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KESAN UBATAN ANTIHIPERTENSI DAN SUPLEMEN ANTIOKSIDAN KE 

ATAS PEMBANGUNAN DAN PERKEMBANGAN HIPERTENSI, TEKANAN 

OKSIDATIF SERTA KEROSAKAN GINJAL DALAM  

TIKUS HIPERTENSI SECARA SPONTAN 

 

ABSTRAK 

 

Tekanan oksidatif telah dikaitkan dengan pembangunan dan perkembangan hipertensi 

dan kerosakan organ termasuk ginjal. Walau bagaimanapun peranan yang tepat dan 

mekanisme yang terlibat tidak jelas kerana kajian yang dilakukan dalam aspek ini 

adalah terhad terutamanya yang berkaitan dengan ginjal.  Kajian ini telah dijalankan 

untuk mengkaji kesan ubatan antihipertensi tertentu yang diketahui mempunyai ciri 

antioksidan serta suplemen antioksidan ke atas tekanan oksidatif ginjal semasa 

pembangunan dan perkembangan hipertensi dan kerosakan ginjal yang terjadi. Kajian 

telah dilakukan dengan menggunakan tikus hipertensi secara spontan (SHR) serta tikus 

Wistar-Kyoto (WKY) dan SHR yang diaruh hipertensi disebabkan kekurangan NO 

melalui pemberian N-nitro-L-arginin metil ester (L-NAME), berbanding dengan tikus 

normotensif WKY. Kajian fasa pertama terdiri daripada kajian perubahan mengikut 

masa dalam SBP, parameter morfometrik serta tekanan oksidatif ginjal dalam SHR 

dari umur 4 minggu sehingga 64 minggu. Ini diikuti dengan kajian dengan  tikus 

WKY, SHR, WKY+L-NAME dan SHR+L-NAME yang melibatkan pemerhatian 

perubahan dalam SBP, parameter morfometrik serta tekanan oksidatif ginjal pada masa 

usia 4 minggu usia (pra-hipertensi), usia 16 minggu (hipertensi yang nyata) dan usia 

28 minggu (berlaku kerosakan ginjal). Kajian fasa kedua dan ketiga adalah kajian 

intervensi yang melihat kesan ubat antihipertensi dan suplemen antioksidan ke atas 

SBP, parameter morfometrik serta tekanan oksidatif ginjal semasa pembangunan dan 
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perkembangan hipertensi dan kerosakan ginjal. Kajian fasa pertama menunjukkan 

bahawa SHR menjadi hipertensi pada usia 8 minggu dengan SBP meningkat secara 

beransur-ansur sehingga usia 64 minggu. SHR mengalami kerosakan ginjal dan 

tekanan oksidatif ginjal dari umur 24 minggu, yang menjadi semakin teruk secara 

beransur-ansur sehingga umur 64 minggu sejajar dengan peningkatan SBP. Kajian 

korelasi menunjukkan terdapat hubungan yang kuat antara tekanan oksidatif ginjal 

dengan SBP dan kerosakan ginjal. Keputusan juga menunjukkan bahawa tekanan 

oksidatif berlaku selepas hipertensi terjadi dan bukan sebaliknya. Walabagaimanapun, 

tekanan oksidatif nampaknya memainkan peranan penting dalam mengekalkan 

hipertensi serta  pembangunan kerosakan ginjal. Aras NOx ginjal di SHR menurun 

mulai umur 32 minggu. Ini mencadangkan  bahawa penurunan NO memainkan 

peranan yang penting dalam mengekalkan hipertensi. Pengurangan aras NO ginjal 

yang berlaku bersama dengan kemerosotan hipertensi dan juga selepas tekanan 

oksidatif dan kerosakan ginjal telah bermula dari minggu 24, menunjukkan bahawa 

penurunan aras NO berlaku dalam kerosakan ginjal kronik di SHR. Semua hasil ini 

menunjukkan bahawa dalam SHR, peningkatan tekanan oksidatif dan pengurangan 

NO mengiringi hipertensi dan menyumbang kepada perkembangan hipertesni serta 

kerosakan ginjal yang terjadi. Kajian ke atas WKY+L-NAME dan SHR+L-NAME 

menunjukkan kerosakan fungsi ginjal serta histopatologi pada usia 28 minggu. Ini 

mengesahkan kesesuaian reka bentuk kajian yang memileh peringkat masa kajian 

sebagai 4 minggu, 16 minggu dan 28 minggu. Keputusan kajian fasa ini menunjukkan 

bahawa pada usia 28 minggu, SHR + L-NAME tikus mempunyai SBP, kerosakan 

ginjal, tekanan oksidatif ginjal dan penurunan aras NOx yang paling tinggi. Ia diikuti 

oleh SHR dan WKY + L-NAME. Ini menunjukkan bahawa terdapat hubungan yang 

kuat antara tekanan oksidatif ginjal dan penurunan aras NO dengan hipertensi dan  
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kerosakan ginjal. Kajian fasa kedua mengesahkan kesan hipotensif ubat antihipertensif  

clonidine, enalapril dan amlodipine. Enalapril mempunyai kesan hipotensif yang 

paling tinggi kerana ia dapat mengurangkan SBP di SHR ke tahap normal manakala 

clonidine dan amlodipine tidak dapat berbuat demikian. Ketiga-tiga ubat menunjukkan 

keupayaan antioksidan kerana dapat mengurangkan tekanan oksidatif ginjal. Enalapril 

kelihatan mempunyai kapasiti antioksidan yang paling tinggi manakala amlodipine 

mempunyai kapasiti terendah. Ketiga-tiga ubat menunjukkan sifat melindung ginjal 

tetapi dalam darjah yang berbeza, dengan enalapril mempunyai kesan tertinggi dan 

amlodipine kesan terendah. Enalapril juga dapat memulihkan dengan sepenuhnya aras 

NOx ginjal dalam ketiga-tiga kumpulan tikus hipertensi. Clonidine hanya mampu 

untuk meningkatkan dengan ketara tahap NOx dalam SHR+C dan SHR+C+ L-NAME 

manakala amlodipine tidak dapat meningkatkan aras NOx ginjal dalam mana-mana 

kumpulan tikus hipertensi. Keputusan ini menunjukkan bahawa mekanisme fisiologi 

yang terlibat dalam sifat hipotensif dan sifat melindung ginjal enalapril dan clonidine 

mungkin melibatkan metabolisme NO. Keputusan dalam kajian fasa ini menunjukkan 

bahawa sifat melindung ginjal dan hipotensif pada ubatan antihipertensif adalah 

berkait dengan kapasiti antioksidan ubatan itu. Enalapril menunjukkan sifat hipotensif, 

sifat melindung ginjal serta kapasiti antioksida yang paling tinggi di antara ketiga-tiga 

ubatan ini. Kajian fasa ketiga menunjukkan bahawa suplemen antioksidan NAC, ALA 

dan ANLE mempunyai kesan hipotensif tetapi tidak dapat mengurangkan SBP ke aras 

bawah 140 mm Hg sepanjang kajian ini dalam kesemua kumpulan haiwan hipertensi. 

