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PENGELASAN LUP-LUP MOUFANG

BERPERINGKAT GANJIL

ABSTRAK

Identiti Moufang (x · y) · (z · x) = [x · (y · z)] · x pertama kali diperkenalkan

oleh Ruth Moufang pada 1935. Kini, suatu lup yang memenuhi identiti Moufang

dipanggil suatu lup Moufang. Minat kami adalah untuk mengkaji soalan: “Bagi

suatu integer positif n, mestikah setiap lup Moufang berperingkat n kalis seku-

tuan?”. Jika tidak, bolehkah kita bina suatu lup Moufang tak kalis sekutuan

berperingkat n?

Soalan-soalan ini telah dikaji dengan menangani lup-lup Moufang berper-

ingkat genap dan ganjil secara berasingan. Bagi peringkat genap, Chein (1974)

telah membina suatu kelas lup Moufang tak kalis sekutuan, M(G, 2) berper-

ingkat 2m dengan menggunakan suatu kumpulan tak abelan G berperingkat m.

Selepas itu, Chein dan Rajah (2000) telah membuktikan bahawa semua lup Mo-

ufang berperingkat 2m adalah kalis sekutuan jika dan hanya jika semua kumpulan

berperingkat m adalah abelan.

Bagi kes lup-lup Moufang berperingkat ganjil, kewujudan lup-lup Moufang

tak kalis sekutuan berperingkat 34 dan p5 (bagi sebarang nombor perdana p >

3), telah ditunjukkan masing-masing oleh Bol (1937) dan Wright (1965). Kelas

lup-lup Moufang tak kalis sekutuan yang terkini telah dibina oleh Rajah (2001)

dengan menunjukkan bahawa bagi nombor-nombor perdana yang berlainan p dan

q, wujud suatu lup Moufang tak kalis sekutuan berperingkat pq3 jika dan hanya

jika q ≡ 1 (mod p). Sebaliknya, bukti bagi ketakwujudan lup-lup Moufang tak

kalis sekutuan telah dijalankan selama kira-kira 4 dekad. Telah diketahui bahawa

semua lup Moufang berperingkat (ganjil) seperti berikut merupakan kumpulan:

(i) pαqβ1

1 q
β2

2 · · · qβn
n ; p, q1, q2, . . . , qn ialah nombor-nombor perdana ganjil, p <

q1 < q2 < · · · < qn, α ≤ 4 dan βi ≤ 2 (p > 3 jika α = 4);
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(ii) p1p2 · · · pnq3; p1, p2, . . . , pn dan q ialah nombor-nombor perdana ganjil yang

berlainan, q 6≡ 1 (mod p1) dan q2 6≡ 1 (mod pi) bagi semua i ∈ {2, . . . , n}.

Dalam disertasi ini, kami mulakan dengan mentakrif konsep lup-lup Moufang

tak kalis sekutuan secara minimum dan kami buktikan beberapa sifat lup-lup

tersebut. Seterusnya, kami mengkaji beberapa kes terbuka bagi lup-lup Moufang

berperingkat ganjil. Kami membuktikan bahawa lup-lup Moufang berperingkat

berikut ialah kumpulan:

(i) p1 · · · pmq3r1 · · · rn; p1, . . . , pm, q, r1, . . . , rn ialah nombor-nombor perdana

ganjil, p1 < · · · < pm < q < r1 < · · · < rn dan q 6≡ 1 (mod pi) bagi

semua i ∈ {1, 2, . . . ,m};

(ii) p2
1 · · · p2

mq
3r2

1 · · · r2
n; p1, . . . , pm, q, r1, . . . , rn ialah nombor-nombor perdana

ganjil, p1 < · · · < pm < q < r1 < · · · < rn dan q 6≡ 1 (mod pi) bagi

semua i ∈ {1, 2, . . . ,m};

(iii) p3q3; p dan q ialah nombor-nombor perdana ganjil, p < q dan q 6≡ 1

(mod p); dan

(iv) pq4; p dan q ialah nombor-nombor perdana ganjil, p < q dan q 6≡ 1 (mod p).

Oleh sebab semua lup Moufang yang disenaraikan di atas adalah kalis seku-

tuan, kami tukar penumpuan kajian kami ke lup-lup Moufang tak kalis seku-

tuan yang berperingkat 34. Pengelasan yang dibuat oleh Nagy dan Vojtěchovský

(2007) ke atas lup-lup Moufang ini adalah dibantu komputer. Maka, kami beri

suatu bukti teoretikal bagi keputusan tersebut dengan mewujudkan suatu petua

hasil darab bagi sebarang dua unsur dalam lup Moufang itu dan kami lengkapkan

pengelasan tersebut.
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CLASSIFICATION OF MOUFANG LOOPS

OF ODD ORDER

ABSTRACT

The Moufang identity (x · y) · (z · x) = [x · (y · z)] · x was first introduced by

Ruth Moufang in 1935. Now, a loop that satisfies the Moufang identity is called

a Moufang loop. Our interest is to study the question: “For a positive integer n,

must every Moufang loop of order n be associative?”. If not, can we construct a

nonassociative Moufang loop of order n?

These questions have been studied by handling Moufang loops of even and

odd order separately. For even order, Chein (1974) constructed a class of nonas-

sociative Moufang loop, M(G, 2) of order 2m where G is a nonabelian group of

order m. Following that, Chein and Rajah (2000) have proved that all Moufang

loops of order 2m are associative if and only if all groups of order m are abelian.

As for the case of Moufang loops of odd order, the existence of nonassociative

Moufang loops of order 34 and p5 (for any prime p > 3), has been shown by Bol

(1937) and Wright (1965) respectively. The most recent class of nonassociative

Moufang loops was constructed by Rajah (2001), where he showed that for dis-

tinct odd primes p and q, there exists a nonassociative Moufang loop of order pq3

if and only if q ≡ 1 (mod p). On the other hand, the proofs on nonexistence of

nonassociative Moufang loops have progressed gradually for about four decades.

All Moufang loops of the following (odd) orders are known to be groups:

(i) pαqβ1

1 q
β2

2 · · · qβn
n where p, q1, q2, . . . , qn are odd primes, p < q1 < q2 < · · · <

qn, α ≤ 4 and βi ≤ 2 (p > 3 if α = 4);

(ii) p1p2 · · · pnq3 where p1, p2, . . . , pn and q are distinct odd primes, q 6≡ 1

(mod p1) and q2 6≡ 1 (mod pi) for all i ∈ {2, . . . , n}.

