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ABSTRAK  
 

 
Alat yang paling berkuasa dalam Kawalan Kualiti Berstatistik (SQC) ialah carta 

kawalan. Kini, carta-carta kawalan luas diterima dan digunakan di industri. Salah 

satu penambahbaikan terkini carta-carta X  Shewhart univariat dan 2T  multivariat 

adalah perluasan carta-carta sedemikian kepada carta sintetik setara masing-masing 

dengan menggabungkan setiap daripada carta tersebut dengan carta conforming run 

length (CRL). Carta-carta sintetik X  univariat dan 2T  multivariat mengandaikan 

bahawa proses pendasar mempunyai taburan normal. Walau bagaimanapun, dalam 

kebanyakan situasi sebenar, andaian kenormalan mungkin tidak dapat dipatuhi. Tesis 

ini mencadangkan dua carta kawalan sintetik baru untuk populasi pencongan, iaitu 

carta-carta WV X  sintetik univariat dan 2WSD T  sintetik multivariat. Carta 

WV X  sintetik univariat adalah berdasarkan kaedah varians berpemberat manakala 

carta 2WSD T  sintetik multivariat  menggunakan pendekatan sisihan piawai 

berpemberat. Kedua-dua carta sintetik baru yang dicadangkan ini berubah menjadi 

carta-carta X  sintetik dan 2T  sintetik multivariat apabila taburan pendasar adalah 

masing-masing univariat dan multivariat normal. Untuk membandingkan prestasi 

kedua-dua carta baru yang dicadangkan dengan semua carta yang sedia ada bagi 

taburan pencongan, kadar isyarat palsu dan kadar pengesanan anjakan dalam min 

dikira. Pada keseluruhannya, keputusan simulasi menunjukkan bahawa carta 

WV X  sintetik univariat dan carta 2WSD T  sintetik multivariat mempunyai 

prestasi yang lebih baik daripada carta-carta setara yang lain dalam literatur. 
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UNIVARIATE AND MULTIVARIATE SYNTHETIC CONTROL CHARTS 
FOR MONITORING THE PROCESS MEAN OF SKEWED DISTRIBUTIONS 

  
 
 

ABSTRACT 
 

 
The most powerful tool in Statistical Quality Control (SQC) is the control chart. 

Control charts are now widely accepted and used in industries. One of the recent 

enhancements on the univariate Shewhart X  and multivariate 2T  charts is the 

extension of these charts to their respective synthetic chart counterparts by 

combining each of these charts with the conforming run length (CRL) chart. These 

univariate X  and multivariate 2T  synthetic charts assume that the underlying 

process follows a normal distribution. However, in many real situations the normality 

assumption may not hold. This thesis proposes two new synthetic control charts for 

skewed populations, which are the univariate synthetic XWV  and the multivariate 

synthetic 2WSD T  charts. The univariate synthetic XWV  chart is based on the 

weighted variance method while the multivariate synthetic 2WSD T  chart employs 

the weighted standard deviation approach. These two new proposed synthetic charts 

reduce to the univariate X  and multivariate 2T  synthetic charts, when the 

underlying distributions are univariate and multivariate normal, respectively. To 

compare the performances of the two new proposed charts with all the existing charts 

for skewed distributions, the false alarm and mean shift detection rates are computed. 

Overall, the simulation results show that the proposed univariate synthetic XWV  

chart and multivariate synthetic 2WSD T  chart outperform their respective 

counterparts found in the literature. 
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CHAPTER 1   

INTRODUCTION 
 
 
1.1   Statistical Process Control 
 
         Statistical process control (SPC) involves the use of a collection of problem 

solving tools to achieve process stability and improving capability by reducing 

variability (Montgomery, 2005). 

         Process improvements can be obtained by using SPC. These process 

improvements include uniformity of output, reduced rework, fewer defective 

products, increased output, increased profitability, lower average cost, fewer errors, 

higher quality output, less scrapped cost, less machine downtime, less waste in 

production, increased job satisfaction and improved competitive position (Smith, 

1991).           

         The basic techniques in SPC include the use of control charts to achieve and 

maintain statistical control in all phases of the process and in performing process 

capability studies in relation to product specifications and customer demands (Smith, 

1991). 

         SPC consists of seven problem solving tools which can be considered useful in 

obtaining process stability and improving capability through the reduction of 

variability. These tools are known as the “Magnificent Seven”, which comprise the 

histogram, check sheet, Pareto chart, cause and effect diagram, scatter diagram, 

defect concentration diagram and control charts (Montgomery, 2005). 

