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TCP Traffic Conditioning 

TE Traffic Engineering 

TTL Time To Live 

tunnel 6-in-4 with MPHS 

UDP User Datagram Protocol: 

VAD Voice Activation Detection  

VoIP Voice over IP 

VPN Virtual Private Network 

WAN Wide Area Network 

WFQ Weighted Fair Queuing  

WiMAX Worldwide Interoperability for Microwave 
Access 

without IPv6 without MPHS 

WWW World Wide Web  
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SUATU KERANGKA KERJA TEROPTIMUM BAGI PENINDASAN 

KEPALA TRAFIK IPV6 MASA NYATA DALAM RANGKAIAN 

PENSUISAN LABEL MULTIPROTOKOL (MPLS) 

 

ABSTRAK 

Pensuisan Label Multiprotokol (MPLS) dengan IPv6 telah dinyatakan oleh 

Pasukan Petugas Kejuruteraan Internet (IETF) sebagai mampu diskalakan dan sangat 

sesuai untuk jenis-jenis trafik yang berlainan seperti VoIP dan Video. Namun, kepala 

IP yang besar melahirkan overhed kepala yang berlebihan dalam rangkaian MPLS, 

mengakibatkan kesesakan trafik lalu menjejaskan prestasi rangkaian tulang belakang. 

 

Suatu skema penindasan kepala yang baru, Penindasan Kepala Muatan 

Multiprotokol (MPHS) dicadangkan dalam tesis ini yang menawarkan penggunaan 

jalur lebar yang lebih baik bagi MPLS-LSP (Laluan Bersuis Label). Skema yang 

dicadangkan ini adalah untuk memenuhi ketersediaan yang tinggi bagi rangkaian 

tulang belakang yang memerlukan skema penindasan yang lebih ringkas. Ianya 

dibawa merentasi keseluruhan rangkaian tulang belakang, tidak seperti skema yang 

ada kini yakni, Penindasan Kepala Muatan (PHS) atau Penindasan Kepala Lasak 

(ROHC), yang kebanyakannya digunakan di rangkaian capaian. 

 

Penyelesaian yang dicadangkan ini membolehkan lebih banyak strim IPv6  

masa nyata dan  bukan masa nyata pada tulang belakang yang dibolehkan oleh 

MPLS, disokong dengan QoS (Kualiti Perkhidmatan) hujung-ke-hujung yang boleh 

diterima. Tesis ini membentangkan empat sumbangan utama terhadap domain 
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MPLS. Pertama, MPHS menyokong strim IPv6 asli. Kedua, ia membenarkan strim 

6-dalam-4 antara Pinggir Pelanggan (CE-keCE). Ketiga, ia menyokong kewujudan 

bersama trafik bukan masa nyata seperti trafik Sesawang menggunakan aplikasi 

berasaskan HTTP (Protokol Pindahan Teks Hiper) dan aplikasi berasaskan FTP 

(Protokol Pindahan Fail). Akhir sekali, MPHS menyokong LSP Eksplisit. 

 

Keberkesanan MPHS telah diuji menggunakan Simulasi Rangkaian versi 2 

(NS2). Hasilnya disahkan menerusi model analitis untuk menunjukkan bahawa ia 

adalah sebanding dan sepadan dengan hasil daripada model simulasi. 

 

Menggunakan MPHS, pertambahan penindasan yang ketara iaitu 64% bagi 

trafik IPv6 asli dan 63% bagi trafik 6-dalam-4 dilihat sebagai sebanding dengan 

skema-skema penindasan yang sedia ada. Penggunaan jalur lebar bagi IPv6 masa 

nyata dan trafik 6-dalam-4 telah meningkat sebanyak 31%. Seterusnya, lengah 

bingkisan dalam rangkaian MPLS berkurangan daripada sebanyak 22% apabila 

MPHS diaktifkan di rangkaian teras. Dari segi kesan MPHS terhadap trafik 

heterogen, masa tindak balas bagi trafik pelanggan-pelayan berkurangan sebanyak 

1.7s (daripada 24.88s kepada 23.14s) bagi trafik Sesawang IPv6, menyingkirkan 

jatuhan bingkisan bagi data UDP. Truput data TCP meningkat sebanyak 20%, 

meminimumkan masa lengah dengan begitu berkesan. Selain itu, pengurangan 

kepelbagaian dalam truput bagi trafik TCP dan UDP dapat dilihat apabila MPHS 

diaktifkan. 
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AN OPTIMIZED FRAMEWORK FOR HEADER SUPPRESSION OF 