In this dissertation, we begin by defining the concept of minimally nonas-

sociative Moufang loops and proving some of their properties. From there, we
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continue with some of the known open cases for Moufang loops of particular odd

orders. We prove that Moufang loops of the following orders are groups:

(i) p1 · · · pmq3r1 · · · rn where p1, . . . , pm, q, r1, . . . , rn are odd primes, p1 < · · · <

pm < q < r1 < · · · < rn and q 6≡ 1 (mod pi) for all i ∈ {1, 2, . . . ,m};

(ii) p2
1 · · · p2

mq
3r2

1 · · · r2
n where p1, . . . , pm, q, r1, . . . , rn are odd primes, p1 < · · · <

pm < q < r1 < · · · < rn and q 6≡ 1 (mod pi) for all i ∈ {1, 2, . . . ,m};

(iii) p3q3 where p and q are odd primes, p < q and q 6≡ 1 (mod p); and

(iv) pq4 where p and q are odd primes, p < q and q 6≡ 1 (mod p).

In view of the fact that all the Moufang loops listed above are associative,

we turn our attention to the study of nonassociative Moufang loops of order 34.

The classification done by Nagy and Vojtěchovský (2007) on these Moufang loops

was computer-aided. Hence, we give a theoretical proof of this result, establish

a product rule for any two elements in that Moufang loop and complete the

classification.
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CHAPTER 1

INTRODUCTION

The Moufang identity was first introduced in 1935 by a German mathemati-

cian, Ruth Moufang in her paper Zur Struktur von Alternativkörpern. She defined

an inverse property loop 〈Q∗, ·〉 that satisfies the identity

(i) [(x · y) · x] · z = x · [y · (x · z)].

Bol (1937) soon showed that (i) implies another identity

(ii) (x · y) · (z · x) = x · [(y · z) · x].

and Bruck (1971) later proved that they both are equivalent to

(iii) [(z · x) · y] · x = z · [x · (y · x)].

Moufang showed that if any three elements in Q∗ associate in some order,

then they generate a group. A corollary of that is that 〈Q∗, ·〉 is diassociative.

This result is known as Moufang’s theorem and the identities (i)–(iii) are called

the Moufang identities. Now, a Moufang loop is defined as a loop satisfying any

one of these three identities. Bruck (1971) also showed that Moufang loops have

the inverse property, which follows from diassociativity.

Looking at the definition of groups, we can see that if a Moufang loop is

associative, then it becomes a group. Hence, there is a very close relationship

between Moufang loops and groups. All groups are Moufang loops, but the

converse is not true. Therefore, our interest is to determine which Moufang

loops are associative, and which are not. Particularly, we study the question:

“For a positive integer n, are all Moufang loops of order n associative?”. If the

answer is negative, then we wish to construct an explicit counterexample, i.e.,

a nonassociative Moufang loop of order n. Before we can do that, however, we

1



need to study its properties and somehow establish a product rule between any

two elements in that Moufang loop.

Suppose the existence of a nonassociative Moufang loop of order n is known,

then we can construct a nonassociative Moufang loop of order mn (m ∈ Z+)

as follows: Let 〈L, ·〉 be a nonassociative Moufang loop of order n and 〈G, ∗〉 a

group of order m. Define M as the direct product of L and G, i.e., M = L×G =

{(x, y) | x ∈ L, y ∈ G} and the binary operation � on M as (x1, y1)� (x2, y2) =

(x1 · x2, y1 ∗ y2). Then 〈M,�〉 is a nonassociative Moufang loop of order mn.

Consequently, for positive integers m and n, if all Moufang loops of order mn

are associative, then so are all Moufang loops of order m (and n). We continue

studying Moufang loops by dividing into the two cases of even order and odd

order.

Chein (1974) gave a method to construct nonassociative Moufang loops of

even order (2m) by using a nonabelian group of order m. Since the smallest

nonabelian group is the symmetric group S3 which is of order 6, the smallest

nonassociative Moufang loop that can be constructed using this method would

be of order 12. This is in fact the smallest nonassociative Moufang loop as Chein

(1974) has also proved various theorems which show that all Moufang loops of

order less than 12 are associative. (He proved that Moufang loops of order p,

p2, p3 or pq (for primes p and q) must be groups.) We give the multiplication

table of this Moufang loop in Table 1.1. Chein and Rajah (2000) have completely

resolved the even case and proved that there exists a nonassociative Moufang

loop of order 2m if and only if there exists a nonabelian group of order m.

For the case of Moufang loops of odd order, the existence of nonassociative

Moufang loops of order 34 and p5 for every prime p > 3, has been proved by Bol

(1937) and Wright (1965) respectively. The most recent class was constructed by

Rajah (2001): For any distinct odd primes p and q, there exists a nonassociative

Moufang loop of order pq3 if and only if q ≡ 1 (mod p). The construction is as

follows: For odd primes p and q satisfying q ≡ 1 (mod p), define L = {(α, β, γ, δ) |

2



Table 1.1: Cayley table of a nonassociative Moufang loop of order 12

· 1 2 3 4 5 6 7 8 9 10 11 12

1 1 2 3 4 5 6 7 8 9 10 11 12

2 2 3 1 5 6 4 8 9 7 12 10 11

3 3 1 2 6 4 5 9 7 8 11 12 10

4 4 6 5 1 3 2 10 11 12 7 8 9

5 5 4 6 2 1 3 11 12 10 9 7 8

6 6 5 4 3 2 1 12 10 11 8 9 7

7 7 9 8 10 11 12 1 3 2 4 5 6

8 8 7 9 11 12 10 2 1 3 6 4 5

9 9 8 7 12 10 11 3 2 1 5 6 4

10 10 11 12 7 9 8 4 6 5 1 2 3

11 11 12 10 8 7 9 5 4 6 3 1 2

12 12 10 11 9 8 7 6 5 4 2 3 1

α ∈ {0, 1, . . . , p− 1}; β, γ, δ ∈ {0, 1, . . . , q − 1}} and the product of two elements

in L,

`1 · `2 = (α1, β1, γ1, δ1) · (α2, β2, γ2, δ2)

