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MEMBRAN SILIKALIT-1: SINTESIS, MODIFIKASI, PENCIRIAN DAN 

PRESTASI BAGI PEMISAHAN REAKTIF PARA-XILENA DARI ISOMER-

ISOMER XILENA 

 

ABSTRAK 

 

Pemisahan reaktif para-xilena dari isomer-isomer xilena dalam reactor 

membran bermangkin adalah bergantung kepada pilihan membran bermangkin yang 

sesuai. Membran ini seharusnya memangkinkan tindak balas pengisomeran xilena, 

dan juga memisahkan para-xilena (p-xylene) dari isomer-isomernya (ortho-xilena (o-

xilena) dan meta-xilena (m-xilena)). Dalam kajian ini, membran silicalit-1 dan dua 

jenis membran silikalit-1 berfungsikan asid: (1) membran silicalit-1 berfungsikan 

asid propilsulfonik dan (2) membran silicalit-1 berfungsikan asid arenasulfonik telah 

disintesiskan di atas α-alumina yang berbentuk cakera, yang dipra-salut dengan 

lapisan silika berliang meso. Sifat-sifat fizik dan kimia membran-membran telah 

dikaji dengan menggunakan teknik-teknik yang berbeza seperti XRD, SEM, TEM, 

29
Si MAS NMR, 

13
 CCP-MAS NMR, FTIR, TGA, EA, NH3-TPD, pentitratan asid-

bes, penjerapan-penyahjerapan nitrogen. Penerapan nitrogen and ujian 

permporosimetri dijalankan untuk menilai kualiti dan kewujudan liang-liang bukan-

zeolit dalam membran.  

 

Reka bentuk eksperimen diaplikasikan dalam proses pengoptimuman 

pemisahan  p-xilena daripada campuran dedua p-/o-xilena dan campuran tetiga p-/o-

/m-xilena dengan menggunakan membran silikalit-1. Fluks p-xilena yang optimum 

sebanyak 3.83 x 10
-6

 mol/m
2
.s dan faktor pemisahan p-/o-xilena sebanyak 46 telah 

diperolehi pada suhu 198 
o
C, tekanan separa p-xilena dalam suapan sebanyak 0.15 

kPa dan komposisi suapan p-xilena sebanyak 0.80. Fluks p-xilena yang optimum 



 xxxv 

sebanyak 5.94 x 10
-6

 mol/m
2
s, faktor pemisahan p-/o-xilena sebanyak 19 and 

pemisahan faktor p-/m-xilena sebanyak 20 telah dicapai pada suhu 198 
o
C, tekanan 

separa p-xilena sebanyak 0.22 kPa dalam pemisahan campuran tetiga isomer xilena. 

Model resapan Maxwell-Stefan, dengan kombinasi teori larutan jerap unggul dan 

parameter penjerapan satu-komponen telah digunakan untuk meramalkan fluks 

penerapan p-xilena dan o-xilena dalam campuran p-/o-xilena melalui membran 

silicalit-1 pada julat suhu 150 
o
C- 250 

o
C. 

 

Aktiviti bermangkin dalam tindak balas pengisomeran m-xilena bagi 

membran silicalit-1 berfungsikan asid telah diuji dalam julat suhu dari 355 
o
C ke 450 

o
C. Pada suhu 450 

o
C, penukaran m-xilena adalah sebanyak 57 % dengan hasil         

p-xilena sebanyak 33 %  bagi membran silicalit-1 berfungsikan asid arenasulfonik 

yang disintesis dengan menggunakan 15 mol% pheniltiltrimetoksisilana sebagai 

sumber organosilana. Peningkatan dalam hasil xilena adalah disebabkan oleh 

pemisahan produk tindak balas melalui membran bermangkin, yang menunjukkan 

kestabilan struktur selepas beroperasi selama 120 jam. Skim tindak balas segitiga 

