near fault ground motion 
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with different characteristics such as the forward directivity effect or fling step affect 

buildings with different heights were also carried out.  

Describing IDA method and how to handle the rich data from it in numerous 

analyses and extract useful conclusions was done after 2002. 

The seismic design needs to ensure that, during seismic events, the structural 

performance will not reach specific limits. Researchers have tried to calculate such 

values in a probabilistic way. The next step in the research study is to use the value 

of the probability of reaching a specific point to evaluate the damage.     

 

2.2  Earthquake Ground Motions 

The effects of ground motions on the crust of the earth include: fault rupture, ground 

shaking, landslides, liquefaction, and tsunami. But the severity of these effects 

depends on several factors like the magnitude of the earthquake, where and when the 

earthquake occurs, the geological characteristics in the area between the source and 

site, soil conditions at the site, and the population density in the area (BSSC, 2003). 

According to (Bommer and Ruggeri, In Bommer and Acevedo, 2004), out of 33 

current seismic codes, only eight specify that real records should be used in the 

dynamic analysis. As ground motions occur randomly and the calculated response 

can be very sensitive to the characteristics of the individual ground motion used as 

seismic input, the procedure of choosing one ground motion for seismic design is not 

reliable. The codes recommend the minimum ground motions required in the 

analysis and design process, as shown in Table 2.1. UBC 1997, IBC 2000 and 

FEMA-356 have recommended three ground motions as a minimum to give 

maximum responses or seven ground motions to get the mean or median response 
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and these recommendations are listed in Euro Code 8 as well as in ASCE. NZS 

recommends only three ground motions be used and ISO recommends four.  

Using the mean (average) or median (middle value) for the structural responses that 

have been carried out after applying seven ground motions is still a debatable matter; 

(Athanatopoulou, 2004) and (Rigato and Medina, 2007) used the mean of the 

responses, while (Cornell et al., 2002) and (Vamvatsikos and Cornell, 2002a) used 

the median response. 

 

Table 2.1: Seismic Code Requirements for Ground Motion Records   

Code Ground Motion Record Type Minimum No. of Records 

UBC 1997 Recorded or Simulated 3 or 7 

IBC 2000 Recorded or Simulated 3 or 7 

Euro Code 8 Artificial, Recorded or Simulated 3 or 7 

FEMA 368 Recorded or Simulated 3 or 7 

ASCE 2006 Recorded or Simulated 3 or 7 

NZS 2004 Recorded 3 

ISO 2003 Recorded 4 

 

 

In Table 2.1 recorded ground motions fit the features of the source and the soil 

conditions at the site. Records need to be scaled to the peak ground acceleration in 

the top soil layers. Artificial ground motions are records that match the code elastic 

response spectra. The duration of accelerograms should be consistent with the 

magnitude and other relevant features of the seismic event. And the simulated ground 

motions generated in a physical simulation of source and travel path mechanisms 

must comply with the requirements of recorded ground motions (Stratan and Dubina, 

2008). 



 16 

Mayroeidis and Papageorgiou (Mayroeidis and Papageorgiou, 2003) have presented 

in their research a simple and effective mathematical model to represent strong 

ground motions near a fault. An example is presented in Figure 2.1. In their study, 

170 excitation records were selected with different fault types and magnitudes. The 

advantages of this model are that it can describe the quality and quantity of the pulse 

in the ground motion record and, from the original records, empirical observations 

can be reproduced analytically. The differences between pulses and non-pulses can 

be seen in Figures 1.3-1.5 shown previously in Chapter 1. Another simple method 

was presented to create realistic artificial ground motions that are suitable for seismic 

analysis and design. 

 

 

Figure 2.1: Example of a Pulse Generated by the Mathematical Method by 
(Mayroeidis and Papageorgiou, 2003) 

  
 

Even though (Mayroeidis and Papageorgiou, 2003) have presented a method to 

modify ground motion records, the engineer or the researcher still needs guidelines 

for selecting such records. This issue has attracted the attention of Bommer and 

Ruggeri (2004). 
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In their paper, Bommer and Ruggeri (2004) aimed to provide guidelines for selecting 

real records and records with response spectral ordinates. To achieve this, their paper 

pointed to some global databanks and internet sites which provide ground motion 

accelerograms. The records can be classified according to: seismological parameters 

(e.g. magnitude, focal depth, site classification) or ground motion parameters (e.g. 

peak amplitude, spectral ordinates, durations). The selection of ground motion 

records and the way that seismic design codes deal with this issue were discussed. 

Selecting and modifying ground motion records is the first step taken by the 

researchers, but the next step involves scaling and quantifying these ground motion 

records and the largest pulse in these records.  