= (α(1,2), β(1,2), γ(1,2), δ(1,2))

where

α(1,2) ≡ (α1 + α2) (mod p);

β(1,2) ≡ (β1µ
(p−1)α2 + β2) (mod q);

γ(1,2) ≡ (γ1µ
(p−1)α2 + γ2) (mod q);

δ(1,2) ≡ {δ1µα2 + δ2 + φβ2γ1µ
(p−1)α2 + [β1γ1(µ

α2 − µ(p−2)α2)

+ (β1γ2 − β2γ1)(µ
α(1,2) − µ(p−1)α2)]/(µ− 1)} (mod q);

µ is an integer satisfying µp ≡ 1 (mod q) and µ 6≡ 1 (mod q);

φ is an integer satisfying φ(µ− 1) ≡ −2 (mod q) when p 6= 3

and φ is any integer when p = 3.

3



Then L is a nonassociative Moufang loop of odd order pq3.

Much work has also been done in the “opposite” direction, i.e., in proving

the nonexistence of nonassociative Moufang loops of particular orders. Below,

we give a list of orders of Moufang loops for which all of them are proved to be

groups:

(i) p, p2, p3 and pq where p and q are primes (Chein, 1974);

(ii) p4 where p is a prime with p > 3 (Leong, 1974);

(iii) pqr and p2q where p, q and r are odd primes with p < q < r (Purtill, 1988);

(iv) pq2 where p and q are odd primes with p < q (Leong & Rajah, 1995);

(v) p2
1p

2
2 · · · p2

n where p1, p2, . . . , pn are distinct odd primes (Leong & Rajah,

1996a);

(vi) p3q1q2 · · · qn where p, q1, q2, . . . , qn are odd primes with p < q1 < q2 < · · · <

qn (Leong, Teh & Lim, 1994);

(vii) p4q1q2 · · · qn where p, q1, q2, . . . , qn are odd primes with 3 < p < q1 < q2 <

· · · < qn (Leong & Rajah, 1996b);

(viii) p4q2
1q

2
2 · · · q2

n where p, q1, q2, . . . , qn are odd primes with 3 < p < q1 < q2 <

· · · < qn (Leong & Rajah, 1997);

(ix) pq3 where p and q are distinct odd primes with q 6≡ 1 (mod p) (Rajah,

2001);

(x) p1p2 · · · pnq3 where p1, p2, . . . , pn, q are distinct odd primes with q 6≡ 1

(mod p1) and q2 6≡ 1 (mod pi) for each i ∈ {2, 3, . . . , n} (Chein & Rajah,

2000);

(xi) p1p2 · · · pnq3 where p1, p2, . . . , pn, q are odd primes with p1 < p2 < · · · <

pn < q, q 6≡ 1 (mod pi), pi 6≡ 1 (mod pj) for all i, j ∈ {1, 2, . . . , n}, and the

nucleus is not trivial (Rajah & Chong, 2008).

4



The result (viii) is a significant one as it covers all the previous results (i)–(vii).

Note also that (xi) is the only result with condition on the nucleus.

In this dissertation, we continue with the investigation of open problems that

arise from these results. The organisation of this dissertation is as follows.

Chapter 2 is devoted to some basic definitions and known results in Moufang

loops and number theory. In Chapter 3, we define minimally nonassociative

Moufang loops and study their properties. In Section 4.1 of Chapter 4, we begin

with the extension of the results above (particularly (vi), (x) and (xi)) and give a

complete resolution for Moufang loops of odd order p1p2 · · · pnq3. In Section 4.2,

we extend this result to include Moufang loops of odd order p2
1p

2
2 · · · p2

nq
3. The

result is then used in Section 4.3 to study Moufang loops of odd order p3q3. In the

last section of Chapter 4, we study Moufang loops of odd order pq4 which arises

after the result in Section 4.1. In Chapter 5, we give a theoretical proof on the

construction of nonassociative Moufang loops of order 81 and the classification

of them (up to isomorphism). A discussion on the direction of further research

is put forward in Chapter 6. Finally, an appendix of the Cayley tables of all 5

nonisomorphic nonassociative Moufang loops of order 81 is provided.

On the journey of Moufang loops, our ultimate aim is to classify all Moufang

loops of order pα1
1 p

α2
2 · · · pαn

n where p1, p2, . . . , pn are distinct odd primes and αi ≤ 4

(since there exist nonassociative Moufang loops of order p5 for all primes p). This

dissertation has yet to bring us to our destination but it serves as a stepping stone

towards the classification of Moufang loops of odd order.
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CHAPTER 2

PRELIMINARIES

Before we begin our discussion, we would like to list down some of the def-

initions, basic properties and known results that are needed in the subsequent

chapters. For those not listed, we refer the reader to (Bruck, 1971) and (Glauber-

man, 1968).

2.1 Definitions and Notations

Definition 2.1.1. The order (or cardinality) of a set S, denoted by |S|, is the

number of elements in S. If the order of S is finite, then S is called a finite set.

Otherwise, S is called an infinite set.

Definition 2.1.2. A binary operation on a nonempty set S is a function from

S × S to S.

Definition 2.1.3. A nonempty set G with a binary operation ‘ · ’ on G, denoted

by 〈G, ·〉, is called a groupoid .

Often, when there is no risk of confusion, the notation for a groupoid 〈G, ·〉

is simplified to G instead. Also, we write the product between any two elements

by using juxtaposition, center dot · and parentheses ( ) simultaneously. Natu-

rally, when multiplying elements, juxtaposition precedes center dot, which in turn

precedes parentheses. Hence, we can write [x · (y · z)] · w simply as (x · yz)w.

Definition 2.1.4. A groupoid G is called a group if it satisfies the following

conditions:

(a) G has an identity element, i.e., there exists 1 ∈ G such that 1x = x1 = x

for all x ∈ G.
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(b) Every element in G has an inverse, i.e., for all x ∈ G, there exists x−1 ∈ G

such that x−1x = xx−1 = 1.

(c) G is associative, i.e., xy · z = x · yz for all x, y, z ∈ G.