berdasarkan model masa aliran telah digunakan untuk menentukan parameter kinetik 

bagi pengisomeran m-xilena dalam julat suhu 355 
o
C ke 450 

o
C dengan 

menggunakan membran silicalit-1 berfungsikan asid. Suatu model berdasarkan 

kinetik-kinetik tindak balas dan kadar resapan berkombinasi dengan persamaan-

persamaan imbangan jisim isomer-isomer xilena dalam reaktor membran 

bermangkin telah dicadangkan. Model persamaan-persamaan itu telah disimulasikan 

untuk mendapatkan susuk kepekatan merentasi membran. Model itu menerangkan 

kombinasi tindak balas pengisomeran xilena dan pemisahan dalam reaktor membran 

bermangkin menggunakan membran silicalit-1 berfungsikan asid.      
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SILICALITE-1 MEMBRANE: SYNTHESIS, MODIFICATION, 

CHARACTERIZATION AND ITS PERFORMANCE FOR THE REACTIVE 

SEPARATION OF PARA-XYLENE FROM XYLENE ISOMERS 

 

 

ABSTRACT 

 

 

Reactive separation of para-xylene from xylene isomers in a catalytic 

membrane reactor depends on the right choice of catalytic membrane. This 

membrane should not only catalyze xylene isomerization reaction but also separate 

para-xylene (p-xylene) from its isomers (ortho-xylene (o-xylene) and meta-xylene 

(m-xylene)). In the present study, silicalite-1 and two types of acid-functionalized 

silicalite-1 membranes: (1) propylsulfonic acid-functionalized silicalite-1 membrane 

and (2) arenesulfonic acid-functionalized silicalite-1 membrane were synthesized on 

disc type α-alumina support, pre-coated with mesoporous silica layer. The physical 

and chemical properties of the membranes were characterized using different 

techniques such as XRD, SEM, TEM, 
29

Si MAS NMR,
 13

C CP-MAS NMR, FTIR, 

TGA, EA, NH3-TPD, acid-base titration and nitrogen adsorption–desorption. The 

nitrogen permeation and permporosimetry tests were conducted to evaluate the 

quality and the presence of non-zeolite pores in the membranes. 

 

Design of experiments (DoE) was applied in the optimization process of       

p-xylene separation from p-/o-xylene binary mixture and p-/o-/m-xylene ternary 

xylene mixture using silicalite-1 membrane. The optimum p-xylene flux of            

3.83 x 10
-6

 mol/m
2
.s and p-/o-xylene separation factor of 46 were obtained at a 

temperature of 198 
o
C, p-xylene feed partial pressure of 0.15 kPa and p-xylene feed 

composition of 0.80. The optimum p-xylene flux of 5.94 x 10
-6

 mol/m
2
.s, p-/o-xylene 

separation factor of 19 and p-/m-xylene separation factor of 20 were achieve at 
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temperature of 198 
o
C and p-xylene feed partial pressure of 0.22 kPa in ternary 

xylene mixture separation. The Maxwell-Stefan diffusion model, in combination 

with the Ideal Adsorbed Solution (IAS) theory and single-component adsorption 

parameter were used to predict the permeation flux of p-xylene and o-xylene for 

binary xylene mixture through a silicalite-1 membrane in the temperature range of 

150 
o
C – 250 

o
C.  

 

Acid-functionalized silicalite-1 membranes were tested for their catalytic 

activity in m-xylene isomerization reaction in the temperature range of 355 
o
C to   

450 
o
C. At 450 

o
C. m-xylene conversion was 57 % with 33 % p-xylene yield over 

arenesulfonic acid-functionalized silicalite-1 membrane, synthesized using 15 mol% 

of phenelthytrimethoxysilane as an organosilane source. The enhancement in            

p-xylene yield was due to the continuous separation of the reaction products through 

the catalytic membrane, which exhibited good structural stability for 120 hours of 

operation. A triangular reaction scheme based on time on stream (TOS) model was 

used to determine the kinetic parameters for m-xylene isomerization in the 

temperature range of 355
 o

C to 450 
o
C using acid-functionalized silicalite-1 

membranes. A model based on the reaction kinetics and rate of diffusion combined 

with the mass balance equations of xylene isomers in catalytic membrane reactor was 

proposed. The model equations were simulated to obtain concentration profile of 

xylene isomers across the membrane. The model described the combined xylene 

isomerization reaction and separation in the catalytic membrane reactor using acid-

functionalized silicalite-1 membrane. 
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CHAPTER 1 
 