         A control chart which is a primary tool used in SPC is a graphical display of a 

certain descriptive statistics for specific quantitative measurement of the 

manufacturing process. Several different descriptive statistics can be used in a 
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control chart. There are two types of control charts, namely, control charts for 

variables data and control charts for attributes data.         

 
 
1.2    Control Charts   
 
         The most powerful tool in SPC is the control chart. The general idea of a 

control chart originated from Shewhart of the Bell Laboratories in 1924 (Ryan, 

2000). The construction of a control chart depends on the assumption of a certain 

statistical distribution. When used in the monitoring of a manufacturing process (or a 

non manufacturing process), a control chart can indicate whether a process is in-

control or out-of-control. Ideally, we would want to detect an out-of-control situation 

as soon as possible after its occurrence. Also, we would like to have as few false 

alarms as possible (Ryan, 2000).  

         A control chart is a time sequence plot with “decision lines” added. The 

decision lines are the lower control limit (LCL), the center line (CL) and the upper 

control limit (UCL). These decision lines are chosen so that an out-of-control signal 

can be identified (Ryan, 2000). As long as all the sample points plot within the 

control limits, a process is assumed to be in-control and no action is necessary. 

However, sample points that plot beyond the control limits indicate that a process is 

out-of-control and investigations and corrective actions are required to find and 

remove the assignable causes responsible for this behaviour. The sample points on a 

control chart are usually connected with straight-line segments so that it is easier to 

visualize how the sequence of points has evolved overtime (Montgomery, 2005). 

 
1.2.1   Univariate Control Charts 

 
           Traditionally, control charting techniques put great emphasis on the 

monitoring of shifts in the process mean (Huang and Chen, 2005). The most common 
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univariate variables control charting techniques used in the monitoring of shifts in the 

process mean are the Shewhart X , cumulative sum (CUSUM) and exponentially 

weighted moving average (EWMA) charts. The X  chart is quick in detecting large 

shifts while both the CUSUM and EWMA charts are sensitive to small shifts. One 

possible way to enhance the sensitivity of the Shewhart X  chart towards small and 

moderate shifts is to use runs rules. 

            To date, numerous works on runs rules for the X  chart have been suggested 

in the literature. Hurwitz and Mathur (1992) proposed a simple 2-of-2 rule with 

control limits having a width of 1.5 standard deviations from the center line. Klein 

(2000) suggested the 2-of-2 and 2-of-3 rules based on the Markov chain approach, 

where the control limits can be adjusted to give a desired in-control ARL. Khoo 

(2003) proposed the designs of the 2-of-4, 3-of-3 and 3-of-4 runs rules using the 

Markov chain approach. Khoo and Khotrun (2006) presented the improved 2-of-2 

and 2-of-3 rules which increase the sensitivity of the standard 2-of-2 and 2-of-3 rules 

suggested by Klein (2000), in the detection of moderate and large shifts. Antzoulakos 

and Rakitzis (2008) proposed the revised m-of-k runs rules that demonstrated an 

improved performance in the detection of small to moderate shifts while maintaining 

the same superiority in detecting large shifts.        

            In addition to the use of runs rules, a synthetic X  chart can also be used to 

increase the speed of the X  chart in detecting small and moderate shifts in the mean. 

The synthetic X  chart integrates the standard X  chart and the conforming run 

length (CRL) chart. The synthetic X  chart was suggested by Wu and Spedding 

(2000a). They showed that a synthetic X  chart provides smaller out-of-control ARL 

than the standard X  chart with or without runs rules, for any level of a mean shift. 

The synthetic X  chart is also superior to the EWMA chart when the size of a shift in 
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the mean is greater than 0.8 . Other works on the univariate synthetic control charts 

for the monitoring of the process mean are as follows: Wu and Spedding (2000b) 

presented a computer program that allows the computation of the upper and lower 

control limits based on a desired size of a shift in the mean. Wu et al. (2001) 

proposed a synthetic control chart for attributes data for the detection of increases in 

the fraction nonconforming. Wu and Yeo (2001) provided a C program to determine 

the control parameters and to calculate the average time to signal for the synthetic 

control chart suggested by Wu et al. (2001). Calzada and Scariano (2001) 

investigated the robustness to non-normality of the synthetic chart for monitoring the 

process mean. Davis and Woodall (2002) presented a Markov Chain model of the 

synthetic chart and used it to evaluate the zero-state and steady-state average run 

length (ARL) performances. Scariano and Calzada (2003) developed a synthetic 

chart for detecting decreases in the exponential mean, which combines the Shewhart 

chart for individuals and the CRL chart. Costa and Rahim (2006) presented a 

synthetic control chart for a joint monitoring of both the process mean and variance.       