REAL TIME IPv6 TRAFFIC IN MULTIPROTOCOL LABEL 

SWITCHING (MPLS) NETWORKS 

 

ABSTRACT 

Multiprotocol Label Switching (MPLS) with IPv6 has been defined by the 

Internet Engineering Task Force (IETF) as highly scalable and well suited for 

different types of traffic such as VoIP and Video. However, large IP headers create 

excessive header overhead in a MPLS network leading to traffic congestion 

degrading the backbone network performance. 

 

A new header suppression scheme, Multiprotocol Payload Header 

Suppression (MPHS) is proposed in this thesis to offer better bandwidth utilization 

for MPLS-LSP (Label Switched Path). The proposed scheme caters for high 

availability of the backbone network that requires much simpler compression 

schemes. It is carried across the entire backbone network, unlike the existing 

schemes namely, Payload Header Suppression (PHS) or Robust Header Compression 

(ROHC), that are mainly used at access network.  

 

The proposed solution allows more real-time and non real-time IPv6 streams 

over MPLS-enabled backbone to be supported with acceptable end-to-end QoS 

(Quality of Service). This thesis presents four main contributions over a MPLS 

domain. Firstly, MPHS supports native IPv6 streams. Secondly, it enables 6-in-4 

streams between Customer Edges (CE-to-CE). Thirdly, it supports coexistence of 

non real-time traffic such as Web traffic using HTTP (Hyper Text Transfer 
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Protocol)-based applications and FTP (File Transfer Protocol)-based applications. 

Finally, MPHS supports Explicit LSP. 

 

The effectiveness of MPHS was investigated using Network Simulation 

version-2 (NS2). The results were validated against analytical models to show that it 

compares and agrees well with the outcome of the simulation model. 

 

Using MPHS, significant suppression gain of 64% for native IPv6 traffic and 

63% for 6-in-4 traffic were seen as compared to the existing compression schemes. 

The bandwidth utilization for real time IPv6 and 6-in-4 traffic was improved by 

31%. Subsequently the packet delay in the MPLS network decreased by 22% when 

MPHS was activated at the core network. In terms of effects of MPHS on 

heterogeneous traffic, response time for client-server traffic improved by 1.7s (from 

24.88 to 23.14) for IPv6 Web traffic eliminating packet drop for UDP data. The TCP 

data throughput was increased by 20%, effectively minimizing the delay time. In 

addition, less variation in throughput for TCP and UDP traffic was seen when MPHS 

was activated. 
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CHAPTER ONE 

INTRODUCTION 
 

 

 

1.1 Background 

The growth of the Internet mirrors the rapid development of new protocols, 

mechanisms and the remarkable increase of Internet users, for data communication 

and computer networking. This growth, in turn, has been fueled by the exponential 

growth of the World Wide Web (WWW). Historically the Web has triggered 

explosive escalation in the Internet due to fast growth of e-mail after ARPANET 

(Advanced Research Project Agency Network)  establishment (Stallings, 2002). The 

tremendous increase in traffic volume generated from the Web, real-time 

multimedia, and multicasting applications has motivated researchers to develop new 

technologies such as Multiprotocol Label Switching (MPLS), and latest techniques 

such as header compression that can support better Quality of Service (QoS). 

However, MPLS is one of the technologies that have been used in Internet backbone. 

 

Data packets for real time applications are mainly a comprised form of voice 

and video, which represent main drivers for QoS implementation and traffic 

engineering mechanisms in the internet (Meddeb, 2010). Real time application such 

as Voice over IP (VoIP) having small payloads as compared to their headers results 

in significant packet processing overheads (Fortuna & Ricardo, 2009). Header 

compression schemes such as Robust Header Compression (ROHC) and Payload 

Header Suppression (PHS) were developed for WiMAX defined in IEEE 802.16, 

where header overhead of real time traffic is the major concern. 
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MPLS is a routing and forwarding protocol standardized in 2001. The MPLS 

architecture is defined in (RFC3031, 2001). The traffic engineered MPLS technology 

is highly distinguished as the modern approach that guarantees the high level of 

quality and reliability that we expect from telephony services (Juniper, 2007). 