INTRODUCTION 

 

 

Xylene has three isomers namely p-xylene, m-xylene and o-xylene and used 

as industrial solvents or intermediates for many derivatives (Xomeritakis et al., 2001; 

Lai et al., 2003).  Isophthalic acid is produced from the oxidation of m-xylene and 

used in the manufacturing of unsaturated polyester resins. o-xylene is the raw 

material for the synthesis of phthalic anhydride which is used in the production of 

phthalate plasticizers. Among the three xylene isomers, p-xylene is the most 

industrially used isomer and therefore, has the largest commercial market. The 

isomer p-xylene is the feed for the production of pure terephthalic acid (PTA) and 

dimethyl terephthalate (DMT). PTA as well as DMT are the feed stocks for 

polyethylene terephthalate (PET) synthesis which in turn is used in the polyester 

resin and fibers production.  The world wide demand for p-xylene increased from 

19.3 million tons in year 2003 (US$535/metric tonne) to 30.3 million tonnes 

(US$1,140/metric tonne) in year 2009, with an average growth rate of 7.8% (Online 

Library, 2003; Online Library, 2009a). Due to increase in the global demand of       

p-xylene and current expensive industrial processes, researchers have been searching 

for alternatives to decrease the energy consumption and operating cost for p-xylene 

production. 

 

1.1 Industrial Production of p-xylene 

            The industrial production and recovery of p-xylene is an important operation 

in a large petrochemical plant. p-xylene is currently produced through two different 

routes:   1) separation of p-xylene from its isomers and 2) isomerization of isomer  

m-xylene or o-xylene to p-xylene. Separation of p-xylene from its isomers is difficult 
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because of their close boiling points (p-xylene: 138 
o
C, m-xylene: 139

 o
C and           

o-xylene:144 
o
C). Xylenes isomers are currently separated by cryogenic 

crystallization, or selective adsorption process such as UOP's Parex and IFP's Eluxyl 

processes, which are highly energy intensive (Online Library, 2006a). 

 

            UOP's Parex-Isomar and ExxonMobil’s XyMax are the processes for             

p-xylene production based on isomerization of mixed xylenes using advanced 

catalyst (Online Library, 2002; Online Library, 2006b). Toluene disproportionation 

is an alternative route to produce p-xylene, but, benzene is produced as a co-product. 

The current technology for p-xylene production involves complex operations with 

high capital cost and high energy consumption. 

  

1.2 Membrane Based Technology  

1.2.1 Membrane Separation Processes 

Membrane-based separation processes were first introduced at the early 18
th

 

century and found their applications in petrochemical, food and pharmaceutical 

industries, biotechnology and variety of environmental abatement processes 

(Marcano and Tsotsis, 2002). The advantages of membrane separation process over 

most of the conventional separation processes are reported to be energy savings as 

well as reduction in the initial capital investment cost (Marcano and Tsotsis, 2002). 

A membrane is a permeable or semi-permeable phase in a form of thin film made 

from the variety of materials ranging from inorganic materials to different types of 

polymers. The membrane is able to act as a barrier to separate different species by 

controlling the exchange of species between two adjacent fluid phases. The basic 

membrane separation process is shown in Figure 1.1; where the species retained in 
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the fluid stream defined as retentate, and another fluid stream is defined as permeate 

contains species passing through the membrane. 

 

 

 

Figure 1.1: Schematic of the basic membrane separation principle (Hsieh, 1996) 

 

The factors that contribute to the transport process across the membrane are 

driving force, associated with a gradient of concentration, pressure and temperature. 