            The synthetic control charts for variables data and the other commonly used 

control charting techniques such as the X , EWMA and CUSUM charts all depend 

on the assumption that the distribution of a quality characteristic is normal or 

approximately normal. When the underlying distribution is nonnormal, three 

approaches are presently employed to deal with this problem. The first approach is to 

increase the sample size until the sample mean is approximately normally distributed. 

The second approach is to transform the original data so that the transformed data 

have an approximate normal distribution. The third approach is to use heuristic 

methods to design control charts, such as the X  and R  charts based on the weighted 

variance (WV) method proposed by Bai and Choi (1995), the X , EWMA and 
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CUSUM charts based on the weighted standard deviation (WSD) method suggested 

by Chang and Bai (2001), and the X and R  charts based on the skewness correction 

(SC) method presented by Chan and Cui (2003). Other works that deal with 

univariate control charts for skewed distributions include that of Wu (1996), 

Castagliola (2000), Nichols and Padgett (2005), Tsai (2007), Dou and Sa (2002), 

Chen (2004), and Yourstone and Zimmer (1992). 

 
1.2.2    Multivariate Control Charts 

           The control charts mentioned in Section 1.2.1 deal with the controlling of only 

one quality characteristic. However, in many situations, we largely deal with two or 

more related quality characteristics (Mitra, 1998). 

            The problem of process monitoring involving several related variables of 

interest are sometimes called the multivariate quality control problem. The work on 

multivariate quality control was originally made by Hotelling in 1947, who applied 

his procedure to bombsight data during World War II. The topic on multivariate 

control charts is particularly important today as the automatic inspection procedure 

makes it relatively easy to measure many parameters on each unit of a product 

manufactured. The quality of many chemical and semiconductor processes are 

determined by several related variables. Because monitoring or analyses of these data 

with univariate SPC procedures are often ineffective and misleading, the use of 

multivariate methods have increased greatly in recent years (Montgomery, 2005). 

 
        The most widely used multivariate control charts are the Hotelling’s 2T , 

multivariate CUSUM (MCUSUM) and multivariate EWMA (MEWMA) charts. The 

Hotelling’s 2T  chart is based on only the current observation, whereas the 

MCUSUM and MEWMA charts accumulate information from the past observations. 
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The charting statistics evaluated by accumulating observations make the MCUSUM 

and MEWMA charts more sensitive in detecting small and moderate shifts in the 

mean vector of a multivariate process than the Hotelling’s 2T  chart (Montgomery, 

2005). A method to enhance the sensitivity of the Hotelling’s 2T  chart in detecting 

small and moderate shifts is by using runs rules. Khoo and Quah (2003) proposed the 

use of the 2-of-2, 2-of-3 and 2-of-4 rules and presented a simple and effective 

approach of incorporating them into the Hotelling’s 2T  chart. Aparisi et al. (2004) 

investigated the performance of the Hotelling’s 2T  chart with runs rules and 

suggested the use of several rules by dividing the Hotelling’s 2T  chart into attention 

zones and zones above and below the mean. Khoo et al. (2005) suggested the 

combined 2-of-2 and 1-of-1, 2-of-3 and 1-of-1, and 2-of-4 and 1-of-1 rules to 

enhance the performance of the Hotelling’s 2T  chart based on the discussion in Khoo 

and Quah (2003).  Koutras et al. (2006) introduced a run related chi-square control 

chart which signals an out-of-control process when k consecutive values of the test 

statistic exceed an appropriate upper control limit. 

            Besides the use of runs rules, the sensitivity of the Hotelling’s 2T  chart 

towards small and moderate shifts in the mean vector can also be enhanced by 

implementing a synthetic 2T  control chart. The synthetic 2T chart was suggested by 

Ghute and Shirke (2008a). A synthetic 2T  chart consists of a combination of the 

Hotelling’s 2T  chart and the conforming run length (CRL) chart. The synthetic 2T  

chart is an extension of the univariate synthetic X  chart of Wu and Spedding 

(2000a). 

            Like the univariate control charts, a potential setback of multivariate control 

charts is the multivariate normality assumption of the underlying process distribution. 

In practice, the normality assumption is usually violated. For example, measurements 
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from chemical, filling and semiconductor processes are often skewed (Chang, 2007). 