Explicit label switched path (Explicit-LSP) is one of the MPLS properties that permit 

the booking of an explicit LSP that is not necessarily the shortest path. Explicit-LSP 

can be deployed for different situations, like fast restoration path (in failure cases of 

node/links), for MPLS-Traffic Engineering usage, load balancing, etc. Internet 

Service Providers have combined the features of MPLS such as speed, Traffic 

Engineering (TE), QoS, VPN and resiliency with IPv6 features as an alternative 

transporting facility over the Internet backbone (Griviaud, 2008). 

 

Typically Internet backbone networks suffer from high load traffic and 

congestion at edge routers. This bandwidth consumption for packet headers is higher 

as compared to access network in Wireless, WiMAX or satellite networks. For 

example, as stated in (RFC4247, 2005), for a real-time application such as VoIP over 

a WAN, packet headers for 300 million calls per day could consume of about 20-40 

Gbps.   

 

Currently there are limited comparative studies between compression and 

suppression schemes in terms of complexity analysis. Compression schemes are 

mainly compressing IP header field to less number of bits using encoding and 

decoding techniques. Suppression schemes work by stripping out an IP header field 

at the sender node and then restoring the field at the receiver node. No work has been 

done on implementation of header suppression for IPv6 and 6-in-4 over MPLS for 
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real time applications. Moreover, Multi-Ingresses and Multi-Egresses in MPLS 

domains need to be addressed compared to mobile to edge router connection. 

Further, most compression techniques focuses mainly on wireless and satellite 

technologies, leaving out other network technologies such as MPLS. 

 

1.2 Problem Statement 

One of the most critical aspects in transmitting real time streams over IPv6 

networks is the increase in header size in relation to the small payload size compared 

to IPv4 that represents extra overhead (or successive headers overhead problem). 

These overheads are considered additional costs in terms of complexity metrics such 

as time complexity for packet header processing, storage resources such as queuing 

requirement, and transmission bandwidth requirements. As a result these overheads 

might contribute negatively in the network performance (QoS) and increase the 

probability of traffic congestion problem. In terms of QoS parameters, real time 

applications are very sensitive to the delay and jitter.  

 

 In a data stream, most of the fields in the packet header would be the same 

from the first packet to the last packet. In real time applications such as VoIP, the 

header overhead problem defined above will be seen in every packet in such a data 

stream. For example, encapsulated data packet consuming a total of 93 bytes where 

60 bytes for RTP/UDP/IPv6 header and 33 bytes for voice data (using GSM 6.0 

codec). The header occupies more than half (actually 64%) of the packet size. This 

overhead problem could be reduced using header suppression scheme that is 

proposed in this thesis.  
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1.3 Research Motivations 

The following are the motivations for current research:  

� The increase in interest over the implementation of MPLS as an efficient 

transport technology for telecommunication industry.  

 

� The need to investigate the effect on performance of large header sizes 

relative to small data payload for IPv6 Internet Backbone infrastructure using 

MPLS technologies. 

 

� The choice of suitable header reduction scheme to reduce the header 

overhead for real time data flow. 

 

1.4 Objectives 

The overall objective of this thesis is to enhance the efficiency of packet 

processing in terms of QoS metrics such as bandwidth utilization, throughput, delay, 

jitter, and packet drop for real time applications. To achieve the above objective, the 

specific objectives are defined as follows:- 

1) To perform a qualitative functional comparison between existing header 

compression schemes (e.g. PHS and ROHC) with the proposed framework for 

the MPLS-enabled backbone.  

 

2) To propose a new framework that enhances the QoS performance of real time 

applications in the MPLS-based backbone by incorporating overhead reduction 

techniques.  
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3) To analyze the proposed framework using an end-to-end queuing model and 

study its effect on real time IPv6 traffic by simulation to obtain more statistics 

regarding the performance.   

 

4) To investigate the interaction of overhead reduction for real time IPv6 traffic 

with non real-time traffic such as web traffic using the HTTP protocol, as well as 

data transfers using FTP protocol. 

 

1.5 Scope  

The scope of this work (Figure 1.1) is limited to IPv6 client networks for real 

time traffic, multiple mixed IPv4/IPv6 domains with MPLS support, 6-in-4 tunneling 

approach, and one real time codec using, Global System for Mobile Communications 

(GSM). 

 

 

Figure 1.1: Thesis Scope  
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1.6 Research Framework 

Fig 1.2 depicts complete research framework of the thesis. 