NAC dan ALA menunjukkan kesan hipotensif yang sederhana manakala ANLE hanya 

menunjukkan sedikit kesan hipotensif. Ketiga-tiga suplemen antioksidan menunjukkan 

sifat melindung ginjal, di mana NAC dan ALA menunjukkan sifat yang sederhana 

manakala ANLE hanya mempunyai sedikit sifat ini. Ketiga-tiga suplemen antioksidan  



xxxiii 

 

juga dapat mengurangkan tekanan oksidatif ginjal di mana NAC kelihatan mempunyai 

kapasiti antioksidan yang lebih tinggi sedikit daripada ALA manakala ANLE 

mempunyai kapasiti antioksidan yang paling rendah. NAC juga mampu meningkatkan 

dengan ketara aras NOx ginjal yang terkurang dalam WKY+NAC+L-NAME dan tikus 

SHR+NAC+L-NAME, tetapi kedua-dua ALA dan ANLE tidak dapat berbuat 

demikian. Keputusan ini menunjukkan bahawa mekanisme fisiologi yang terlibat 

dalam sifat hipotensif dan sifat melindung ginjal oleh  NAC mungkin melibatkan 

metabolisme NO. Secara keseluruhan keputusan yang diperolehi menunjukkan bahawa 

NAC dan ALA mempunyai sifat hipotensif, sifat melindung ginjal dan antioksidan 

yang sederhana manakala ANLE hanya mempunyai sedikit sifat-sifat ini. 

Kesimpulannya, kajian ini menunjukkan bahawa kedua-dua ubat antihipertensi dan 

suplemen antioksidan yang dikaji, mempunyai sifat hipotensif, melindung ginjal serta 

sifat antioksidan di mana dapat mengurangkan tekanan oksidatif ginjal. Walau 

bagaimanapun, ubat-ubatan antihipertensi menunjukkan tahap yang lebih tinggi dalam 

sifat-sifat ini berbanding dengan suplemen antioksidan. 
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THE EFFECTS OF ANTIHYPERTENSIVE DRUGS AND ANTIOXIDANT 

SUPPLEMENT ON THE DEVELOPMENT AND PROGRESSION OF 

HYPERTENSION, RENAL OXIDATIVE STRESS AND DAMAGE IN 

SPONTANEOUSLY HYPERTENSIVE RATS 

 

 

ABSTRACT 

 

 

Oxidative stress has been implicated in the development and progression of 

hypertension and subsequent organ damage including the kidneys. However the effect 

of antihypertensive drugs or antioxidant supplementation on renal oxidative stress 

during the development and progression of hypertension and the subsequent renal 

damage has not been well studied. The present study was undertaken to look into the 

effect of certain antihypertensive drugs with known antioxidant properties as well as 

antioxidants on renal oxidative stress during the development and progression of 

hypertension and the subsequent renal damage. The study was performed using 

spontaneously hypertensive rats (SHR) as well as N-nitro-L-arginine methyl ester (L-

NAME) induced nitric oxide (NO) deficient hypertensive Wistar-Kyoto (WKY) and 

SHR rats in comparison with normotensive WKY rats. The first phase study consisted 

of a  time course study on changes in systolic blood pressure (SBP), body 

morphometric parameters and renal oxidative stress status in SHR from the age of 4 

weeks until 64 weeks, followed by the study on L-NAME induced NO deficient 

hypertensive WKY and SHR rats involving observation of these parameters at the time 

points of 4 weeks of age (prehypertension), 16 weeks of age ( established hypertension) 

and 28 weeks of age (occurrence of renal damage). The second and third phase studies 

were intervention based studies which looked into the effect of antihypertensive drugs 
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and antioxidants on these parameters during the development and progression of 

hypertension and the subsequent renal damage. The first phase studies showed that  

SHR became hypertensive by the age of 8 weeks, with the SBP increasing gradually 

until 64 weeks of age. SHR developed renal damage and renal oxidative stress from 

the age of 24 weeks, which worsened gradually until the age of 64 weeks in line with 

increasing hypertension. Correlation studies suggest a strong relationship between 

renal oxidative stress with SBP and renal damage. The results also indicate that 

oxidative stress is a consequence of hypertension and not a cause of it, however it 

appears to play a prominent role in the maintenance of hypertension and development 

of renal damage. Renal NOx  levels in the SHR decreased from the age of 32 weeks, 

which occurred together with worsening hypertension and also after oxidative stress 

and renal damage had commenced from week 24, indicating that the decrease in NO 

levels occurs as the chronic renal damage in SHR progresses. This suggests that in the 

SHR,  increased renal oxidative stress and reduced NO bioavailability accompanies 

hypertension and contributes to its maintenance and progressive damage of the 

kidneys. Studies on the L-NAME induced hypertensive WKY and SHR rats showed 

that at 28 weeks of age, SHR+L-NAME rats had the highest SBP, renal damage, renal 

oxidative stress and reduced NOx levels, followed by SHR and WKY+L-NAME rats. 

This suggests a strong relationship between renal oxidative stress and reduced NO 

bioavailability with hypertension and renal damage. The second phase study confirmed 

the hypotensive effect of clonidine, enalapril and amlodipine. Enalapril had the 

greatest hypotensive effect as it was able to reduce SBP in SHR to normotensive levels 

while clonidine and amlodipine were not able to. All three drugs showed antioxidant 

capabilities as they were able to reduce renal oxidative stress. Enalapril appeared to 

have the highest antioxidant capacity with amlodipine having the least. All three drugs 
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showed renoprotective properties with enalapril having the highest renoprotective 

effect and amlodipine having the least effect. Enalapril was able to fully restore the 

 reduced renal NOx levels in all three hypertensive groups. Clonidine was only able to 

significantly increase NOx levels in SHR+C and SHR+C+L-NAME rats while 

amlodipine was not able to increase renal NOx levels in any of the hypertensive 

animal groups. These results suggest that the physiological mechanisms involved in 

the hypotensive and renoprotective properties of enalapril and clonidine might involve 