Definition 2.1.5. A group G is called an abelian group if G is commutative,

i.e., xy = yx for all x, y ∈ G.

Definition 2.1.6. An abelian group G is called elementary abelian if every

nonidentity element in G is of prime order p.

Remark 2.1.7. By the classification of finitely generated abelian groups, every

elementary abelian group must be a direct product of a finite number of cyclic

groups Cp.

Definition 2.1.8. A groupoid Q is called a quasigroup if for any a, b ∈ Q,

(a) there exists a unique element x ∈ Q that satisfies the equation ax = b;

(b) there exists a unique element y ∈ Q that satisfies the equation ya = b.

The unique solutions to these equations are written as x = a\b and y = b/a,

where ‘ \ ’ and ‘ / ’ denote, respectively, the left and right division. A quasigroup

is a groupoid where division is always possible.

Example 2.1.9.

(a) 〈R,−〉 is a quasigroup. For any a, b ∈ R, the two equations a − x = b and

y − a = b have unique solutions x = a− b and y = a+ b.

(b) 〈R − {0},÷〉 is a quasigroup. For any a, b ∈ R − {0}, we have unique

solutions x = a/b and y = ab for the equations a÷ x = b and y ÷ a = b.

(c) All groups are quasigroups since there exist unique elements x = a−1b and

y = ba−1 that satisfy the equations ax = b and ya = b for any a and b in

the group.
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A convenient way to represent a finite quasigroup of small order is to construct

a multiplication table (Cayley table). The multiplication table of a quasigroup

of order 5 is given below.

Table 2.1: Cayley table of a quasigroup of order 5

· 1 2 3 4 5

1 3 2 4 1 5

2 1 3 5 4 2

3 5 1 2 3 4

4 2 4 1 5 3

5 4 5 3 2 1

The fact that x and y are unique solutions of the equations in Definition 2.1.8

guarantees that every element occurs exactly once in each row and each column

in the multiplication table of a quasigroup.

Bruck (1971, p. 28) showed that if a quasigroup is associative, then it is a

group. Therefore, a group is exactly an associative quasigroup.

Definition 2.1.10. A loop L is a quasigroup that possesses an identity element

1, i.e., 1x = x1 = x for all x ∈ L.

Example 2.1.11. This is the multiplication table of a loop of order 5.

Table 2.2: Cayley table of a loop of order 5

· 1 2 3 4 5

1 1 2 3 4 5

2 2 5 4 1 3

3 3 1 5 2 4

4 4 3 2 5 1

5 5 4 1 3 2

Definition 2.1.12. Let K be a subset of a loop 〈L, ·〉. K is called a subloop of

L (K ≤ L) if 〈K, ·〉 is a loop. A subloop K of L is called a proper subloop of

L (K < L) if K 6= L and is called trivial if K = {1}.
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Definition 2.1.13. Let S be a subset of a loop L. The subloop generated by

S , denoted by 〈S〉, is the smallest subloop of L containing S.

Definition 2.1.14. A loop is a Moufang loop if it satisfies any one of the

following (equivalent) Moufang identities:

xy · zx = (x · yz)x Middle Moufang identity,

x(y · xz) = (xy · x)z Left Moufang identity,

(zx · y)x = z(x · yx) Right Moufang identity.

Definition 2.1.15. A loop L is power associative if 〈x〉 is a group for every

x ∈ L.

Remark 2.1.16.

(a) Power associativity of a loop guarantees that xn is well-defined for any

element x in the loop and any positive integer n.

(b) The loop in Table 2.2 is not power associative since (2 · 2) · 2 = 5 · 2 = 4 6=

3 = 2 · 5 = 2 · (2 · 2).

Definition 2.1.17. A loop is diassociative if 〈x, y〉 is a group for any x, y ∈ L.

Remark 2.1.18. Diassociativity implies power associativity, but not the con-

verse. The table below gives a power associative loop which is not diassociative.

Table 2.3: Cayley table of a non-diassociative, power associative loop

· 1 2 3 4 5

1 1 2 3 4 5

2 2 1 4 5 3

3 3 5 1 2 4

4 4 3 5 1 2

5 5 4 2 3 1

The power associativity of this loop can be verified easily since x2 = 1 for all

x. The loop is not diassociative as (2 · 2) · 3 = 1 · 3 = 3 6= 5 = 2 · 4 = 2 · (2 · 3).
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Definition 2.1.19. The order of an element x in a power associative loop,

denoted by |x|, is the smallest positive integer n such that xn = 1. If such an

integer does not exist, then the order of x is defined to be infinity.

Definition 2.1.20. The exponent of a power associative loop L is the smallest

positive integer n such that xn = 1 ∀x ∈ L, if this number exists.

Definition 2.1.21. Let K be a subloop of a loop L. For a fixed x ∈ L, xK =

{xk | k ∈ K} is a subset of L. This is called the left coset of K determined

by x . The right coset of K is defined in a similar manner.

Definition 2.1.22. Let K be a subloop of a loop L. K is a normal subloop

of L (or K is normal in L), if xK = Kx, x(yK) = (xy)K and (Kx)y = K(xy)

for all x, y ∈ L. We denote this by K E L. As in the case of proper subloops,

K C L means that K is a proper normal subloop of L.

Definition 2.1.23. Let L be a loop in which every element has a two-sided

inverse. We define

zT (x) = x−1 · zx,

zL(x, y) = (yx)−1(y · xz),

zR(x, y) = (zx · y)(xy)−1.

I(L) = 〈T (x), L(x, y), R(x, y) | x, y ∈ L〉 is called the inner mapping group of

L. A subloop K is normal in L if Kθ = {kθ | k ∈ K} = K for all θ ∈ I(L).

Definition 2.1.24. Let K be a normal subloop of a loop L. Define the set of all

left cosets of K as L/K = {xK | x ∈ L} and a binary operation � on L/K as

xK � yK = (xy)K. Then L/K is a loop and is called the quotient loop of L

modulo K .

Definition 2.1.25. Let K be a normal subloop of a loop L.

(a) A quotient loop L/K is called a proper quotient loop if K is not trivial.
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(b) K is a minimal normal subloop of L if K is not trivial and for any

normal subloop H of L, H ⊂ K ⇒ H = {1}.