 

Figure 1.2: Research Framework 

Existing header 
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 Outlines of Proposed Solution  
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statement 
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Proposed Algorithm 
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Proposed Algorithm 

For 6-in-4 Support 

 

 

 

Design of Combined Framework 

 (MPLS + Header Suppression Algorithms) 

Analytical model and Validation 

MPLS-LDP Extension 

 

Phase 2:  Literature Analysis  

Framework Simulation and Results Analysis 

Phase 4: Performance  Evaluation  

Investigated protocols: (UDP/RTP, TCP/FTP and TCP/HTTP)   

over IPv6, 6-in-4 

Investigated QoS parameters: (Throughput, delay, jitter, 

packet  drop, retransmission and Web-Server response time) 
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1.7 Thesis Organization 

This thesis is organized into seven chapters.  

Chapter 1 presents the preamble and objectives of this thesis. It starts by presenting 

a background discussion for the header compression schemes for real time 

applications and overview for MPLS-IPv6 technology with our research motivations 

and objectives. 

 

Chapter 2 extensively covers the literature survey and discusses the most current 

and related works in header compression research field and MPLS technology. The 

researcher will also discuss properties of IPv6 header, QoS models, and requirements 

for header compression over MPLS. Functional analysis for ROHC and PHS is 

introduced. The reasons of choosing payload header suppression for MPLS 

framework are discussed.  

 

Chapter 3 covers the methodology discussion on how the proposed solution was 

designed. The new header suppression algorithm (MPHS) for MPLS is introduced in 

this chapter. Functional comparisons for MPHS versus PHS and ROHC using finite 

state machines (FSM) are introduced. Justifications and consideration for MPHS are 

also described in this chapter. 

 

Chapter 4 introduces an end-to-end analytical model for MPHS. It verifies the 

model by comparing the model and simulation results. It discusses the model in 

terms of QoS components such as delay, throughput and packet drop. 
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Chapter 5 introduces the simulation environment for MPHS in terms of design and 

analysis. In addition, it states simulation parameters, scenarios for MPHS 

experiments, and QoS performance metrics used, while simulation results, analysis 

and discussion for experiments are presented in Chapter 6. 

 

Chapter 7 introduces the research findings; research conclusion, and the possible 

future work for this study.  
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CHAPTER TWO 

LITERATURE REVIEW 
 

 

 

2.1 Introduction 

This chapter introduces the work related to header compression, real time 

traffic requirements, MPLS technology, IPv6 and 6-in-4 header specification and 

principles for QoS. It produces a functional comparison for PHS versus ROHC in 

terms of complexity. The work includes major and minor research domains 

originating from QoS IPv6 header compression and supersession (Figure 2.1). In 

addition, it discusses the most related works in terms of QoS performances, 

advantages, limitations, and outlines the justification for proposed framework.   

  

Figure 2.1: Thesis Interest & Boundary 
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2.2 QoS Models, Mechanisms and Metrics 

Internet QoS efforts are aimed to expand the base services of a network to a 

number of selectable service responses which are distinguished from the best-effort 

service by supporting superior service level. The expanded services are distinguished 

by providing a predictable service response, despite varying network traffic load 

such as the number of concurrent traffic flows (RFC2990, 2000). In terms of quality 

of service, metrics such as delay, jitter, packet loss, throughput, service availability, 

and per flow sequence preservation, measures the service quality that IP Traffic 

experiences.  

 

Real time applications which are mainly voice and video packets representing 

main drivers for QoS implementation and traffic engineering mechanisms in the 

internet (Meddeb, 2010).  It needs to fulfill certain requirements to achieve end to 

end QoS metrics. For instance, less than 200ms latency is recommended for voice 

conversation, at about 30ms jitter is preferred, and below 1 percent packet loss ratio 

is recommended (Szigeti & Hattingh, 2004). 

  

In terms of OSI (Open System Interconnection) model, Real Time Protocol 

(RTP) is a transport layer protocol commonly used to transport digitally encoded 

stream of Voice over IP (VoIP) (RFC3550, 2003) and video over IP. The delivery of 

the VoIP bearer stream from sender to receiver is a dealing function of RTP which 

uses one of the signaling protocols such as Session Initiation Protocol (SIP) 

(RFC3261, 2002) to setup the VoIP session and to determine the codec format used.  
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Various types of codecs are used to compress and transmit the VoIP packets 

of real time applications, and most of these codecs produce small packet sizes. 