NO metabolism. Results from this phase of study suggest that the renoprotective and 

hypotensive properties of these antihypertensive drugs are associated with its 

antioxidant capacity, with enalapril showing the greatest hypotensive and 

renoprotective property as well as antioxidant capacity. The third phase study showed 

that the antioxidant supplements N-acetylcysteine (NAC), alpha-lipoic acid (ALA) and 

aqueous neem leaves extract (ANLE) had hypotensive effect but were unable to reduce 

SBP to levels below 140 mm Hg in any of the hypertensive animal groups. NAC and 

ALA showed moderate hypotensive effect while ANLE only showed slight 

hypotensive effect. All three supplements showed significant renoprotective property, 

whereby NAC and ALA showed moderate renoprotective property while ANLE only 

had slight renoprotective property.  All three supplements were able to reduce renal 

oxidative stress whereby NAC appeared to have slightly higher effect than ALA with 

ANLE having the lowest effect. NAC was also able to significantly increase the 

reduced renal NOx levels in WKY+NAC+L-NAME and SHR+NAC+L-NAME rats, 

while both ALA and ANLE did not increase the depressed NOx levels in any of the 

hypertensive rat groups. This result suggests that the physiological mechanisms 

involved in the hypotensive and renoprotective properties of NAC might involve NO 

metabolism. Overall the results obtained suggest that NAC and ALA have moderate  
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hypotensive, renoprotective and antioxidant properties while ANLE has only slight 

degree of these properties. In conclusion, this study showed that both the  

antihypertensive drugs and the antioxidant supplements that were investigated , had 

hypotensive, renoprotective as well as antioxidant properties. However the 

antihypertensive drugs showed a much higher degree of these properties compared to 

the antioxidant supplements. 
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 CHAPTER  1 

  

GENERAL  INTRODUCTION 

 

1.1  BACKGROUND OF THE STUDY 

       The cardiovascular system of the body plays a crucial role in health as it  sustains 

the metabolic demands of all the organs through the pumping action of the heart and 

the vascular system for generating and maintaining an adequate blood supply to all 

the tissues. As such, disorders of the cardiovascular system represent a major health 

concern as it leads to further health problems. Among the cardiovascular disorders, 

hypertension, a chronic health condition in which systemic arterial pressure is 

persistently elevated, has emerged as a global public health problem due to its high 

prevalence which in 2014 was about 22 % of the adult population aged 18 years and 

above (WHO, 2015). Its prevalence also rises with age (Staessen et al., 2003; Frans et 

al.,2008; Amal et al., 2011) whereby worldwide its prevalence for adults aged 25 

years and above, was 40 % in 2008 ( WHO, 2013). At present, more than a billion 

adults in the world have hypertension and this figure is predicted to increase 50-60 % 

to about 1.56 billion by 2025 with greater number in the developing countries 

(Kearney et al., 2005; WHO, 2015). In Malaysia, its prevalence is even higher at 

about 32.7% whereby approximately 5.8 million adults above the age of 18 have 

hypertension whereas among adults aged 30 years and above, the prevalence is 

43.5 % (Ministry of Health, 2011). 

               Hypertension if not adequately controlled can lead to damage of various 

organs resulting in serious health problems such as stroke, myocardial infarction, 

cardiac failure, dementia, renal failure and blindness, making it a significant 

contributor to global morbidity and mortality. In 2010, hypertension  was estimated to 
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have caused 9.4 million deaths, making it one of the leading physiological risk factors 

to which 13 % of global deaths are attributed. (Lawes et al., 2006; Lim et al., 2012 ). 

The Global Burden of Disease Study (GBD), which quantifies the burden of disease 

in disability-adjusted life years (DALYs), a time-based measure that combines years 

of life lost due to morbidity and premature mortality, has ranked hypertension as the 

leading single risk factor for GDB in 2010. Hypertension was found to contribute to 

about 7% of disease burden worldwide  as measured in DALYs,  causing it to have a 

negative impact on the quality of life. Approximately two-thirds of this attributable 

disease burden occurred in the developing countries, mostly in the 45-69 years old age 

group (Bromfield and Muntner, 2013; Lim et al., 2012; WHO, 2014).  

              The economic burden of hypertension is also enormous as it extends far 

beyond that related to its direct treatment alone. It is estimated that over a ten year 

period, hypertension may cost nearly US $1 trillion in global health direct costs 

(Gaziano et al.,2009). In Malaysia, the Ministry of Health spent about RM380.9 

million on antihypertensive medication alone in 2011. Studies in Malaysia have 

shown that the direct cost of treating hypertension increased as hypertension 

worsened and the cost of treating hypertension is much higher depending on whether 

one or more co-morbidities like diabetes and hyperlipidemia exist together with 

hypertension (Alefan et al.,2009; Azimatun et al., 2014). As such, the actual cost of 

treating hypertension is greatly increased by the cost of treating complications of 

hypertension like heart failure, myocardiac infarction, stroke and renal disease (MOH, 

2011). The indirect costs of hypertension include the loss of productivity due to 

absenteeism, illness and death. It is estimated that globally the indirect costs amount 

to about US $3.6 trillion (Gaziano et al.,2009). It is obvious then that hypertension is 

a costly burden that requires our utmost attention. 
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            Hypertension is generally classified as either primary, which may develop as a 

result of environmental and  or genetic causes, or secondary, which has multiple 

etiologies, including renal, vascular and endocrine causes. Primary or essential 

hypertension accounts for about 95 % of all cases of hypertension (Beevers et al., 

2001). However the exact cause(s) or mechanisms involved in its pathogenesis have 

not been elucidated (Carretero and Oparil, 2000). While various pathophysiologic 

factors  have been implicated in the genesis of essential hypertension, the kidney, 

through intrinsic mechanisms, is strongly believed to play a key role, giving rise to the 

phrase ‘hypertension follows the kidney’ (Oparil et al., 2003; Guyton, 1991; Crowley 

and Coffman, 2014). This aspect of ‘hypertension follows the kidney’ has been 

supported by transplantation studies (Coffman et al., 1989; Rettig, 1993). At the same 

time, the kidney is also one of the main targets of organ damage when hypertension is 

not controlled as it leads to chronic kidney disease and eventually end-stage renal 

disease (ESRD). Hypertension is believed to account for approximately 30 % of cases 

of ESRD (Glassock, 2004; Jamerson and Townsend, 2011). As such, while 

hypertension is a multiorgan disease, the kidneys are believed to play a central role in 

the development of hypertension and at the same time a target of hypertension-

induced damage (Touyz, 2012). All this points to the importance of research in the 

kidneys itself when investigating the mechanisms involved in the pathogenesis and 

progression of hypertension as well as kidney damage due to hypertension. 