(c) K is a maximal normal subloop of L if K is a proper subloop of L and

for any normal subloop H of L, K ⊂ H ⇒ H = L.

Definition 2.1.26. Let K be a subloop of a finite power associative loop L and

π a set of primes.

(a) A positive integer n is a π-number if every prime divisor of n lies in π.

(b) L is a π-loop if the order of every element of L is a π-number.

(c) K is a Hall π-subloop of L ifK is a π-loop and |K| is the largest π-number

that divides |L|.

(d) K is a Sylow p-subloop of L if K is a Hall π-subloop of L and π = {p}.

Definition 2.1.27. The associator of three (fixed) elements x, y, z in a loop L is

the unique element (x, y, z) in L such that xy·z = (x·yz)(x, y, z). The associator

subloop of L, denoted by La, is the subloop generated by all associators (x, y, z)

in L. If X, Y and Z are subsets of L, we shall denote (X,Y, Z) = 〈(x, y, z) | x ∈

X, y ∈ Y, z ∈ Z〉.

Remark 2.1.28.

(a) A loop L is associative if and only if La = {1}. Generally, the more elements

that do not associate in a loop, the more nontrivial associators we would

expect to find. In such a case, we would expect La to become bigger and

the loop to be more difficult to handle. Therefore, Leong (1976) called La

the devil of loops.

(b) Some authors define associator subloop as

(i) the smallest normal subloop generated by all associators; or

(ii) the smallest normal subloop La such that L/La is associative.
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But for the Moufang case, the three definitions conincide.

Definition 2.1.29. The commutator of two (fixed) elements x, y in a loop L

is the unique element [x, y] in L such that xy = (yx)[x, y]. The commutator

subloop of L, denoted by Lc, is the subloop generated by all commutators [x, y]

in L.

Definition 2.1.30. The nucleus of a loop L, denoted by N(L) or simply N , is

the subloop consisting of all n ∈ L such that (n, x, y) = (x, n, y) = (x, y, n) = 1

for all x, y ∈ L. In other words, elements in N associate with every element in L.

Remark 2.1.31.

(a) Clearly, N itself is a group. A loop L is associative if and only if N(L) = L.

So, Leong (1976) called N the angel of loops.

(b) We can even give the definitions for the left nucleus, middle nucleus and

right nucleus of a loop L. The left nucleus of L, denoted by Nλ(L), is

the set consisting of all n ∈ L such that (n, x, y) = 1 ∀x, y ∈ L. The

middle nucleus and the right nucleus, Nµ(L) and Nρ(L) respectively, are

defined analogously. Subsequently, N is defined as the intersection of these

sets, i.e., N = Nλ ∩ Nµ ∩ Nρ. However, for Moufang loops (by Moufang’s

theorem), N = Nλ = Nµ = Nρ. Hence, in Moufang loops, we only consider

the nucleus N of L.

Definition 2.1.32. Let K be a subloop of a loop L. The centraliser of K in

L, denoted by CL(K), is the set consisting of all ` ∈ L such that `k = k` for all

k ∈ K.

Remark 2.1.33.

(a) CL(L) is called the commutant of L, and is usually written simply as

C(L).

(b) For a Moufang loop L, C(L) is also called the Moufang centre of L.
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Definition 2.1.34. The centre of a loop L, denoted by Z(L), is the intersection

of its nucleus and commutant, i.e., Z(L) = N(L) ∩ C(L). In other words, the

centre of L consists of elements that associate and commute with every element

in L.

Remark 2.1.35. For a group G, Z(G) = C(G) since N(G) = G.

Definition 2.1.36. (m,n) is defined as the greatest common divisor of the

integers m and n.

Definition 2.1.37. Let n ∈ Z+ and a, b ∈ Z. a is congruent modulo n to b,

denoted by a ≡ b (mod n), if n is a factor of a− b.

Definition 2.1.38. Let n ∈ Z+.

(a) If a ∈ Z, then [a] = {b ∈ Z | b ≡ a (mod n)} is called the congruence

class (modulo n) determined by a .

(b) Defined a set Zn = {[0], [1], . . . , [n − 1]} and a binary operation +n on Zn

as [a] +n [b] = [a+ b]. Then 〈Zn,+n〉 is an abelian group.

2.2 Known Results in Moufang Loops, Groups

and Number Theory

Lemma 2.2.1 (Moufang’s theorem). Let L be a Moufang loop. Then L is dias-

sociative. Moreover, if (x, y, z) = 1 for some x, y, z ∈ L, then 〈x, y, z〉 is a group

(Bruck, 1971, p. 117, Moufang’s theorem).

Remark 2.2.2. There is now a short proof of Moufang’s theorem due to Aleš

Drápal. It will appear in the Proceedings of the American Mathematical Society.

Lemma 2.2.3. Let L be a Moufang loop.

(a) Suppose x ∈ L and θ ∈ I(L). Then (xn)θ = (xθ)n for any integer n (Bruck,

1971, p. 117, Lemma 3.2; and p. 120, (4.1));
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(b) Suppose x, y, u, v ∈ L and θ ∈ I(L). Then (xy)θ · c = (xθ) · (yθ · c) where

c = [u−1, v−1] if θ = L(u, v), and c = u−3 if θ = T (u) (Bruck, 1971, p. 112,

Lemma 2.1; p. 113, Lemma 2.2; and p. 117, Lemma 3.2).

Lemma 2.2.4. All Moufang loops satisfy the following identities:

(a) R(x−1, y−1) = L(x, y);

(b) xL(z, y) = x(x, y, z)−1;

(c) (x, y, z) = (x, yz, z);

(d) (x, y, z) = (x, y, zy);

(e) (x, y, z) = (xy, z, y)−1;

(f) (x, y, z) = (x, y, zx)

(Bruck, 1971, p. 124, Lemma 5.4).

Lemma 2.2.5. Let L be a Moufang loop. Then L satisfies all or none of the

following identities:

(i) [(x, y, z), x] = 1;

(ii) (x, y, [y, z]) = 1;

(iii) (x, y, z)−1 = (x−1, y, z);

(iv) (x, y, z)−1 = (x−1, y−1, z−1);

(v) (x, y, z) = (x, zy, z);

(vi) (x, y, z) = (x, z, y−1);

(vii) (x, y, z) = (x, xy, z).