Permeability and permselectivity are the two important parameters in evaluating the 

membrane performance. Permeability is defined as the flux (molar or volumetric) 

flow through the membrane with respect to its thickness and driving force; whereas 

the permselectivity is the ability of the membrane to separate the given species,  

which is also defined as the ratio of individual permeabilities for the two species. 

 

1.2.2 Membrane Separation Process with Catalytic Reaction 

There has been significant interest in the membrane-based reactive separation 

processes. In reactive separation process, there are two distinct processes, (i) reaction 

and (ii) separation in a single unit operation. Catalytic membrane reactor has 

attracted attention in catalytic reaction application due to their potential for 

Membrane 

Feed/Retentate 

(upstream fluid) 
Permeate 

(downstream fluid) 
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substantial savings in the processing cost and less capital investment in these types of 

arrangement. 

 

The conventional-type packed bed reactor and fluidized bed reactor are 

usually operated below equilibrium conversion in order to minimize undesired 

reactions. In membrane-based reactive separation processes, the synergistic effect of 

separation and reaction occurs simultaneously within a single unit and results in the 

enhancement of: 

i) Conversion.  Moles of reactant converted/moles of reactant in the feed. 

The role of the membrane is to act as a catalyst (Tarditi et al., 2008a). 

ii) Yield. Moles of desired products form/moles of reactant in the feed. The 

role of the membrane is principally to remove a reaction product 

selectively from the reactor for equilibrium-limited reactions. This is 

particularly useful for reactions limited by thermodynamic equilibrium 

reactions (Marcano & Tsotsis, 2002).  

iii) Selectivity. Moles of desired products form/moles of reactant converted. 

The role of the membrane is to dose a reactant that may react in 

successive reactions (feed distribution). The concentration of the 

reactants is kept low by controlled addition through the membrane. In 

this way, the side reactions and further reaction of the desired product to 

the undesired one could be minimized (Ozdemir et al., 2006). 

 

1.3     Zeolite Membrane 

         Zeolites are crystalline, microporous aluminosilicates which find extensive 

industrial use as catalysts, adsorbents, and ion exchangers with high capacities and 
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selectivities (Bhatia, 1990; Motuzas et al., 2005). When zeolite is grown as films, 

zeolite membrane is formed. Zeolite membranes or films have been in focus in recent 

years because of their well-defined micropore structure, good thermal and structural 

stability. The characteristics of zeolite membrane have opened up its potential 

application in membrane reactor, catalytic membrane reactor and chemical and gas 

sensors (Keizer et al., 1998; Bonilla et al., 2001; Nair et al., 2001; Bernal et al., 2001; 

Lai et al., 2004). One particular process in which zeolite membrane might offer 

significant advantage compared to existing technology is the separation of close-

boiling point hydrocarbons that are difficult to be separated by distillation or other 

complex and energy-intensive processes (Nair et al., 2001). Currently, zeolite 

membrane is also reported for application in corrosion protection and antimicrobial 

coatings (Cheng et al., 2001, McDonnell et al., 2005).
 
Figure 1.2 shows the path 

from zeolite to zeolite membrane and its application. Three common types of zeolite 

used for industrial processes, i.e. ZSM-5 (Zocony Mobil Five), FAU (Faujausite) and 

BEA (beta) are shown in the Figure 1.2. 
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Figure 1.2: Path from zeolites to zeolite membranes and their application (Tsapatsis, 

                  2004) 

 

Zeolite composed of different types of framework structure and pore size. 