Subsequently, a few multivariate control charting methods have been suggested in 

the literature to address this problem. These include the heuristic methods for the 

Hotelling’s 2T  (Chang and Bai, 2004), MEWMA and MCUSUM (Chang, 2007) 

charts based on the weighted standard deviation (WSD) approach. 

 

1.3    Objectives of the Study 
 
         The charting approaches of most univariate and multivariate control charts are 

based on the normality assumption. In real life situations, the normality assumption is 

usually violated. This thesis provides useful extensions of the univariate and 

multivariate synthetic charts for skewed distributions. The objectives of this thesis 

are as follows:  

(i)   To propose a more sensitive univariate synthetic variables control chart for 

skewed distributions in the detection of moderate and large shifts in the process 

mean. This new chart is called the synthetic WV X  chart hereafter. It is based 

on the idea of integrating the weighted variance (WV) method of Bai and Choi 

(1995) and the synthetic control charting approach of Wu and Spedding 

(2000a).   

 

(ii)   To propose the multivariate synthetic 2WSD T  control chart. This chart is 

based on the idea of integrating the weighted standard deviation (WSD) method 

of Chang and Bai (2004) and the multivariate synthetic 2T  control charting 

approach of Ghute and Shirke (2008a).  
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1.4    Methodologies of the Study  
 
         In this thesis, for the univariate case, the weighted variance (WV) method of 

Bai and Choi (1995) is incorporated into the standard synthetic X  chart of Wu and 

Spedding (2000a), leading to the proposed synthetic WV X  chart for monitoring 

the process mean of skewed distributions. The procedure used for the standard 

synthetic X  chart of Wu and Spedding (2000a) is used to determine the optimal 

parameters for the proposed synthetic WV X  chart. Numerical integration is 

employed in the computation of the control chart’s constant, 2d  . The performance of 

the synthetic WV X  chart, in terms of its false alarm and mean shift detection rates 

is evaluated via a Monte Carlo simulation using SAS version 9. 

         For the multivariate case, the weighted standard deviation (WSD) method of 

Chang and Bai (2004) and the standard multivariate synthetic 2T  control charting 

approach of Ghute and Shirke (2008a) are combined to form the proposed 

multivariate synthetic 2WSD T  control chart for monitoring the process mean 

vector of skewed distributions. The approach used in the design of the standard 

multivariate synthetic 2T  chart of Ghute and Shirke (2008a) is used to determine the 

optimal limits and to compute the charting statistic of the proposed multivariate 

synthetic 2WSD T  chart. A Monte Carlo simulation using SAS version 9 is 

conducted to evaluate the performance of the proposed multivariate synthetic 

2WSD T  chart, in terms of its false alarm and mean shift detection rates for six 

different directions of shifts. 
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1.5    Organization of the Thesis 

          This thesis is organized in the following manner: Chapter 1 introduces the 

objectives and methodologies of the study. It also gives some discussions on 

univariate and multivariate variables control charts and the statistical process control 

techniques. In Chapter 2, the univariate skewed distributions used in the later 

chapters are discussed, together with the normal distribution. A brief discussion on 

the Shewhart RX  and SX  charts is also given in this chapter together with a review 

on the univariate synthetic chart and the univariate charts for skewed distributions. In 

Chapter 3, the multivariate skewed distributions that are considered in the later 

chapters are discussed. The multivariate normal distribution is also discussed here. A 

discussion on the Hotelling’s 2T , MCUSUM and MEWMA charts together with 

their extensions, as well as the multivariate synthetic charts and multivariate charts 

for skewed distributions are also presented in this chapter. Chapter 4 gives a detailed 

discussion on the proposed univariate synthetic WV X  control chart. A 

performance evaluation of the synthetic WV X  chart and an example on how it is 

put to work in a real situation are also described here. Chapter 5 presents the 

proposed multivariate synthetic 2WSD T  control chart together with a performance 

evaluation and an example to illustrate how the chart is constructed. Finally, 

conclusions for the thesis and suggestions for further research are presented in 

Chapter 6.      
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CHAPTER 2 
A REVIEW ON UNIVARIATE DISTRIBUTIONS AND UNIVARIATE 

CONTROL CHARTS 
 

2.1     Introduction 

            In this chapter, several continuous distributions that are important in 

statistical quality control and used in the present study will be discussed. These 

distributions include the normal distribution and skewed distributions, such as the 

lognormal, Gamma, Weibull and Burr distributions.  