When these identities hold, the associator (x, y, z) lies in the centre of the subloop

generated by x, y, z; and the following identities hold for all integers n:

(x, y, z) = (y, z, x) = (y, x, z)−1,
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(xn, y, z) = (x, y, z)n,

[xy, z] = [x, z][[x, z], y][y, z](x, y, z)3

(Bruck, 1971, p. 125, Lemma 5.5).

Lemma 2.2.6. Let L be a Moufang loop. Then (xn, y, z) = (x, yn, z) = (x, y, zn)

= (x, y, z) for any x, y, z ∈ L and n ∈ N (Leong & Rajah, 1995, p. 267, Lemma

1).

Lemma 2.2.7. Let L be a Moufang loop and x, y, z ∈ L. If La ⊆ N , then

(x, y, z) = (z, y, x)−1 = (y, z, x) (Rajah, 2001, p. 71, Lemma 2).

Lemma 2.2.8. Let L be a Moufang loop and M an associative subloop of L. Sup-

pose La, Lc ⊆M , u, v ∈M and v ∈ CL(La). Then (uv, `1, `2) = (v, `1, `2)(u, `1, `2)

for each `i ∈ L (Rajah, 2001, p. 71, Lemma 4).

Lemma 2.2.9. Let L be a Moufang loop.

(a) La E L (Leong, 1976, p. 33, Corollary);

(b) N E L (Bruck, 1971, p. 114, Theorem 2.1);

(c) La ⊆ CL(N) (Leong, 1976, p. 34, Corollary).

Lemma 2.2.10 (Lagrange’s theorem). Let L be a finite Moufang loop and K a

subloop of L. Then |K| divides |L| (Grishkov & Zavarnitsine, 2005).

Lemma 2.2.11. Let L be a finite Moufang loop. Then for any x ∈ L, |x| divides

|L| (Bruck, 1971, p. 92, Theorem 1.2).

Lemma 2.2.12. Let L be a finite Moufang loop. Suppose K is a subloop of

CL(La) and (|K|, |La|) = 1. Then K ⊆ N (Leong & Rajah, 1997, p. 480, Lemma

5).

Lemma 2.2.13. Let L be a Moufang loop of odd order. Suppose H E M E L

and H is a Hall subloop of M . Then H E L (Leong & Rajah, 1996a, p. 879,

Lemma 1).
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Lemma 2.2.14. Let L be a Moufang loop of odd order.

(a) L is solvable (Glauberman, 1968, p. 413, Theorem 16);

(b) L contains a Hall π-subloop where π is any set of primes (Glauberman,

1968, p. 409, Theorem 12);

(c) K is a minimal normal subloop of L ⇒ K is an elementary abelian group

and (K,K,L) = 〈(k1, k2, `) | ki ∈ K, ` ∈ L〉 = {1} (Glauberman, 1968, p.

402, Theorem 7);

(d) K E L, (K,K,L) = 1 and (|K|, |L/K|) = 1 ⇒ K ⊆ N (Glauberman,

1968, p. 405, Theorem 10).

Lemma 2.2.15. Let L be a Moufang loop of odd order and K a normal subloop of

L. Suppose K ⊆ N . Then CL(K) E L and |L/CL(K)| divides |Aut(K)| (Leong,

1976, p. 33, Theorem 3(a)).

Lemma 2.2.16. Let L be a Moufang loop of odd order, K a minimal normal

subloop of L and M an associative subloop of L such that La ⊆ K ⊆ M and

Lc ⊆M . Then the following identities hold for all k ∈ K, w ∈M and ` ∈ L:

(a) (k, w, `) = (`, k, w−1)−1;

(b) ((k, w, `)[k, w], w, `) = 1

(Leong & Rajah, 1996b, p. 565, Lemma 6).

Lemma 2.2.17. Let L be a Moufang loop of odd order and M a maximal normal

subloop of L. Then La and Lc lie in M ; and L = M〈x〉 for any x ∈ L −M

(Leong & Rajah, 1997, p. 478, Lemma 1(b)).

Lemma 2.2.18. Let L be a finite Moufang loop.

(a) Suppose |L| = pαm where p is a prime, (p,m) = (p − 1, pαm) = 1 and L

has an element of order pα. Then there exists a subloop P of order pα and

a normal subloop M of order m in L such that L = PM .
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(b) Suppose |L| = p2m where p is the smallest prime dividing |L| and (p,m) =

1. Then there exists a subloop P of order p2 and a normal subloop M of

order m in L such that L = PM .

(Leong & Rajah, 1998, p. 39, Theorem 1; and p. 40, Theorem 2)

Lemma 2.2.19. Let L be a Moufang loop of odd order pα1
1 p

α2
2 · · · pαn

n where

p1, p2, . . . , pn are primes, p1 < p2 < · · · < pn and 1 ≤ αn ≤ 2. Suppose all

proper subloops and proper quotient loops of L are groups, and L contains a nor-

mal Sylow pn-subloop. Then L is a group (Leong & Rajah, 1996a, p. 879, Lemma

3).

Lemma 2.2.20. Let L be a Moufang loop of order p, p2 or p3 where p is a prime.

Then L is a group (Chein, 1974, p. 34, Proposition 1; and p. 35, Corollary 4).

Lemma 2.2.21. Let L be a Moufang loop of order p4 where p > 3 is a prime.

Then L is a group (Leong, 1974, p. 33, Theorem).

Lemma 2.2.22. Let L be a Moufang loop of odd order pαq1 · · · qn, where α ≤ 4

and p, q1, . . . , qn are distinct primes with 3 < p < q1 < · · · < qn. Then L is a

group (Leong & Rajah, 1996b, p. 567, Theorem).

Lemma 2.2.23. Let L be a Moufang loop of order pα1
1 p

α2
2 · · · pαn

n where p1, p2, . . . ,

pn are distinct odd primes and αi ≤ 2 for all i. Then L is a group (Leong &

Rajah, 1996a, p. 882, Theorem).

Lemma 2.2.24. For distinct odd primes p and q, there exists a nonassociative

Moufang loop of order pq3 if and only if q ≡ 1 (mod p) (Rajah, 2001, p. 78,

Theorem 1; and p. 86, Theorem 2).