Table 1.1 shows the pore openings of different types of zeolite used in the industry 

(Baerlocher et al., 2001). Although there are more than 160 types of zeolites being 

synthesized, not all these zeolites can be grown into membranes. The synthesis 

methodology developed for zeolite powder does not guarantee the formation of a 

continuous polycrystalline thin film. A number of zeolites that have been synthesized 

as zeolite membrane include MFI (Lai et al., 2004; Tarditi et al., 2006a; Gu et al., 

2006), FAU (Nikolakis et al., 2001; Jeong et al., 2003), BEA ( Wang et al., 2001; 

Maloncy et al., 2005) , MOR ( Navajas et al., 2006) , LTA  (Aoki et al., 2000), FER 

(Jia and Murad, 2005), DDR (Tomita et al., 2004), MEL (Li et al., 2002)  and 

SAPO-34 (Li et al., 2004).  
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Table 1.1: Code and kinetic diameter of selected zeolites (Baerlocher et al., 2001) 

Zeolite (code) Kinetic diameter (Å) 

Zeolite Socony Mobil-5 or ZSM-5 (MFI) 

Ferrierite (FER) 

Faujasite (FAU) 

Mordenite (MOR) 

Linde Type A (LTA) 

Zeolite Socony Mobil-11 or ZSM-11 (MEL) 

Beta (BEA) 

Deca-dodecasil 3R (DDR) 

Aluminophosphate (AIPO-5, AFI) 

Silicoaluminophosphate (SAPO-11, AEL) 

5.3 x 5.6 

3.5 x 4.8 

7.4 x 7.4 

6.5 x 7.0 

4.1 x 4.1 

5.3 x 5.4 

7.3 x 6.0 

3.6 x 4.4 

7.3 x 7.3 

3.9 x 6.3 

 

 Among the zeolite membranes, zeolite MFI membranes (ZSM-5 and 

Silicalite-1) are the most common membranes studied by the researchers and thus, 

relatively large information available for its synthesis and application in the literature. 

The pore structure of MFI zeolite is near to the size of many industrially important 

organic molecules. Therefore, its membrane can be used for the separation of organic 

compounds with kinetic diameters close to its pores. Zeolite MFI membrane has the 

pore structure of straight (b-oriented), circular pores (0.54 x 0.56 nm) interconnected 

with sinusoidal (a-oriented), elliptical pores (0.51 x 0.54 nm) and a tortuous path 

along the c-direction (Lai et al., 2004). Figure 1.3 shows a schematic of the 3-

dimensional pore structure of MFI zeolites (ZSM-5 and Silicalite-1). The pore 

diameters of the important organic molecules are presented in Table 1.2.  
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Figure 1.3: 3-dimensional pore structure of MFI zeolites (ZSM-5 and Silicalite-1) 

(Lai et al., 2004b, Tsapatsis, 2004) 

 

Table 1.2: Kinetic diameter of selected organic molecules (Lai et al., 2004a) 

Molecule Kinetic Diameter (angstrom,Å) 

p-xylene 

m-xylene 

o-xylene 

cyclohexane 

n-hexane 

benzene 

dimethylbutane 

5.85 

6.80 

6.80 

6.00 

4.30 

5.85 

6.20 

 

1.3.1     Separation of Xylene Isomers using Zeolite Membrane 

 MFI-type zeolite membrane could be used to separate close boiling point 

xylene isomers due to the kinetic diameters of xylene molecules are close to the 

pore structure of the membrane (Table 1.1). Unlike distillation processes, the 

separation mechanism in zeolite membrane is not based on the relative volatility of 

components, but on the difference in sorption and diffusion properties of the feed 

substances as well as molecular sieve effect of the membrane (Hedlund et al., 1999; 

Nikolakis et al., 2001; Jeong et al., 2003; Lai et al., 2003; Dyk et al., 2005). The 

(101) 

b 

c 

a 

5.4 x 5.6 Å 

5.1 x 5.5 Å 
b 

c 

a 

(h0h) 
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typical molecular structure of xylene isomers is shown in Figure 1.4. During the 

past few years, separation of xylene isomers using MFI-type zeolite membrane has 

been reported by various researchers and achieved only a little success due to the 

microscopic defects present in the membrane (Xomeritakis et al., 2001; Lai et al., 

2003; Taridit et al., 2006).  Therefore, high flux and high selectivity zeolite 

membranes should be developed. 