           A quality characteristic that is measured on a numerical scale is called a 

variable, which can be length, width, temperature or volume. The Shewhart control 

charts for variables data which include the RX  and SX  charts that are widely used to 

monitor the mean of a process under the normality assumption will also be presented 

in this chapter. 

            One possible enhancement of the Shewhart control chart in increasing its 

speed in detecting shifts in the process mean is to construct a synthetic control chart. 

This chapter will discuss in detail the synthetic control chart.  

            In many situations, the normality assumption is usually violated. For 

example, the distributions of measurements from chemical and semiconductor 

processes are often skewed. Control charts for skewed distributions, such as the 

weighted variance X  WV X , weighted standard deviation X )WSD( X ,WSD–

CUSUM, WSD–EWMA and skewness correction X  (SC– X ) charts will also be 

discussed in this chapter.  
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2.2        Univariate Distributions 

 2.2.1    The Normal Distribution 

            The normal distribution is one of the most important continuous distributions 

that is used in statistical quality control. The probability density function (pdf) of the 

normal distribution is 

                           

21
21

( )
2

x

f x e
 
 
 

 
 

 , for  x   .                             (2.1)  

 The mean and variance of the normal distribution are   (     ) and 2  ( 2  

>0), respectively (Montgomery, 2005). The cumulative distribution function (cdf) of 

the normal distribution can be defined as the probability in which the normal random 

variable X  is less than or equal to some value, a, i.e.,     

                                     
2

1 μ
– 

2 σ

 

1
e .

2π

x
a

F a dx


 
 
 


                                             (2.2)                        

Because this definite integral cannot be evaluated in a closed form, the use of the 

transformation 
x

z





 is employed here. This transformation leads to the standard 

normal distribution (Montgomery, 2005). Figure 2.1 shows the pdf of a standard 

normal distribution. 
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Figure 2.1 pdf of a standard normal distribution 
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The normal distribution has the following features and properties: 

a)  The normal distribution is bell-shaped. 

b)  The normal distribution is unimode.  

c)  The normal distribution is symmetric about the mean. 

d)  The total area under the pdf of the normal distribution is one.  

f)  A simple interpretation of the standard deviation,   of the normal distribution is 

as follows (Montgomery, 2005): 

      (i)  68.26% of the population values fall within the limits defined by 1   . 

      (ii) 95.46% of the population values fall within the limits defined by 2   . 

      (iii) 99.73% of the population values fall within the limits defined by 3   .          

                                                      
                        
2.2.2     The Lognormal Distribution 

           A distribution that is related to the normal distribution is the lognormal 

distribution. Specifically, if  W = log  X , i.e., the natural logarithm of X is normally 

distributed, then X follows a lognormal distribution. A general case of the lognormal 

distribution is the three-parameter lognormal distribution with pdf given by (Johnson 

and Kotz, 1970)  

                       
 

  2

2

log δ θ1
exp ,

2ωδ ω 2π

x
f x

x

  
 
   

  for δx  .             (2.3)                        

The corresponding cdf of this lognormal distribution is    

                                      log δ θ
,

ω

x
F x

  
   

 
  for  x > .                             (2.4)                          

            Here, (  )   denote the standard normal cdf. In many applications,   is 

considered to be zero, so that X is a positive random variable. This important case 

leads to the two-parameter lognormal distribution with parameters θ  and  ω . The 
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pdf of the two-parameter lognormal distribution is as follows (Johnson and Kotz, 

1970): 

                             2

2

log θ1
exp ,

2ωω 2π

x
f x

x

 
 
  

  for  0.x                         (2.5) 

Its cumulative distribution function (cdf) is  

                          log θ
,

ω

x
F x

     
   for  0.x                                                 (2.6) 

The parameters,   and 2ω  are the mean and variance of the normal random variable 

W. Moreover, the mean and variance of the lognormal distribution are functions of 

these parameters (Montgomery, 2005). The shape of the pdf of the lognormal 

distribution is based on the values of these parameters. A Mathematica program is 

written to plot the different shapes of the lognormal pdfs for selected values of   and 

2ω  (see Figure 2.2).  Unlike the normal distribution, the lognormal distribution is not 

symmetric, but when ω  is small (say, ω< 1), the lognormal distribution will be close 

to the normal distribution (Ryan, 2000). 