Properties of VoIP codec’s vary in bandwidth requirements, call delivery quality and 

complexity. In addition, some codecs use compression to reduce the required 

bandwidth for a VoIP call, and consequently can be divided into lose and lossless 

codec’s based on compression quality (Evans & Filsfils, 2007). Voice datagram(s) 

(Taylor, et al., 2005) are on the order of 20 bytes while IPv6/UDP/RTP headers are 

on the order of 100 bytes. GSM codec is considered as VoIP codec for this thesis. 

 

2.2.1 Network QoS Requirements for VoIP Applications  

VoIP applications are defined by different Service Level Agreement (SLA) 

metric parameters such as (Evans & Filsfils, 2007). The formula for each of the 

following QoS metric is defined in Chapter 5. 

 ` 

2.2.1.1 Delay 

Delay is an expression of how much time it takes for a packet of data to get 

from one designated source to destination. The interactive conversational speech is 

the main impact factor for one-way end-to-end delay. For example ITU-T 

recommendation on mouth-to-ear delay was specified in G.114 which uses the E-

model and suggested that delay around 150 ms will satisfy for most VoIP 

applications/users. As the delay increases, the satisfactory level decreases. It will 

become unacceptable once the delay value passes the 400 ms threshold (delay levels 

are shown in Table 2.1). The mean opinion score MOS “is a well established scheme, 

which provides a numeric measure of the quality of a voice call at the destination” 

(Evans & Filsfils, 2007). 
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TABLE 2.1: ITU G.114 Determination of the Effects of Absolute Delay by the              
E-model (Evans & Filsfils, 2007) 

Ear-to-mouth R factor Objective MOS 

Delay < 150 ms 80 – 89 5 
150 ms < delay < 250 ms 70 - 79 4 
250 ms < delay < 325 ms 60 - 69 3 
325 ms < delay < 425 ms 50 – 59 2 

Delay > 425 90 - 100 1 
 

Network delay which impacts the VoIP call is one component of the end-to-

end delay. In order to satisfy VoIP application requirements, the network QoS design 

should consider the maximum delay values mentioned above and apportion the 

budget to various network delay components (such as propagation delay through the 

backbone such as MPLS backbone, scheduling delay due to congestion, access link 

serialization delay, and end-system delay due to VoIP codec and jitter buffer). 

 

2.2.1.2 Jitter  

It is the parameter that characterizes the variation of network delay. In 

practice de-jitter buffers (which is used at the destination end-systems to remove 

jitter or delay variation by converting delay variation to constant delay), and play-out 

buffers are used to control delay variation. 

 

2.2.1.3 Packet Drop 

This QoS parameter is calculated from the difference between the sending 

number and receiving number of packets Packet drop could happen as a result of 

traffic congestion, lower layer errors, network element failures, or loss in the 

application end-systems. 
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2.2.1.4 Throughput  

It is referred to as the amount of data (packet payload) moved successfully 

from one place (source) to another (destination) in a given time period. Average 

bandwidth used for a call can be reduced by using various techniques such as Voice 

Activation Detection (VAD) (which uses silence suppression techniques), and/or 

header compression techniques such as ROHC or PHS. Goodput is another QoS 

metric that exclude protocol overhead of transport, network and data link layers from 

the throughput (Yoo, 2010).   

 

2.2.2 QoS Models 

In terms of QoS models, (Wallace., 2004) Cisco developed QoS features  and 

categorized them into one of the following three models (Figure 2.2). 

  

 

Figure 2.2: QoS Models (Wallace., 2004) 

 

2.2.2.1 Best Effort (No QoS) 

Best Effort is the traditional datagram model. No differentiation between 

elastic and inelastic streams exists in this model which contributes to unpredictable 

services.  
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2.2.2.2 Integrated Services (Hard QoS) 

IntServ Architecture was defined in (RFC1633, 1994) It is characterized by 

guaranteeing per-flow QoS and strict bandwidth reservations. IntServ requires 

signaling for path reservation using Resource Reservation Protocol defined 

(RFC2205, 1997). Path/RESV messages require admission control and must be 

configured on every router along the path, and work well on small-scale. The main 

disadvantages of this model are scaling with large number of flows and requiring 

devices to retain state information. 