In their paper, (Beyer and Bommer, 2007) tried to concentrate on some features 

related to the selection and scaling of bidirectional ground motion records. An 

example of the effect of scaling on ground motions is shown in Figure 2.2 and the 

concept of scaling is detailed later in the chapter.  In the paper, a comparison 

between seismic codes for selecting, scaling, and applying directions to bidirectional 

seismic analysis was made and the individual processes were discussed. The authors 

presented a case study and all steps that were applied were listed in the paper. 

Meanwhile, (Baker, 2007) provided a method for quantifying ground motions that 

include the forward directivity effect. This method extracts the largest velocity pulse 

from the ground motion by using wavelet analysis according to the size of this large 

pulse relative to the original ground motion which categorizes the ground motion as 

“pulse like”. Figure 2.3 shows an example of an extracted pulse. For further 

classification, two more conditions were applied: whether the pulse starts early in the 

record and whether the velocity pulse has large amplitude. This method was applied 

to over 3500 ground motions in order to extract 91 motions with large pulses. Many 
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areas of research have profitted from this method; namely nonlinear dynamic 

analysis, research in probabilistic seismic hazard analysis, and ground motion 

prediction models. 
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                             (a)                                                                 (b) 

Figure 2.2: Example of the Effect of Scaling Seven Ground Motions: a) with Scale = 
1, and b) with Scale = 3 

  

 

Figure 2.3: An Early-Arriving Pulse (the 1979 Imperial Valley): a) Original Ground 
Motion, b) Extracted Pulse (Baker, 2007) 
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2.3 Ground Motion Excitation Angles 

In their paper, (Fernandez-Davila et al., 2000) looked at five-story RC structures 

which were analyzed elastically. Maximum seismic responses were presented 

according to different situations and combinations such as: 

i. Applying the two horizontal components of the earthquake at a number of 

angles,  

ii. Applying the largest component along each direction,  

iii. 30–100% rule,  

iv. Square root rule,  

v. Multiplying by 20% the maximum response obtained by applying the largest 

component along the two directions.  

 

Then they compared the results to find that the 30–100% and SRSS rules 

underestimate the structural responses by 25% compared to the exact responses.  

While (Fernandez-Davila et al., 2000) studied existing combinations and rules and 

compared the responses obtained by applying them along the principal axes, 

(Athanatopoulou, 2004) established formulae for determining the critical excitation 

angle and associated critical responses (e.g. axial force, bending moment, shear force 

and displacement) due to three seismic components.  

The model used by (Athanatopoulou, 2004) was a five-story asymmetric RC 

building. SAP2000 software, a computer program for structural analysis and design 

(SAP2000, 2000), was used to perform the linear analysis. The same building was 

analyzed at different incident angles to illustrate the maximum structural response as 

a function of incident angle. Figure 2.4 shows a vectorial representation of the 

seismic components, namely Rp and Rw in the Opwz coordinate system, the 



 20 

orientation of the two horizontal excitation axes (p,w) being defined by the angle α, 

which is the angle from the fixed coordinate axis x (which is part of the fixed 

structural coordinate system  Oxyz) to the p axis, measured in the counter clockwise 

direction. 

 

 

Figure 2.4: Vectorial Representation of Rp and Rw (Athanatopoulou, 2004) 
 

 

From the results of the analysis by (Athanatopoulou, 2004), it was noticed that:  

i. Each structural response has a different critical excitation angle when one 

seismic record is used,  

ii. Each seismic record has different critical angles from other seismic records 

for the same structural response, and  

iii. The maximum structural response can be up to 80% larger than the response 

produced when the seismic components are applied along the principal axes. 

 

Some researchers used one, two, or three seismic components within their studies 

but, in order to see the effect of using a different number of components on the 
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structural responses, a comparison must be made which was carried out by 

(Khoshnoudian and Poursha, 2004). 

In the paper (Khoshnoudian and Poursha, 2004), the effect of one component and 

two horizontal components of earthquake on 14 steel buildings with five stories was 

analyzed linearly and three steel buildings were analyzed nonlinearly under arbitrary 

excitation angles. While considering the two horizontal component effects, the 

authors used the following methods; 30–100% rule, SRSS combination and 20% 

rule. The SAP2000 software was used to run the analysis.  

Their results showed that when looking at linear and nonlinear behaviour, use of two 

components instead of one gives higher responses.  Figure 2.5 shows the difference 

between one and two components. SRSS and 30-100% combinations underestimate 

the response of the structure relative to the maximum response to two components. 

The 20% method is more realistic than the other two combinations. 