      One of the mechanisms implicated in the pathogenesis and progression of 

hypertension including organ damage, is free radical mediated oxidative damage 

(Touyz, 2000; Wilcox, 2002). Free radicals and their metabolites, reactive oxygen 

species (ROS), are constantly formed in the body by several mechanisms, involving 

both endogenous and environmental factors. These substances being reactive, can 

cause oxidative damage to biological molecules. Antioxidants are substances that 
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significantly delay or inhibit the oxidation of  substrates (Halliwell and Gutteridge, 

1992). The body possesses antioxidant systems that are very important to protect 

cellular components from free radical induced damage. Under physiologic conditions, 

ROS produced in the course of metabolism are contained by the body’s antioxidant 

defence mechanisms. When these defence mechanisms are inadequate, either due to 

increased ROS production or diminished antioxidant levels, oxidative stress occurs. 

Oxidative stress, the state in which cells are exposed to excessive levels of molecular 

oxygen or ROS, leads to damage of biological molecules such as lipids, proteins, 

carbohydrates and DNA. This in turn can inflict tissue injury and dysfunction (Lunec, 

1990; Halliwell, 1994).  Several reports have documented that hypertension is 

associated with increased free radical production as well as reduction of antioxidant 

capacity (Tse et al.,1994; Russo et al.,1998; Pedro-Bolet et al.,2000). However these 

studies have not been comprehensive enough as they did not examine the 

development of hypertension in a detailed time course manner in relation to all the 

important antioxidants and related metabolites. These studies also did not focus much 

on the involvement of the kidney. 

             The present treatment for essential hypertension involves initial life style 

modifications which if not effective is followed by pharmacological treatment with 

antihypertensive drugs to control the blood pressure within normal limits so as to 

prevent end organ damage. However current data show that most people with 

hypertension worldwide are not effectively treated and controlled to the recommended 

blood pressure levels (Kearney et al., 2004; Israili et  al.,2007; Messerli et al., 2007). 

In the United States less than 50 % of hypertensives on medication have their blood 

pressure reduced to normal levels (Crowley and Coffman, 2014). In Malaysia, only 

35 % of patients on medication have their blood pressure controlled within normal 

limits (MOH, 2011). Overall, even though newer classes of antihypertensive drugs 
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have been introduced, the number of people with uncontrolled hypertension and 

subsequent end organ damage,  has continued to rise (Chobanian, 2009). In addition 

to this, the various side or adverse effects of antihypertensive drugs affect its 

tolerability as it impacts negatively on the quality of life ( Carvalho, 2013). Based on 

this, various alternative or complementary therapies are being looked into for the 

management of hypertension. In this regard, since oxidative stress has been 

implicated in the development and progression of hypertension, supplementation with 

antioxidants has also been looked into for the treatment and management of 

hypertension (Wen et al.,1996; Akpaffiong and Addison, 1998). This is especially so 

as studies have  shown that mobilization of antioxidants occurs in response to 

oxidative stress which reflects a dynamic process whereby dietary antioxidant 

supplementation might exert a significant influence (Nabil, 2001). In this respect, 

various research on antioxidant levels and effect of antioxidant supplementation in 

hypertension have been undertaken but the results obtained are conflicting as some 

studies showed that supplementation was beneficial (Park et al.,2002; Chen et 

al.,2000) whereas in others it was not (Kim et al.,2002; Stephens et al.,1996). Even 

though some studies have shown that supplementation with antioxidants reduce blood 

pressure and certain oxidative stress parameters, the studies concerned did not look  

extensively into the role and biochemical mechanisms of oxidative stress as well as 

the antioxidant defense systems involved in the kidney. Based on this and also the fact 

that it is still not clear whether it is increased free-radical generation or a reduced 

defence against these radicals that contributes to oxidative stress in the development 

and maintenance of hypertension,  further studies involving supplementation of 

antioxidants in hypertension are needed to provide more information. This is 

especially so for understanding the role of oxidative stress in the kidney as studies in 

this area have been limited.    
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               In relation to the role of oxidative stress in hypertension, some studies have 

shown that certain antihypertensive drugs have antioxidative properties, suggesting 

that the therapeutic benefit of these drugs including renoprotection could be in part 

due to their antioxidant properties whereby there is inhibition of free radical 

production. These studies involving  both human and animal models including the 

spontaneously hypertensive rat (SHR), have demonstrated that certain groups of 

antihypertensive drugs lower  blood pressure as well as cause changes in the oxidative 

status (Mak et al.,1992; Wiemer et al.,1997; Mantle et al.,2000; Bayorh et al.,2003). 

However the studies concerned were not comprehensive as no in-depth study have 

been carried out on the effect of these antihypertensive drug treatment on the 

antioxidant mechanisms involved in the kidney before and during hypertension as 

well as after kidney damage occurs. As such the biochemical mechanisms by which 

these antihypertensive drugs might inhibit  oxidative stress in the kidneys is not well 

known. Further studies are needed to clarify whether these antihypertensive drugs 

function by affecting the antioxidant defence mechanisms in the kidneys or just 

primarily correct the altered mechanical forces that cause structural changes in the 

kidney. 

          Overall, the role of oxidative stress and related protective mechanisms in the 

kidney in the development, progression  and subsequent kidney damage as well as 

how it is affected by antihypertensive drugs and antioxidant supplementation is still 

not clear and fully understood. As such, this study using the SHR, aims to provide 

answers by examining the renal oxidant/antioxidant status during the development 

and progression of hypertension including renal damage as well as the effect 

antihypertensive drugs and antioxidant supplements have on it. 
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1.2  REVIEW  OF  LITERATURE 

1.2.1 Hypertension 

        Pressure is required to move blood throughout the circulatory system for the 

various needs and functions of the body. This pressure is primarily determined by  the 

cardiac output of the heart and  the resistance of the blood vessels, mainly the 

peripheral vascular system, towards the flow of blood. The resultant blood pressure 

(BP) is the force exerted by circulating blood on the walls of the arteries and veins. 

Venous pressure however is very low, as such BP is generally equated to arterial 

pressure (Ram, 2014). 

        BP measurement is given in mm mercury (Hg) as two values whereby the first 

value is the systolic pressure, followed by the second value, the diastolic pressure. 

Systolic blood pressure (SBP) is the peak pressure in the arteries, which occurs when 

the ventricles are contracting to pump out blood into the systemic arterial circulation. 