 

2.2.2.3 Differentiated Services (Soft QoS) 

DiffServ architecture is defined in (RFC2475, 1998). It is scalable, well 

supportive to large flows through aggregation, and defines per-hop behavior (PHB). 

It is capable to create Traffic Conditioning (TC) meaning when edge nodes perform 

TC such as MPLS ingress nodes, it allows core routers to do more important 

processing tasks. Additionally, with DiffServ it is tough to predict end-to-end 

behavior. 

 

DiffServ techniques were designed to integrate in orthogonal manner with 

traffic engineering mechanisms. While DiffServ techniques are concerned about 

traffic class’s differentiation, traffic engineering needs to ensure QoS provision 

within class of service.  

 

2.2.3 Router Operational Planes  

A router operates in two operational planes: control and data plane. (Evans & 

Filsfils, 2007): 



15 

 

2.2.3.1 Data Plane  

Data plane includes processing intensive functions, packet forwarding 

lookups and packet filtering functions applied at network nodes and mostly 

implemented using hardware in high performance routers. QoS mechanisms of data 

plane can be classified according to the primitive behavior characteristics as follows: 

� Classification (class of service) 

� Marking: Setting up the QoS related traffic fields of IP or MPLS to identify 

the traffic easily. 

� Policing and shaping:  used for maximum rate enforcement. 

� Prioritization: used for setting up traffic priority to provide it with estimated 

delay and jitter. 

� Minimum rate assurance: Minimum bandwidth assurance for different traffic 

classes can be achieved by implementing scheduling techniques such as 

Deficit Round Robin (DRR) and Weighted Fair Queuing (WFQ). 

 

2.2.3.2 Control Plane  

Its function includes signaling plane or controlling the data plane. It deals 

with admission control, routing protocols and resource reservation mechanisms, and 

it is typically implemented using software. For example RSVP is used for control 

plane or QoS signaling in the context of integrated services architecture for flow 

resource reservation & admission control. It is also used to setup MPLS traffic 

engineering LSPs. 
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2.3 IP Protocols for Internet 

IPv4 header contain twelve fields plus option field which yields  a size 

between 20-60 octets compared to eight fields used by IPv6 with a size of 40 octets 

(Figure 2.3). The option fields in IPv4 headers induce transmission complexities due 

to the use of variable length headers compared to the fixed header lengths in IPv6. 

Typically 5-tuple (source address, destination address, protocol, source port, 

destination port) is used as the IPv4 flow signature. The minimum value of the 

Internet Header Length (IHL) field of IPv4 is 5 (20 bytes) and the maximum value is 

15 (60 bytes), thus at most 40 bytes are found in the option headers. The leftmost 6 

bits of the Differentiated services field represent Classes of Service and Priority of 

Services, for more details refer to (RFC2475, 1998). 

 

Ver = 4 
(4 bits) 

IP Header Length 
(4 bits) 

Type of Service  
( 8 bits) 

Total Length 
(16 bits) 

Identification 
(16 bits) 

Flags 
(3 bits) 

Fragment Offset 
(13 bits) 

Time To Live 
(8 bits) 

Protocol 
(Value = 41 for 6-in-4) 

(8 bits) 

Header Checksum 
(16 bits) 

Source IP address 
(32 bits) 

Destination IP address  
(32 bits) 

Options (if any) 
(variable) 

Figure 2.3: IPv4 Header Format 

 

IPv6 header fields are shown in Figure 2.4; these fields occupy 40 octets 

(bytes) as a fixed length header. Typically 3-tuple of the IPv6 header (IP source 

address, IP destination address and flow label) representing the IPv6 flow signature. 
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Traffic class field is equivalent to the Differentiated services field of IPv4 header; it 

is used for QoS requirements.  

 

Ver = 6 
(4 bits) 

Traffic class 
(8 bits) 

Flow label 
(20 bits) 

Payload Length 
(16 bits) 

Next Header 
(8 bits) 

Hop Limit 
(8 bits) 

Source IP address 
(128 bits) 

Destination IP address  
(128 bits) 

Figure 2.4: IPv6 Header Format 

 

Since there is no unique usage for flow label field of IPv6, it is optional and 

could be deployed for various approaches. In terms of supporting QoS requirements, 

flow label is used by packet classifiers in order to identify packet’s flow. (RFC3697, 

2004) declared the specifications and requirements of IPv6 Flow Label values. It 

specifies that at least 120 seconds (time slot) should exist in order to split the reuse of 

the same value of flow label for a specific pair of source and destination addresses of 

IP.  It also specifies that Flow label value be set to 0 values by source node for 

packets that do not belong to any flow. 