 

 

 

 

 

 

 

          Figure 2.2. Two-parameter lognormal pdfs with = 0 for selected values of 2ω  
 

             The following are the moments and some properties of the two-parameter 

lognormal distribution (Johnson and Kotz 1970): 
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a) The thr moment of X  about zero is 

                                        





  22ω

2

1
θ exp  rrXE r  .                                               (2.7) 

b) The mean and variance of the two-parameter lognormal random variable are 

                                       
2ω

exp θ
2

E X
 

  
 

                                                       (2.8)   

     and 

                                 2 2Var exp 2θ ω exp ω 1 ,X                                           (2.9) 

     respectively. 

c) The skewness and kurtosis coefficients of the two-parameter lognormal random   

variable are 

                                           2 2
3α exp ω 2 exp ω 1                                       (2.10) 

     and  

                             4 3 2
2 2 2

4α exp ω 2 exp ω 3 exp ω 3,                                 (2.11)                       

     respectively. Note that 3  and 4  do not depend on  .             

  

2.2.3   The Gamma Distribution 

The pdf of a 3-parameter gamma distribution is defined as follows (Johnson 

and Kotz, 1970): 

              
 

 α 1

α

γ γ
exp ,

η α η

x x
f x

  
    

 for  0  ,η > 0 , x   .               (2.12)                        

It depends on three-parameters α,  η  and  . These parameters are called the shape, 

scale and location parameters, respectively. The standard form of the gamma 
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distribution is obtained by putting η= 1 and γ = 0.  Subsequently, the pdf will become 

as follows:  

                           
1 xx e

f x
 


 

, for  0x  .                                              (2.13)    

The cdf of the gamma random variable corresponding to Equation (2.13) is given as 

(Johnson and Kotz, 1970) 

                    
 

xF x
 


 

,   for  0 and α > 0,x                                     (2.14) 

where   
 α-1

 0
α  

x m
x m e dm    and    α-1

 0
α  mm e dm

    . Note that if 1  , the 

gamma pdf in Equation (2.13) reduces to the exponential pdf with parameter one. A 

Mathematica program is written to plot the pdfs of the gamma distribution for η = 1 

and =1, 2 and 3 (see Figure 2.3).  

 

 

 

                 

 

 

 

                

           The following are the moments and some properties of the gamma distribution 

with pdf given in Equation (2.13) (Johnson and Kotz, 1970): 

a)  The thr  moment of  X  about zero is                        

                        

 α 1

 0
 

α

r x

r
x e dx

E X

   





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          Figure 2.3. Gamma pdfs with η=1 and   = 1, 2 and 3 
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                                    =
 
 

r  
 

.                                                            (2.15) 

b)  The mean and variance of X  is  

                                         Var = αE X X .                                                    (2.16) 

c)  The distribution of X has a single mode at 1x     if  1  . The skewness and             

kurtosis coefficients of this gamma distribution are  

                                           
1

2
3 2


                                                                      (2.17) 

      and 

                                         4

6
3  


 ,                                                                  (2.18) 

      respectively.  

 

2.2.4  The Weibull Distribution 

 The Weibull distribution is one of the most widely used lifetime distributions 

in reliability engineering. The pdf of the Weibull distribution, assuming that the 

location parameter is zero is as follows (Johnson and Kotz, 1970): 

                         1 xf x x e
       ,  for  0x ,                                (2.19) 

where λ > 0  is the scale parameter and 0   is the shape parameter. The cdf of the 

Weibull distribution is  

                                  β1 exp λ ,F x x      for  0x .                                  (2.20)  

The shape of the Weibull pdf is based on the appropriate selection of the parameters 

λ and β.  A Mathematica program is written to plot several Weibull pdfs for λ =1 

and   = 0.5, 1, 2 and 4 (see Figure 2.4).  
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                     Figure 2.4. Weibull pdfs with λ = 1  and   = 0.5, 1, 2 and 4 

When   = 1, the Weibull distribution reduces to an exponential distribution. The 

moments and some properties of the Weibull distribution will be discussed here 

when the scale parameter λ = 1 ,  which leads to the standard Weibull distribution 

with the pdf          

                                    1 xf x x e
   ,  for 0x                                                (2.21) 

and cdf 

                                β1 expF x x   ,  for 0x .                                           (2.22) 

For this case, the distribution of X depends only on the shape parameter  . Also the 

moments, coefficient of variation, skewness and kurtosis all depend only on the 

shape parameter   (Johnson and Kotz, 1970). 

a)  The thr moment about zero is    

                                 1
β

r r
E X

 
   

 
 .                                                         (2.23)                        

b)  The mean and variance of the Weibull distribution are  

                                             1
1

β
E X

 
   

 
                                                      (2.24) 

     and  
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                                
2