Lemma 2.2.25. Let H 6= {1} be a normal subgroup of a finite p-group G. Then

H ∩ Z(G) 6= {1} (Humphreys, 1996, p. 155, Proposition 18.3; and p. 158,

Proposition 18.10).
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Lemma 2.2.26. Suppose a, b and m are integers such that (a,m) = 1. Then

there exists an integer x which satisfies the congruence ax ≡ b (mod m) (Niven

& Zuckerman, 1966, p. 25, Corollary 2.9).

Lemma 2.2.27. If q is a prime, then the congruence µn ≡ 1 (mod q) has (n, q−

1) solutions for µ (Niven & Zuckerman, 1966, p. 54, Theorem 2.27).
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CHAPTER 3

MINIMALLY NONASSOCIATIVE
MOUFANG LOOPS

3.1 Motivation

The concept of “minimally nonassociative Moufang loops” was first intro-

duced by Chein and Goodaire (2001). They were defined as Moufang loops that

are not associative but every proper subloop is associative. Through our read-

ing of various results in relevant papers (Leong & Rajah, 1995, 1996b, 1997),

we have come to realise that if the additional condition “every proper quotient

loop is associative” is imposed, many of those results could have been used to

solve problems with Moufang loops in other cases. However, in most of these

papers, the scope of the results have been somewhat narrowed to include only

those Moufang loops that were being studied in that paper. By introducing the

alternative definition of minimally nonassociative Moufang loops in this chapter,

we hope to produce results that will be applicable to a bigger range of Moufang

loops.

3.2 Properties of Minimally Nonassociative

Moufang Loops

Definition 3.2.1. A Moufang loop L is minimally nonassociative if L is

nonassociative but all proper subloops and proper quotient loops of L are as-

sociative. (We shall also call this as the minimally nonassociative property of

L.)

Lemma 3.2.2. Let L be a minimally nonassociative Moufang loop.

(a) La E K where K is any nontrivial normal subloop of L;
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(b) If |L| is odd, then La is the unique minimal normal subloop of L, and is an

elementary abelian group. Moreover, (La, La, L) = {1}.

Proof. Since K is nontrivial, L/K is a proper quotient loop of L. This implies

that L/K must be a group by the minimally nonassociative property of L. Then

xKyK ·zK = xK ·yKzK for each x, y, z ∈ L. So (xy ·z)K = (x ·yz)K as K E L.

Thus (x · yz)−1(xy · z) = (x, y, z) ∈ K. Hence La ⊆ K. Since La E L by Lemma

2.2.9(a), La is also normal in K. This proves (a).

By Lemma 2.2.14(a), L is solvable. So there exists a minimal normal subloop

K in L. By the definition of minimal normal subloop, K must be nontrivial.

So La E K by (a). Since L is not a group, La 6= {1}. So La = K. Hence, by

Lemma 2.2.14(c), La is an elementary abelian group and (La, La, L) = {1}. This

completes the proof of this lemma.

Lemma 3.2.3. Let L be a minimally nonassociative Moufang loop of odd order.

Then (k1k2, `1, `2) = (k1, `1, `2)(k2, `1, `2) for each ki ∈ La and `i ∈ L.

Proof. Let c = [`−1
2 , `−1

1 ]. By Lemma 2.2.3(b), (k1k2)L(`2, `1) · c = k1L(`2, `1)

[k2L(`2, `1) · c]. Hence

(k1k2)(k1k2, `1, `2)
−1 · c

= k1(k1, `1, `2)
−1[k2(k2, `1, `2)

−1 · c] by Lemma 2.2.4(b)

= k1(k1, `1, `2)
−1k2(k2, `1, `2)

−1 · c as (La, La, L) = {1} by Lemma 3.2.2(b)

= (k1k2)(k1, `1, `2)
−1(k2, `1, `2)

−1 · c as La is abelian by Lemma 3.2.2(b).

Thus (k1k2, `1, `2) = (k1, `1, `2)(k2, `1, `2) by cancellation.

Theorem 3.2.4. Let L be a minimally nonassociative Moufang loop of odd order

and K a subloop of L. Suppose K ⊆ N . Then:

(a) L 6= 〈x, y〉K for all x, y ∈ L;

(b) K is not a Hall subloop of L.
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Proof. Suppose L = 〈x, y〉K for some x, y ∈ L. Then

La = (L,L, L)

= (〈x, y〉K, 〈x, y〉K, 〈x, y〉K)

= (〈x, y〉, 〈x, y〉, 〈x, y〉) by Lemma 2.2.6

= {1} by diassociativity.

Hence, L is a group which is a contradiction. Thus (a) is proved.

Suppose K is a Hall subloop of L. By Lemma 2.2.14(b), there exists a Hall

subloop H of order |L/K| in L. Now consider 〈H,K〉, a subloop generated by H

andK. By Lagrange’s theorem, |H| and |K| divide |〈H,K〉|. Since (|H|, |K|) = 1,

|H||K| = |L| divides |〈H,K〉|. Thus L = 〈H,K〉.

Then L = 〈H,K〉 = 〈H,N〉 = HN as N E L by Lemma 2.2.9(b). Now

La = (L,L, L)

= (HN,HN,HN)

= (H,H,H) by Lemma 2.2.6

= {1} since H is a proper subloop of L.

Similar to the previous case, we have a contradiction. This completes the

proof of this theorem.

Theorem 3.2.5. Let L be a minimally nonassociative Moufang loop of order

pα1
1 p

α2
2 · · · pαn

n where p1, p2, . . . , pn are distinct odd primes and α1, α2, . . . , αn ∈

Z+. Then

(a) there exists some i such that αi ≥ 2 and |La| = pβi

i for some βi satisfying

0 < βi < αi;

(b) pαi
i - |N | for all i.

Proof. By Lemma 3.2.2(b), La is elementary abelian, i.e., |La| = pβi

i , 0 ≤ βi ≤ αi
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for some i.

Case 1. αi = 1.

|La| = pβi

i , 0 ≤ βi ≤ 1 implies βi = 0 or 1. Suppose βi = 0, then La = {1}

which implies L is a group. This is a contradiction. Suppose βi = 1, then La is a

Sylow subloop of L and (|La|, |L/La|) = 1. By Lemma 2.2.14(d), La ⊆ N . This

contradicts Theorem 3.2.4(b).