Diastolic blood pressure (DP) is the residual minimum pressure left in the arterial 

system when the ventricles relax. Normal BP at rest is within the range of 100–140 

mm Hg systolic and 60–90 mm Hg diastolic (Ram, 2014). 

       Hypertension is defined as persistently elevated blood pressure whereby the SBP 

is greater than 140 mm Hg and/or the DP is greater than 90 mm Hg. According to the 

Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, 

and Treatment of High Blood Pressure (JNC 7, USA), the stratified classification of 

BP for adults aged 18 years or older is as in Table 1.1 :   
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Table 1.1 : Classification of blood pressure for adults aged 18 and above. 

                   (Chobanion et al., 2003) 
 
 
 
 
 
 
 
 
 
 

 

 

Compared to previous classifications, the above classification creates the new category 

of prehypertension which  combines the previous above optimal normal and high 

normal ranges of BP (Chobanion et al., 2003). This new classification indicates the 

importance of the prehypertensive category where the present focus is for both research 

and therapeutic measures so as to prevent the occurence of hypertension (Svetkey, 2005).   

            The usual BP measurement indicates both systolic and diastolic pressure values, 

however it is SBP values that are being given greater importance now. Previously DP 

was believed to be the better indicator of health risk when compared to SBP. This 

changed when the Framingham Study showed that SBP had greater predictive value 

than DP for cardiovascular disease development for all ages and both gender 

(Kannel ,1996). This led the National High Blood Pressure Education Program of the 

United States to recommend that SBP be ascribed a more important role in the diagnosis 

and treatment of hypertension (Izzo et al, 2000). Subsequent studies by other researches 

showed that SBP was the best indicator of cardiovascular risk especially after 50 years 

of age (Vardan and Mookherjee, 2000). Further studies by Hozawa et al (2000) and 

 
Category 

Systolic 

 

(mmHg) 

 Diastolic 

 

(mmHg) 

Optimal < 120   and < 80 

 

Prehypertension 
 

120-139 
 

   or 
 

80-89 

 

Hypertension Stage 1 
 

140-159 
 

   or 
 

90-99 

 

Hypertension Stage 2 
 

  ≥160 
 

   or 
 

   ≥100 
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Benetos et al (2001) strongly suggest that the prognosis of hypertension should be based 

on SBP and not DP. Related to this is the finding that SBP is more important for 

determining renal damage when compared to DP (Klag et al., 1996). As such, 

researchers currently performing studies on hypertension tend to focus more on SBP 

than DP.  

               Hypertension is termed the ‘silent killer’ because it usually does not cause 

symptoms initially, making people unaware that they have it. It can progress insidiously 

undetected leading to more serious complications involving organ damage such as heart 

disease, coronary artery disease, stroke, peripheral artery disease, blindness and chronic 

kidney disease. All these complications cause great damage and increase the risk of 

death (WHO, 2013). This makes it very important that hypertension is detected early so 

that prompt treatment can be initiated to control and bring down the elevated BP to an 

acceptable level.              

               In terms of etiology, hypertension is classified as either primary  (essential) 

hypertension or secondary hypertension. Primary hypertension, defined as high blood 

pressure with no obvious underlying cause, accounts for about 90–95% of all cases. The 

remaining 5–10% of cases are categorized as secondary hypertension, defined as 

hypertension that has arisen secondary to an identifiable cause such as chronic kidney 

disease, narrowing of the aorta or kidney arteries or an endocrine disorder (Chobanion et 

al., 2003). Between these two categories, it is primary or essential hypertension that 

poses the much greater challenge in the medical field due to its unknown etiology as 

well as much higher occurrence.  

               Essential hypertension is considered a heterogenous disorder with different 

patients having different causal factors that lead to abnormally increased BP. While 

the exact cause(s) of essential hypertension is unknown, various risk factors have 
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been identified as contributors towards it. These risk factors can be generally 

classified as inherited, behavioural or metabolic risk factors as shown in Table 1.2  

(Ford and Cooper, 1991; Whelton et al.,2002 ; Chobanion et al., 2003 ; Yadav et 

al.,2008; Loh et al.,2013). While the inherited risk factors are unmodifiable, the 

behavioural and metabolic risk factors are modifiable, enabling them to be lessened or 

eliminated so that the risk of developing hypertension is greatly reduced or averted  

(Whelton et al.,2002; Chobanian et al.,2003). 

Table 1.2  : Risk Factors for Essential Hypertension 

 

       Category 

 

Risk Factor 

Inherited Genetics (Hereditary / Family history)  

Ethnicity (South Asians, Africans) 

Age (increasing) 

Gender (male) 

 

Behavioural Physical inactivity 

Smoking 

Alcohol abuse 

Unhealthy diet - high sodium, lipids 

                         - low potassium 

High Stress 

Chronic lack of sleep 

 

Metabolic Overweight / Obesity 

Hyperlipidemia 

Diabetes / Impaired glucose tolerance 

 

 

1.2.1.1  Pathophysiology of Essential Hypertension 

          Blood pressure is the force of blood exerted against the walls of arteries during 

its circulation from the heart throughout the body. It is the product of cardiac output 

(CO) and systemic vascular resistance (SVR) in which the balance between them 

determines the actual blood pressure that is produced (Giles et. al., 2009; Foex and 

Sear, 2004). CO is regulated by heart rate, primarily controlled by the autonomic 

nervous system, and stroke volume which is affected by the volume of circulating 
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blood. The SVR is the resistance to blood flow caused by all of the systemic 

vasculature except the pulmonary vasculature. SVR is also usually referred as 

peripheral vascular resistance (PVR) as vascular resistance is deemed as mainly 

caused by the peripheral blood vessels (Foex and Sear, 2004). Overall, these two 

primary determinants are in turn determined by neural, humoral and local mechanisms 

of cardiovascular and renal function control as shown in Figure 1.1. The detailed 

complex interaction of these physiologic and other environmental factors in the 

control and regulation of BP are as displayed in Figure 1.2. As BP can be affected by 

any of these factors, it follows that hypertension can also be caused by abnormality in 

any one or a multitude of these factors. However pinpointing the exact cause is 

difficult because BP is an integrated value determined by variable contributions from 

all these factors. It is also very hard to determine primary or causal factors for 

abnormally increased BP from those responses that are secondary to BP changes 

(Vikrant and Tiwan, 2001; Silva, 2006).  