Figure 1.4: Typical molecular structure of xylenes (Morin et al., 1997) 

 

1.3.2  Catalytic Zeolite Membrane for Combined Xylene Isomerization and 

Separation  

In order to meet the p-xylene demand, ortho- and meta-xylenes are converted 

via the xylene isomerization reaction, a major industrial process for the production of 

p-xylene. Xylene isomerization is a thermodynamic equilibrium restricted reaction, 

and therefore, 100% conversion is not possible under conventional conditions. The 

xylene isomerization is an acid-catalyzed reaction and most of the isomerization 

plants are using zeolite based catalysts. It is well-known that xylenes undergo two 

main competitive reactions, i.e. isomerization and disproportionation (Figure 1.5) 

over zeolite catalysts (Morin et al., 1996; Yu et al., 1996; Morin et al., 1998; Guisnet 

et al., 2000). Thus, it is desired to minimize disproportionation in favor of 

isomerization reaction, especially to para-isomer.  

m-xylene o-xylene p-xylene 

CH3 

CH3 

H

CH3 

CH3 

CH3 

CH3 

H3 
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Figure 1.5: m-xylene transformation (Morin et al., 1997) 

 

The application of zeolite membrane as catalytic membrane reactor for 

xylene isomerization and simultaneous separation could be a good alternative to 

increase conversion, selectivity and yield by selective removal of the product from 

the reactor (Dyk et al., 2005; Stephane Haag et al., 2006; Tarditi et al., 2008a; Zhang 

et al., 2009). The combined separation and reaction in a single unit provides better 

flexibility of operation and enhancement in the reaction process as well as reducing 

energy consumption, improving operation safety, and miniaturizing the reactor 

system (Tarditi et al., 2008a). The zeolite-based catalytic membrane reactor 

generally consists of a supported permselective layer (membrane) that 

simultaneously acts as catalyst (catalytic membrane reactor, CMR). The prospects of 

catalytic zeolite membrane reactor need to be studied so that the technology is 

economically competitive.  
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1.4     Modification of Zeolite for Combined Xylene Isomerization and  

             Separation 

Recently, researchers have explored the possibility of adding chemical 

functionalities into the zeolites structure with organic groups, to develop organic- 

functionalized molecular sieve material, a new class of catalysts with organic active 

sites (Jones et al., 2001). Therefore, the acid functionalized zeolite crystal has been 

studied as heterogeneous catalyst for number of reactions (Shin et al., 2000; 

Monique et al., 2004).  

 

Acid-functionalized zeolite membrane can be used as catalytic membrane 

for combined xylene isomerization reaction and separation in a single reactive 

separation step. The acidic functional group present in the membrane could become 

the active reaction site for the isomerization reaction. This type of process 

intensification could increase yield of p-xylene.  At the same time, more efficient 

heat integration along with the simultaneous reaction and separation could be 

achieved in a single unit resulting in substantial savings. Figure 1.6 shows 

schematic of the combined reaction and membrane separation process. m-xylene is 

used as feed reactant and isomerization reaction occurred in the acid-functionalized 

silicalite-1 membrane to produce p-xylene and o-xylene. The reaction products are 

subsequently removed from the retentate. 
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Figure 1.6: Schematic of combined xylene isomerization and separation in a single 

stage of operation using acid-functionalized catalytic membrane reactor 

 

 

1.5    Problem Statement 

            The current technologies for p-xylene production and recovery consume high 

energy and incur high operating cost. Due to the increasing demand and rising price 

of p-xylene over the global market, researchers have devoted considerable effort over 

the past 10 years in finding economic process route for the production and recovery 

of p-xylene. MFI-type zeolite membrane emerged as a potential effective alternative 

to be used in a membrane reactor. 