   

2.4 Multiprotocol Label Switched (MPLS) Technology 

MPLS is a routing and forwarding protocol standardized by IETF in 2001. 

MPLS domain (cloud) is “a contiguous set of nodes which operate MPLS routing 

and forwarding and which are also in one Routing or Administrative Domain” 

(RFC3031, 2001). 
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MPLS facilities in MPLS/VPN, MPLS/QoS, MPLS/TE, ATM + IP and fast 

rerouting motivated the Internet Service Providers (ISP) to deploy MPLS technology 

in their IPv4 backbone. These MPLS facilities contributing to minimizing the 

distortions of streams by setting up multiple LSPs (tunnels) between source and 

destination to ensure the logical separation between streams (Shekhar Srivastava, 

Liefvoort, & Medhi, 2009). In terms of failure detection, MPLS supports two levels 

of failure detection mechanisms, data plane failure detection and control plane failure 

detection (RFC5884, 2010). This will overcome the condition if only one of the 

operational planes is working in certain LSP. For example, if the control plane fails 

but the data plane is working, it will detect it and reroute the traffic to an alternative 

LSP. The same goes for the case in which the data plane fails.  

 

MPLS networks have the capability of minimizing distortions of streams by 

setting up multiple label switched paths (LSPs), or tunnels, between source and 

destination to ensure the logical separation between streams (S. Srivastava, van de 

Liefvoort, & Medhi, 2009). The success of MPLS technology in providing QoS for 

real time IP applications makes it one of the favorite choices for ISPs when merged 

to IPv6 in Internet backbone networks. Therefore several IPv6 scenarios over MPLS 

have been identified in the literatures as a part of IPv6 deployments (Table 2.2) 

(Griviaud, 2008).  

TABLE 2.2: IPV6 OVER MPLS DEPLOYMENT SCENARIO (GRIVIAUD, 2008) 

Scenario Impact on 

IPv6 Tunnels configured on CE No Impact on MPLS 

IPv6 over Circuit_over_MPLS No Impact on IPv6 
IPv6 Provider Edge Router (6PE) over MPLS No Impact on MPLS core 

Native IPv6 MPLS Require full network upgrade 
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In terms of VPN over MPLS domain, the similarities in scope and policies 

simplify the coexistence of IPv6 VPN with IPv4 VPN in MPLS domain.  In 

(RFC4659, 2006), Cisco authored for IPv6 VPN (6VPE) over MPLS/IPv4 

infrastructure. 

 

2.4.1 MPLS Domain 

Ingress and Egress of MPLS domain are two Label Edge Routers (LERs) or 

Provider Edge routers (PE) representing the input and output doors of the MPLS 

cloud (Figure 2.5).  

 

  

Figure 2.5:  MPLS Domain 
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The MPLS core routers are known as Label Switch Routers (LSRs) or Transit 

routers or Provider (P) routers. The ingresses and egresses of MPLS cloud are 

connected via mesh of unidirectional tunnels (paths) namely Label Switched Paths 

(LSPs). 

  

2.4.2 MPLS Packet Processing and Forwarding Mechanism  

Four main processes are known for dealing with entering packets into MPLS 

cloud. The first process is the classification process, in which packets entering 

ingress will be classified and assigned to forwarding equivalent classes (FEC) 

according to the required treatment similarity, so that the same MPLS label would be 

provided to all packets belonging to the same FEC. The second is the label push (or 

encapsulation) process, in which the MPLS label is pushed by ingress to prefix the 

packet header (Figure 2.6). The third process, forwarding, guides the encapsulated 

packet through an LSP using a label switching mechanism assisted by the label 

information base (LIB) table. The fourth is the final label pop (or decapsulation) 

process, which is maintained by egress (or penultimate) LSR, and followed by a 

return to normal layer 3 routing (Ghein, 2006; Mine & Lucek, 2008).  

 

The Label Switching Router (LSR) located one hop before the Egress is 

called Penultimate. The Penultimate pops the label instead of Egress, when this 

facility is activated. Core LSRs forwards the labeled packets without considering 

their layer 3 IP headers, behaving as Transit routers. 

 