              Even though the exact pathophysiology involved in the development and 

progression of essential hypertension is still unknown,  various pathophysiologic 

mechanisms have been postulated and implicated for it. As a summary, the main 

pathophysiologic factors believed to play a role in the development and maintenance 

of essential hypertension can be grouped under neurohormonal mechanisms, dietary 

factors, vascular factors, cellular mechanisms and other factors such as inflammation, 

psychosocial stress and also novel factors such as oxidative stress as shown in Table 

1.3. Among these various factors, the main factors that have been focussed and 

researched on are the sympathetic nervous system (SNS), the renin- angiotensin-

aldosterone system (RAAS), sodium intake and metabolism and vascular changes. 

Many of these factors are regulated by or involves the kidney, giving it a central role 
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as one of the main drivers in the pathogenesis and progression of hypertension 

(Navar, 2005).  

 

Figure 1.1   Some of the factors involved in the control of blood pressure 

                   (adapted from Silva, 2006) 

 

 
 

 

Figure 1.2 : Some of the factors involved in the control of blood pressure that affect  

                   the basic equation : blood pressure – cardiac output x peripheral resistance. 

                   (adapted from Vikrant and Tiwari, 2001) 
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Table 1.3 : Pathophysiological factors that play a role in the development and  

                  maintenance of hypertension  

                  (adapted from Acelajado et al., 2013) 

 

Pathophysiologic Factor Mechanism 

(Increased or decreased activity) 

 

Neurohormonal Mechanisms 

 

 

SNS activity ↑ 

RAAS ↑ 

Production of sodium retaining hormones ↑ 

Production and expression of vasoconstrictors ↑ 

Production and expression of vasodilators ↓ 

Kallikrein-kinin system activity 

 

↓ 

Dietary Factors 

 

 

Sodium intake ↑ 

Potassium and calcium intake 

 

↓ 

Vascular Factors 

 

 

Peripheral resistance ↑ 

Vascular stiffness ↑ 

Endothelial dysfunction 

 

↑ 

Cellular Mechanisms 

 

 

Cellular ion transport ↑ or ↓ 

Adrenergic receptor activity 

 

↑ or ↓ 

Others 

 

 

Inflammation ↑ 

Psychosocial stress ↑ 

Oxidative stress ↑ 

 

1.2.1.1 (a) Sympathetic Nervous System 

         The sympathetic nervous system (SNS) is part of the autonomic nervous system 

which also includes the parasympathetic nervous system. The SNS provides 

widespread direct and indirect control of cardiac and vascular function, innervating 

the brain, heart, blood vessels, adrenal gland and kidneys. The SNS thus connects the 

brain, heart, blood vessels and kidneys, each of which plays an important role in the 

regulation of blood pressure. Under normal conditions, the SNS plays a major 

physiologic role in rapid control of BP whereby it responds appropriately to increases 

and decreases in BP via baroreflex and chemoreflex receptor pathways at both 

peripheral and central levels. In addition, the renal sympathetic nerves are believed to 
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play an important role in long-term BP control by affecting various renal related 

metabolic processes involved in BP homeostasis (Lohmeier, 2001; Schlaich et 

al.,2009).   

           Studies have indicated that increased SNS activity contributes to both the 

development and the maintenance of hypertension (Smith et al.,2004).  This increased 

SNS activity is believed to result in the stimulation of the heart, peripheral vasculature 

and kidneys, causing increased cardiac output, increased vascular resistance and fluid 

retention (Mark, 1996; Grassi et al.., 1998; Mancia et al.,1997). In relation to this, 

increased activity of the renal sympathetic nerves has been identified as a major 

contributor to the complex pathophysiology of hypertension (DiBona and Sawin, 

2004; Grisk and Rettig, 2004). Even though the exact cause(s) of increased SNS 

activity has not been identified, several factors or mechanisms have been postulated  

for it (Mancia and Grassi, 2014). This includes baroreflex dysfunction (Grassi et al., 

1998), chemoreceptor stimulation (Trzebski, 1992), stimulation of afferent 

sympathetic nerve fibers (DiBona and Kopp, 1995; Xu et al.,2014), increased insulin 

and leptin levels (Mark et al.,1999) and increased angiotensin II (Saino et al., 2000). 

 

1.2.1.1 (b) Renin-Angiotensin-Aldosterone System (RAAS) 

          The RAAS is one of the major hormonal systems for the regulation of blood 

pressure. It does this by controlling the normal effective circulating blood volume and 

systemic vascular resistance. In this system, renin is synthesized as an inactive 

precursor, prorenin, by the the juxtaglomerular (JG) cells that line the afferent 

arteriole of the renal glomerulus. It is stored there and activated before being secreted 

into the renal and then the systemic circulation when stimulated in response to a fall 

in renal glomerular perfusion pressure, reduced concentration of sodium chloride in 

renal tubular fluid or increased activity of the SNS (Beevers et al., 2001; Atlas, 2007). 
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Control of renin secretion is the primary mechanism by which the RAAS regulates BP 

and volume homeostasis. It is the key determinant of the activity of the RAAS. The 

secreted renin in the plasma then regulates the initial, rate-limiting step of the RAAS 

by cleaving the substrate angiotensinogen, released by the liver, to form the inactive 

decapeptide angiotensin I (Ang I). Ang I is in turn cleaved by angiotensin converting 

enzyme (ACE) to form the active octapeptide angiotensin II (Ang II).  ACE is a 

membrane- bound enzyme synthesized by various cells including vascular endothelial 

cells throughout the blood circulation (Acelajado et al., 2013; Atlas, 2007).  Ang II, 

the primary active product of the RAAS, acts via receptors, mainly the type 1 (AT1) 

receptor and to a much less extend the type 2 (AT2) receptor which is expressed at 

low levels in adults. Most of the established physiological and pathophysiological 

effects of Ang II are mediated through the AT1 receptor. The AT1 receptor when 

activated causes vasoconstriction, aldosterone and antidiuretic hormone release, 

central sympathetic activation, renal salt and water retention and other actions, that 

cause systemic vasoconstriction and increased blood volume (Fig 1.3). These actions 

induce elevation of blood pressure (Acelajado et al., 2013; Atlas, 2007).  

 

 

Figure 1.3 – The RAAS is responsible for the production of the BP regulating 

                     hormone Ang II (adapted from Bhuyan and Mugesh, 2011) 
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                  Besides the existence of the established systemic RAAS, studies have also 

indicated the presence of local tissue specific renin-angiotensin system (RAS) for 

both the generation and action of Ang II in various organs including the kidney 

(Lavoie and Sigmund, 2003). The intrarenal RAS is hypothesized to regulate systemic 

BP and aspects of renal function such as blood flow and sodium reabsorption (Navar 

et al., 1997; Kobori et al., 2007). Based on these findings, the present prevailing 

concept is that the RAAS functions both as a circulating system and as a tissue 

paracrine / autocrine system (Atlas, 2007). 