2 1
Var 1 1 ,

β β
X

    
         

    
                                      (2.25) 

      respectively. 

c)  The skewness and kurtosis coefficients of the Weibull distribution are as follows 

(Prabhakar et al., 2004): 

  

               

3

3 3
2 2

3 1 2 1
1 3 1 1 2 1

β β β β
α

2 1
1 1

β β

        
                 
        

              
      

                            (2.26) 

     and  

                         
 

4 22

β
α ,

2 1
1 1

β β

k

              
      

                                                (2.27) 

      respectively, where  

          

 
4 2 2

1 1 2 2
β 6 1 12 1 1 3 1

β β β β

1 3 4
4 1 1 1 .

β β β

k
            

                       
            

     
           

     

  

                                                                                       

2.2.5 The Burr Distribution 

The pdf of the Burr distribution (Burr type XII) is (Rodriguez, 1977) 

           11 1
bc cf x bcx x

   ,  for  0,  >1 and >1x b c                          (2.28)   

and its cdf is          

          1 1
bcF x x


   ,   for  0,  >1 and >1x b c ,                              (2.29)                    

 



 
 

19

where both b and c  are the shape parameters of the distribution. The skewness and 

kurtosis of the Burr distribution exist if  3bc   and 4bc  , respectively. The shape 

of the Burr pdf depends on the parameters b and c. A Mathematica program is 

written here to plot several Burr pdfs shown in Figure 2.5 for (b, c) = (2, 3), (3, 7) 

and (5, 1.2), respectively. 

 

  

 

 

 

 

 

                      Figure 2.5. Burr pdfs for selected values of (b, c) 

The moments and some properties of the Burr distribution (Burr type XII) are as 

follows (Tadikamalla, 1980): 

a)  The thr moment of  X about zero is  

                                

1
,

1
r

r r
b b

c c
E X

b

         
   

 
     bc > r.                              (2.30) 

b)  The mean and variance of X are  

                                    

1 1
1

 
b

c c
E X

b

         
   


                                              (2.31) 

      and  

                  

2
2 2 1 1

1 1
Var   ,

b b
c c c c

X
b b

                                
  

  

                    (2.32) 
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      respectively. 

c)   The skewness and kurtosis coefficients of  X  are (Rodriguez, 1977) 

                        
   

  

2 3
3 2 1 1

3 3
2 2

2 1

λ 3 λ λ 2λ
α

λ λ

b b

b

     
 

                                             (2.33) 

      and  

             
     

  

3 2 2 4
4 3 1 2 1 1

4 3
2 2

2 1

λ 4 λ λ 6 λ λ 3λ
α ,

λ λ

b b b

b

           
 

                            (2.34) 

      respectively, where             

                     λ 1j

j j
b

c c
          
   

,  for   j = 1, 2, 3 and 4.                            

d) The density function given in Equation (2.28) is unimodal at 
 

 
1

1

1 c

c
x

bc





 if   

1c  and L-shaped if 1c   (Tadikamalla, 1980). 

                                    

2.3 The Shewhart Control Charts  

          The idea of using control charts to monitor process data was developed by 

Walter A. Shewhart of the Bell Telephone Laboratories (Montgomery, 2005). The 

Shewhart control chart is based on the assumption that the distribution of the quality 

characteristic is normal or approximately normal.  

              The Shewhart control chart consists of three lines, the upper control limit, 

UCL, the center line, CL, and the lower control limit, LCL. These UCL and LCL are 

chosen so that the state of a process can be determined.                                             

            There are two types of Shewhart control charts which are classified according 

to the type of data of the underlying process. These charts are  

(a)  Shewhart control charts for variables 



 
 

21

     This type of control charts are used when the quality characteristic of a process is 

measured in a numerical scale (Montgomery, 2005). 

(b)  Shewhart control charts for attributes  

      This type of control charts are used when the quality characteristic of a process is 

measured by counting the number of defective items in a sample. In this thesis, 

we will discuss only the variables Shewhart control charts for monitoring the 

mean of a process, namely the Shewhart RX   and SX   control charts. 