Case 2. αi ≥ 2.

Since L is not a group, La 6= {1}, which implies |La| 6= 1. Thus βi 6= 0.

Suppose |La| = pαi
i , then La is a Sylow subloop of L and we get a contradiction

similar to Case 1. Hence βi 6= αi. This proves (a).

Suppose pαi
i divides |N | for some i. Since N is a group, by Sylow theorem for

groups, there exists Pi, a subloop of order pαi
i in N . But Pi is also a Hall subloop

of L. This contradicts Theorem 3.2.4(b). Hence pαi
i - |N | for all i.

Theorem 3.2.6. Let L be a minimally nonassociative Moufang loop of finite

order. Then |L|/|N | 6= 1, p or pq where p and q are primes.

Proof. Suppose |L|/|N | = 1. Then L = N which is a group. This is a contradic-

tion as L is nonassociative.

Suppose |L|/|N | = p. Take any x ∈ L−N . Then |N | < |〈x〉N | ≤ |L|. Hence

L = 〈x〉N , contrary to Theorem 3.2.4(a).

Now suppose |L|/|N | = pq. Take any x ∈ L−N . Then |N | < |〈x〉N | ≤ |L|.

As in the previous case, we are through if L = 〈x〉N . Now if L 6= 〈x〉N , take

y ∈ L − 〈x〉N . Then |〈x〉N | < |〈x, y〉N | ≤ |L|. Thus L = 〈x, y〉N , contrary to

Theorem 3.2.4(a).

Theorem 3.2.7. Let L be a minimally nonassociative Moufang loop of odd order

and M a maximal normal subloop of L. Then, for any w ∈ M and ` ∈ L, there

exists some k0 ∈ La − {1} such that (k0, w, `) = 1.

Proof. By Lemma 3.2.2(b), La is the minimal normal subloop of L. By Lemma

2.2.17, La and Lc lie in M . Since M is a proper subloop of L, M is a group by
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minimally nonassociative property of L. Take k ∈ La − {1}, w ∈ M and ` ∈ L.

By Lemma 2.2.16(b), ((k, w, `)[k, w], w, `) = 1 and ((k, w, `−1)[k, w], w, `−1) =

1. So by Moufang’s theorem (Lemma 2.2.1), ((k, w, `−1)[k, w], w, `) = 1 also.

Since La E L, [k, w] = (wk)−1(kw) = k−1w−1kw = k−1 · kT (w) ∈ La. So

(k, w, `)[k, w], (k, w, `−1)[k, w] ∈ La.

Suppose (k, w, `)[k, w] 6= 1 or (k, w, `−1)[k, w] 6= 1. Then that is the k0

we are looking for. So we can assume that (k, w, `)[k, w] = (k, w, `−1)[k, w] =

1. By cancellation, we have (k, w, `) = (k, w, `−1). Next, by Lemma 2.2.16(a),

(k, w, `) = (`, k, w−1)−1 and (k, w, `−1) = (`−1, k, w−1)−1. Let

k1 = (k, w, `) = (`, k, w−1)−1 = (`−1, k, w−1)−1. (3.1)

Now

`−1L(w−1, k) = [`L(w−1, k)]−1 by Lemma 2.2.3(a)

⇒ `−1(`−1, k, w−1)−1 = [`(`, k, w−1)−1]−1 by Lemma 2.2.4(b)

⇒ `−1k1 = (`k1)
−1 by (3.1)

⇒ `−1k1` = k−1
1 (3.2)

⇒ `−2k1`
2 = `−1[`−1k1`]` by diassociativity

= `−1k−1
1 ` by (3.2)

= [`−1k1`]
−1

= k1 by (3.2)

⇒ k1`
2k−1

1 = `2.

By Lemma 2.2.11, |`| divides |L|. So |`| is odd. Hence, (|`| + 1)/2 is an

integer. Thus, we can write (k1`
2k−1

1 )(|`|+1)/2 = (`2)(|`|+1)/2. Then k1`k
−1
1 = `, i.e.,

`−1k1` = k1. Thus, by comparing this with (3.2), we have k1 = k−1
1 which implies

that k2
1 = 1. By Lemma 2.2.11, |k1| is odd. So k1 = (k, w, `) = 1.

Theorem 3.2.8. Let L be a minimally nonassociative Moufang loop of odd order
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and M a maximal normal subloop of L. Suppose (k, w, `) = 1 for all k ∈ La, w ∈

M and ` ∈ L. Then La ⊆ N .

Proof. Take k ∈ La, x ∈ L −M and ` ∈ L. By Lemma 2.2.17, we can write

L = M〈x〉. So ` = wxα for some w ∈M and α ∈ Z+. Now

(k, x, `) = (k, x, wxα)

= (k, x, w) by Lemma 2.2.4(d) repeatedly

= 1 by Moufang’s theorem as (k, w, x) = 1.

Since (La,M, L) = {1} and (La, L−M,L) = {1}, it follows that (La, L, L) =

{1}. Thus La ⊆ N by the definition of N .

Corollary 3.2.9. Let L be a minimally nonassociative Moufang loop of odd order.

Suppose La is cyclic. Then La ⊆ N .

Proof. By Lemma 2.2.14(a), there exists a maximal normal subloopM in L. Take

w ∈M and ` ∈ L. By Theorem 3.2.7, there exists some k0 ∈ La − {1} such that

(k0, w, `) = 1. Since La is cyclic, La = 〈k0〉. Thus, for every k ∈ La,

(k, w, `) = (kα0 , w, `) for some α ∈ Z+

= 1 by Moufang’s theorem.

Hence La ⊆ N by Theorem 3.2.8.

Corollary 3.2.10. Let L be a minimally nonassociative Moufang loop of odd

order and M a maximal normal subloop of L. Suppose N is trivial. Then L =

〈k, w, x〉 for some k ∈ La, w ∈M − La and x ∈ L−M .

Proof. Since L is nonassociative, La 6= {1}. Hence, La 6⊆ N . By Theorem 3.2.8,

there exist some k ∈ La, w ∈ M and x ∈ L such that (k, w, x) 6= 1. Suppose

w ∈ La. Then by Lemma 3.2.2(b), (k, w, x) = 1. This is a contradiction. Hence,
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