                  Under normal circumstances, the RAAS maintains salt and water 

homeostasis and BP regulation. However abnormal activation of the RAAS leads to 

aberrant fluid and electrolyte metabolism, increased vasoconstriction and elevated BP  

(Conlin et al., 1997; Schlaich et al., 2009). Studies have shown that this abnormal 

activation of the RAAS results in increased synthesis of Ang II at systemic and renal 

tissue level (Silva, 2006). This dysregulation of the RAAS is believed to be involved 

in the pathogenesis of hypertension (Atlas, 2007). 

 

1.2.1.1 (c) Sodium intake and fluid balance  

                 Epidemiology studies strongly suggest that increased sodium intake can 

lead to the development of essential hypertension as it is seen primarily in societies 

with average sodium intakes above 100 meq/day (2.3 g) but rare in societies with 

average sodium intake of less than 50 meq/day (1.2 g) (Adrogue and Madias, 2007; 

Elliot at al.,1996; Jones, 2004). This also suggests that a threshold level of sodium 

intake is required for the development of essential hypertension. Studies have also 

shown that reducing sodium intake decreases BP by up to 8-10 mm Hg (Cook et al., 

2007; Pimenta et al.,2009).  Chloride, the accompanying anion in salt, also seems to 

be important in the pathogenesis of essential hypertension as studies which used other 
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combinations of anions with sodium or chloride with other cations instead of sodium 

chloride, did not produce the same results (Kurtz et al.,1987).        

                 Sodium chloride is a primary determinant of extracelluar fluid volume. Its 

level in the body is regulated by the kidneys, which in association with other 

functions, determines the blood and plasma volume. This in turn affect the cardiac 

stroke volume and subsequently the BP. The kidneys respond to variations in dietary 

sodium intake by dynamic regulation of sodium and water excretion so that the 

extracelluar fluid volume is maintained for enabling normal BP. In relation to this, 

impaired sodium excretion leading to increased extracelluar fluid volume, has been a 

hallmark of hypertension (Krzesinski and Cohen, 2007).   

              While the exact mechanisms by which this salt sensitivity where increased 

salt intake leads to hypertension, has not been elucidated, several factors and 

mechanisms have been suggested. Decline in renal function due to age has been 

suggested for the inability of the kidney to excrete sodium, especially in the elderly 

(Acelajado and Oparil, 2009).  Increased levels of endogenous sodium pump 

inhibitors in the kidney are said to play a role in developing salt sensitivity leading to 

hypertension (Blaustein, 1996; Anderson et al., 2008). Other studies have indicated 

that increased dietary sodium causes significant changes in vascular tone and structure 

which results in increased peripheral vasoconstriction and eventually hypertension 

(Sanders, 2009).    

1.2.1.1 (d) Vascular changes 

                 Even though a number of organ systems, especially the kidneys, play 

important roles in the pathophysiology of essential hypertension, the present view is 

that it is considered a disease of vessels i.e. vasculopathy (Touyz, 2012). It is clear 

that alterations in vascular structure, mechanical properties and  function are 

paramount, culminating in increased peripheral vascular resistance (PVR) which is 
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considered the hallmark of hypertension (Staessen et al., 2003). This vasculopathy 

basically occurs in the small arteries and arterioles which are considered the main 

vascular resistance vessels in hypertension. The vascular changes that occurs involves 

structural remodeling, increased stiffness and reduced distensibility, endothelial 

dysfunction and inflammation (Oparil et al., 2003; Touyz, 2012).   

                  Vascular remodeling of the resistance vessels can involve hypertrophic 

remodeling as a result of smooth muscle cell hypertrophy in the media of the vessel, 

hyperplasia leading to the growth of additional cells within the media as well as 

deposition of extracellular matrix elements (collagen, fibronectin and reductin) in the 

media (Intengan et al., 1999; Intengan et al., 2000). Besides hypertrophic remodeling, 

the smaller resistance vessels can also undergo inward eutrophic remodeling 

(Schiffrin et al., 2000). The end result of both types of remodeling is a reduced lumen 

diameter of the vessel, resulting in increased resistance to blood flow in these vessels 

with overall increase in PVR (Mulvany, 1999).  

                 Vascular rarefaction, the decrease in the number of small arterioles, is 

another form of vascular remodeling. This phenomena also increases PVR and 

contributes to hypertension. It is thought that vascular rarefaction is initially a 

temporary functional change to help protect the capillary beds from the mechanical 

stress that accompanies the elevated BP but over time it may become permanent  

(Serne et al., 2001). 

               Cellular processes involved in these vascular changes include vascular 

smooth muscle cell growth/apoptosis, altered endothelial cell function, fibrosis, 

hypercontractivity and calcification (Touyz, 2012). All these vascular changes are 

thought to be initially adaptive processes to help the body cope with the elevated BP 

but over time they become maladaptive and contribute directly to hypertension and 

further complications (Touyz, 2012).    
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                Studies have shown that the vascular changes that occur in hypertension are 

present even in persons with prehypertension, suggesting that vascular remodeling 

antedates the development of actual hypertension. This has resulted in great interest 

and extensive research as it raises the question as to what extent resistance vessel 

structure plays a direct role in setting the BP and in the pathogenesis of essential 

hypertension (Oparil et al., 2003). 

 

1.2.1.2  Consequences and Complications of Hypertension 

 

           Hypertension that is not adequately treated leads to complications mainly due 

to the vascular damage that has occurred.  This in turn causes damage to targeted 

organs i.e. the heart, brain, eyes and kidneys and increasing the risk of morbidity and 

mortality. In general, the degree of hypertensive target organ damage (TOD) is 

proportional to the duration and severity of hypertension. Usually the presence of any 

given form of TOD signals the likelihood that other major target organs have also 

been damaged, clearly increasing the risk for overall morbidity and mortality (Izzo et 

al., 2013). The usual progression of TOD is from a subclinical phase with few 

symptoms (oligo symptomatic) to the clinical phase which has clear symptoms and 

finally to end-stage disease where it is poly symptomatic (Messerli et al., 2007)  as 

shown in Fig 1.4.  Overall the various derangements and TOD that can occur due to 

complications of hypertension are as summarized in Fig 1.5 (Schmeider, 2010).                   
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     Figure. 1.4 : Range of hypertensive cardiovascular disease from prehypertension to  

                          target-organ damage and end-stage disease 

                         (adapted from Messerli et al., 2007) 

 

 

 
     Figure. 1.5 :  End organ damage in arterial hypertension 

                         (adapted from Schmeider, 2010) 
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1.2.1.3  Renal Damage 

 

            Hypertension is one of the major factors contributing to kidney damage in the 

form of chronic  kidney disease (CKD) and further complications. It is the second 

main cause of end-stage renal failure (ESRF) after diabetes mellitus, accounting for 

about 30% of cases (Glassock, 2004). Equally important is that the prevalence of both 

CKD and ESRF has been rising over the years (Platinga et al., 2009). Studies have 

shown that the risk of ESRF is directly linked to BP level (Klag et al., 1996). It was 

found that SBP of 140 to 159 mm Hg significantly increased risk for ESRF or death 

by 38 % compared with those below 130 mm Hg. Also every 10 mm Hg rise in 

baseline SBP, significantly increased the risk for ESRF or death by 6.7 % (Bakris et 

al., 2003).  