 

2.3.1     The RX  Chart 

           Assume that a process follows a normal distribution with in-control mean μ X , 

and standard deviation, σX , where both μ X  and σX  are known values. The control 

limits of the Shewhart RX   chart are as follows (Montgomery, 2005): 

 

                                     
σ

UCL = μ + 3 X
X

n
 ,                                                        (2.35a) 

                                    CL = μX                                                                          (2.35b) 

and 

                                   
n
X

X

σ
3μLCL   .                                                         (2.35c) 

                                                                                           

If the process parameters μ X  and σX  are unknown, they are estimated from an in-

control historical data set consisting of m  samples, each of size, n . Let ijX  denotes 

the thj  observation in the thi sample, for i =1, 2,..., m  and j  =1, 2,…, n .  Also, let 

iX  and iR  represent the thi  sample mean and sample range, respectively. If the 
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grand mean and the average sample range are defined as 
1

1 m

i
i

X X
m 

   and 

1

1 m

i
i

R R
m 

  , respectively, then the control limits of the Shewhart X  chart when 

parameters are unknown are defined as follows (Montgomery, 2005): 

                                                 
2

UCL 3
R

X
d n

   ,                                          (2.36a)   

                 CL X                                            (2.36b) 

and 

                  
2

LCL 3
R

X
d n

  .                                          (2.36c) 

The value of the control chart constant, 2d  which depends on the sample size, n, is 

given in most statistical quality control textbooks. 

 

2.3.2   The SX  Chart 

           Although the RX  chart is widely used, it is occasionally desirable to estimate 

the process standard deviation directly, instead of indirectly through the use of the 

range R . This leads to the Shewhart SX  control chart. Generally, the SX  chart is 

preferred to its more familiar counterpart, the RX  chart when either (Montgomery, 

2005) 

(a)  The sample size n  is moderately large, i.e., n >10. The range method for 

estimating X  loses statistical efficiency for a moderate to large sample. 

(b)    The sample size, n  is variable. 

When the parameters μX  and σX  are both known, the control limits of the Shewhart 

SX  chart are similar to those of the Shewhart RX  chart given in Section 2.3.1. 
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However, when the parameters μX  and X  are unknown, they can be estimated by 

analyzing past data. For this case, μX  and X  are estimated as X  and 
4

S

c
, 

respectively, where 
1

1 m

i
i

X X
m 

   and 
1

1 m

i
i

S S
m 

  . Here, iS  denotes the thi  sample 

standard deviation. Then the control limits of the Shewhart SX  chart are computed 

as follows (Montgomery, 2005): 

                                           
4

3
UCL

S
X

c n
  ,                                                    (2.37a) 

                                           XCL                                                                     (2.37b) 

                                            
4

3
LCL

S
X

c n
   .                                                   (2.37c) 

Here, the value of the control chart’s constant, 4c  which depends on the sample size, 

n , is given in most statistical quality control textbooks. 

 

2.4       The Synthetic X  Control Chart  

            The synthetic X  control chart was introduced by Wu and Spedding (2000a) 

to improve upon the performance of the Shewhart X  control chart for detecting 

small and moderate shifts in the process mean. It also surpasses the exponentially 

weighted moving average (EWMA) and the joint X EWMA charts, in terms of the 

detection power for detecting a mean shift of greater than 0.8 . The synthetic X  

chart is based on the idea of integrating the Shewhart X  chart and the conforming 

run length (CRL) chart. The synthetic X  chart consists of the SX  sub-chart and 

the CRL/S sub-chart (Wu and Spedding, 2000a). Figure 2.6 illustrates how the CRL 

value, i.e., the number of inspected samples between two consecutive nonconforming 
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samples (inclusive of the ending nonconforming sample) is determined. Here, if we 

assume that a process starts at t = 0, then, 1CRL  = 4, 2CRL  = 3 and 3CRL  = 5.     

                                                   

 

 

                        

 

 

The operation of a synthetic X  chart is as follows (Wu and Spedding, 2000a): 

Step 1 Determine the lower control limit, L , of the CRL/S sub-chart and compute the 

control limits, 
SX /

UCL  and 
SX /

LCL  of the SX  sub-chart using the 

following formulae: 

                        
XXSX

kσμUCL                                   (2.38a) 

             and  

                                               
XXSX

kσμLCL  ,                               (2.38b) 

            where X  denotes the in-control mean and 
X

  is the standard deviation of 

the sample mean. A procedure and formulae to determine the optimal 

parameters,  k  and L , which give the minimum out-of-control (o.o.c.) ARL 

for the size of a shift, d , where a quick detection is desired, based on an in-

control ARL of interest are provided by Wu and Spedding (2000a).  These 

procedure and formulae will also be discussed in Chapter 4. Note that Wu and 

0t   

Conforming sample 

   Nonconforming sample 

Figure 2.6. Conforming Run Length 

1CRL  2CRL  3CRL  


	Cover
	1
	217