 

 

Figure 2.5: Column Axial Force Diagram (Khoshnoudian and Poursha, 2004) 
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Previous research has employed elastic, linear analysis.  However, as mentioned 

earlier, during severe seismic events, the building is likely to behave in a nonlinear 

inelastic way. This kind of behaviour was studied in (Rigato, 2007).  

In Rigato’s thesis (Rigato, 2007), a number of asymmetric and symmetric models 

were subjected to ground motion records applied at different excitation angles to 

reveal Engineering Demand Parameters (EDPs). The responses found in inelastic 

analysis were studied and analyzed to see how they changed when the ground motion 

was applied along the principal axis and at other angles.  

The results showed the behaviour of the mean ductility: the mean drift and slab 

rotations tended to vary mildly with angle of incidence and were not greatly affected 

by the fundamental period and the critical response was found to occur at no 

particular angle. 

(Rigato and Medina, 2007) observed the effect that the excitation angle of ground 

motion had on EDPs in single story structures with varying degrees of inelasticity 

and different fundamental periods, subjected to bidirectional ground motions. A 

group of 39 ground motion pairs were discussed.  

Several results were found. One result was that the critical excitation can be at any 

angle and this angle varies according to the degree of inelasticity and differs from the 

principal angle. Another result was that the maximum inelastic deformation demands 

are underestimated when the horizontal components of ground motion are applied 

along the principal axes of an inelastic structure. Also slab rotations showed that the 

overall torsion in a building can be reduced by increasing the degree of inelasticity 

for most of the models studied. 

While (Rigato and Medina, 2007) applied a nonlinear inelastic analysis to a one story 

building, (Frenandez-Davila and Cruz, 2008) used a multi-story asymmetric building 
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in a similar analysis.   In their study, (Frenandez-Davila and Cruz, 2008) applied a 

number of combination rules to approximate the maximum structural responses 

caused by bidirectional seismic components, as well as the elastic responses to a 

unidirectional seismic component. The nonlinear analysis was applied to two 

buildings each with five stories of asymmetric plan using the ANSR-1 program – 

which is a computer program for static and dynamic analysis of nonlinear structures 

(ANSR-1, 2005). A group of 20 artificial earthquake records were chosen from real 

records so as to change the angle of the earthquake.  

In (Frenandez-Davila and Cruz, 2008), the authors conclude from their results that it 

is possible to estimate the maximum structural response under bidirectional 

excitation and assuming nonlinear behaviour using appropriate combination rules 

and the elastic responses for uni-directional excitation (α = 0°; 90°) represented by 

the average response spectrum. 

At this stage of the research process, researchers who base their studies on response 

spectrum analysis still need guidelines for selecting the magnitude of the response 

spectrum. Investigating a complete quadratic combination is also another matter 

requiring study. These two issues were considered by (Pozos-Estrada et al., 2008). 

In their paper, (Pozos-Estrada et al., 2008) chose one story symmetric structures and 

applied a numerical analysis with almost 600 ground motion records, using a 

damping ratio of 5%. These variables were used to investigate the accuracy of the 

Complete Quadratic Combination (CQC) rule for estimating the responses of 

structures under bidirectional horizontal seismic excitations. Their paper also 

included a guideline for selecting the magnitude of response spectra in the two 

orthogonal horizontal directions used in the extended CQC rule.  
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The results showed that the CQC rule gives underestimation of the maximum 

structural responses under bidirectional horizontal excitations. This underestimation 

depends on the structural characteristics and may be corrected by using scaling 

factors.  

While some researchers still use the response spectrum analysis, others use time 

history analysis. One paper (Marinilli and Lopez, 2008) has given a comparison of 

both methods of analysis to help researchers choosing the type of analysis that best 

suits their research.  

In their study, (Marinilli and Lopez, 2008) applied 10 horizontal far-field ground 

motions to rock supporting one story RC structures assumed to behave linearly with 

5% damping and fundamental periods ranging from 0.1 s to 3.0 s. They evaluated the 

maximum structural responses and critical angles by using Response History 

Analysis (RHA) and/or Response Spectrum Analysis (RSA). All analyses were 

performed using SAP2000 software and taking into account one horizontal ground 

motion as major component and two minor orthogonal components.  

The following result was found: RHA gives more accurate values of critical 

responses by using a smaller number of excitation angles than the RSA results and 

RHA reduces the number of numerical computations required. 

 

2.4  Seismic Response of Structures 

 

As outlined in this section, previous research has concentrated mainly on the effect 

of near fault ground motions on structural responses.  

(MacRae and Mattheis, 2000) studied the effect of near fault ground motions on a 

three stories steel structure with one-way moment-resisting frames. A dynamic 

inelastic time history analysis (THA) was conducted on this structure. In this paper, 