              In hypertension, the extent of renal damage is proportional to the degree of 

arterial pressure exposure of renal microvasculature. Renal injury occurs due to 

vascular damage that causes arteriosclerosis especially involving the preglomerular 

vessels (Sommers and Melamed, 1990). This leads to increased renal vascular 

resistance that causes elevation of intraglomerular capillary pressure. This resultant 

glomerular hypertension causes glomerular capillary stretching, endothelial damage 

and elevated glomerular protein filtration, leading to glomerular collapse, segmental 

necrosis and finally glomerulosclerosis. The resulting glomerular filtration barrier 

damage causes proteinuria (Klahr, 1988; Mennuni et al., 2013). In addition there is a 

fall in renal blood flow that correlates directly with the degree of renal vascular 

damage and the severity and duration of hypertension, and inversely with the BP level 

(De Leeuw and Birkenhager, 1983). The end result is progressive fibrosis and scarring 

that causes glomerular and tubulointerstitial damage, leading to nephrosclerosis, renal 

insufficiency and loss of renal function `(Haraldson et al., 2008; Shankland, 2006).  
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       Assessment of renal damage due to hypertension is based on the diagnosis and 

progression of CKD which is categorized according to 5 stages with stage 5 being the 

most severe i.e. ESRF ( Table 1.4). Glomerular renal damage is indicated by the 

presence of proteinuria or more specifically microalbuminuria. Proteinuria levels of 

more than 300 mg/day is a hallmark of renal damage, whereas values between 30 and 

300 mg/day is considered a predictor of future renal damage (Elliot, 2013). At present, 

urine albumin level is commonly used as a biomarker of glomerular renal damage. In 

normal kidney function, very little albumin is excreted by the kidney. However in 

hypertensive renal injury, glomerular filtration of albumin is increased due to 

structural and functional transformation processes in the glomeruli that causes 

increased permeability (Schmeider, 2010). The rate of albumin excretion has been 

found to correlate with BP levels (Parving et al., 1974). Albuminuria is classified 

according to range of severity i.e. microalbuminuria (30-300 mg/day), 

macroalbuminuria (300 mg-3 g/day) and nephritic range albuminuria (> 3 g/day) 

(Tesch, 2010). Studies have indicated that increased microalbuminuria levels are 

associated with subclinical glomerular renal damage (Pontremoli et al., 2002). 

                Besides absolute urine protein or albumin values, proteinuria and 

microalbuminuria are also expressed as a ratio to urine creatinine values. Renal 

damage is indicated by a urine protein/creatinine value greater than 45 mg/mmol or an   

albumin/creatinine value exceeding 30 mg/mmol. Reduced glomerular filtration rate 

(GFR), whether measured or estimated by calculation (eGFR) is another measure of 

glomerular damage. A GFR of less than 60 ml/minute defines the nominal boundary 

of clinically significant CKD (Stevens and Levey, 2005). Renal tubulointerstitial 

damage due to hypertension can be detected by urine N-acetyl-beta-D-

glucosaminidase (NAG) levels. NAG is a proximal tubular lysosomal enzyme that is 

released during damage to proximal tubules (Bazzi et al., 2002). Increased levels of 
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urine NAG have been reported in untreated essential hypertension and have been 

recommended as a screening test for renal damage (Mansell et al., 1978; Maruhn, 

1976; Alderman et al., 1983). 

1.2.1.4  Management of hypertension 

            The main goal of treating essential hypertension is not only to reduce BP to 

normal levels but to also prevent the complications associated with elevated BP, 

extend longevity and improve the quality of life. Lowering of blood pressure is 

always preferable by non-pharmacological means that do not involve antihypertensive 

drugs (Messerli et al., 2007). As such, initially lifestyle modifications might be 

attempted for prehypertension, borderline or mild hypertension. This includes diet 

changes involving reduced sodium intake, increasing intake of whole grains, fruits 

and vegetables and reducing or avoiding alcohol consumption (Sachs and Campos, 

2010). Other lifestyle modifications include reducing body weight and increased 

physical activity (Crawford, 2003; Savica et al.,2010). However if lifestyle 

modifications alone are not successful, pharmacologic therapy in the form of 

antihypertensive drugs have to be instituted as well so as to obtain an optimal BP 

level which traditionally has been targeted as less than 140/90 mm Hg (Ram, 2014). 

Depending on the condition of the patient, antihypertensive drug treatment can be 

commenced as monotherapy involving a single antihypertensive drug or if 

unsuccessful, as combination therapy involving 2 or more drugs (Chobanian, 2009).  

                Antihypertensive drugs are classified according to their site or mode of 

action. At present the commonly used classes of antihypertensive drugs are diuretics, 

angiotensin converting enzyme inhibitors (ACEi), angiotensin receptor blockers 

(ARB), beta blockers and calcium channel blockers (CCB). Less commonly used 

classes of antihypertensive drugs include the central adrenergic inhibitors and alpha 
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blockers. The major classes of antihypertensive drugs, their mechanism of action and 

clinical uses are as shown in Table 1.4 

1.2.1.5  Problems and limitations in current management                 

            There are a number of problems and limitations in the current management of 

essential hypertension using antihypertensive drugs. First and foremost is the side-

effects and adverse effects that these drugs cause. All the different classes of drugs 

have some side / adverse effects, ranging from mild to severe and even life 

threatening, that affect the wellbeing, quality of life and health of the patients 

(Beevers et al., 2001; Cohuet and Struijker-Boudier 2005; Kaur and Khannab, 2012). 

This problem becomes worse when combination therapy involving 2-3 different 

classes of drugs is required, which magnifies the side / adverse effects that patients 

have to face. Studies have shown that more than two-thirds of hypertensive 

individuals need combination therapy for adequate control of BP (Cushman et al., 

2002; Dahlof et al., 2002).  
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