 

The synthesis of a well-intergrown and high quality (thin, compact and low 

defects) silicalite-1 (MFI type zeolite) membrane still poses many challenges for 

various researchers. During the synthesis and template removal steps, defects such as 

intercrystalline boundary and cracks can easily form. A high quality membrane is 

needed for the separation of xylene isomers because a minor defect in the membrane 

structure will affect the separation performance. Although the methods to produce 

minimum defects zeolite membrane have been reported in the literature (Hedlund et 

  m-xylene    p-xylene   o-xylene 

m-xylene or o-xylene 

(Feed/ Retentate) 
Permeate 

Acid-functionalized catalytic membrane 
 

Porous Support 
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al., 2002, Bernal et al., 2004), the results are not reproducible which are mainly due 

to the complex mechanism of zeolite crystal growth that has not been fully 

understood. Hence, reproducibility of the synthesis method is another challenging 

task for the synthesis of zeolite membrane.   

 

        Most of the xylene separation studies using MFI type zeolite membrane 

reported in the literature have focused on the effect of membrane quality such as 

orientation, thickness, microstructure and defects. The effect of separation process 

variables such as temperature, xylene feed composition and feed partial pressure, as 

well as their interactions are not systematically investigated. To the best of our 

knowledge, optimization of the operating process variables in xylene separation has 

not been reported. Therefore, there is a need to use the statistical approach to study 

the separation performance of the membrane. This approach with minimum number 

of experiments will provide information about i) interactions between the process 

variables, ii) important variables in the separation process and iii) identification of 

the optimum operating condition. The conventional approach reported in the 

literature for the study needs large number of experiments using one process variable 

studied at a time and keeping other variables constant. This one-factor-at-a-time 

method generally fails to consider the possible interactions between the factors 

(Montgomery, 2005). Therefore, a statistical Design of Experiment (DoE) approach 

to fully evaluate the effect of operating variables and interactions between the factors 

to the membrane separation performance is much needed.   

 

Although the reported results show the potential of H-ZSM-5 in membrane 

reactors for xylene isomerization; the membrane shows moderate to low selectivity 
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of p-xylene (Kim et al., 1998; Zheng et al., 2006). There is a need to synthesize a 

catalytic membrane with improved conversion, p-xylene yield and p-xylene 

separation rate. Silicalite-1 membrane has shown good performance in p-xylene 

separation, due to its higher diffusion rate compared to its isomers, m-xylene and o-

xylene (Stephane Haag et al., 2006). However, silicalite-1 is an aluminum-free 

analogue of ZSM-5 (Si/Al = ∞) which is catalytically inactive in its pure form. The 

selective and continuous removal of p-xylene from the reaction system could 

enhance the xylene isomerization toward higher selectivity and yield. Therefore, it 

has drawn an interest in the synthesis of silicalite-1 membrane with catalytic acid 

sites.  

 

In order to introduce the acid sites in silicalite-1 membrane, organic-

functional groups could be added into the synthesis mixture. Jones et al. (1999) 

reported that the introduction of organic group into the zeolite micropore is difficult 

due to the large size of organic species, which resulted in a disruption of the crystal 

structure and multiphase, and thus, crystalline/amorphous mixture is produced. The 

transformation of organic-functional group present in the amorphous phase to 

organosulfonic acid group resulted in the formation of acid-functionalized zeolite. 

The main advantage of this material is the absence of pore blockage in the zeolite 

crystalline phase and most of the acid sites are located in the amorphous phases of 

the structure. 

 

            However, the synthesis of acid-functionalized silicalite-1 catalytic membrane 

using organo-functional group is a new task and therefore imposes many challenges. 

The problems encounters for the synthesis of this new-type membrane are: 
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• Method for synthesis of membrane and the choice of organo-functional group 

• For obtaining well-intergrowth membrane, optimum concentration of the 

organo-functional group present in the synthesis mixture need to be studied 

• Stability of the membrane after functionalization  

• The presence of acid sites on the membrane which depends on the amount 

and type of amorphous species. 

 

After having an appropriate design of acid functionalized silicalite-1 catalytic 

membrane reactor, the challenge is to test the performance of the membrane in 

xylene isomerization. By far, the development of acid-functionalized silicalite-1 

catalytic membrane reactor for the application of combined xylene isomerization 

reaction and separation will be an arduous task due to the acid-functionalized 

silicalite-1 membrane is first synthesized in the present work.  

 

The membrane should possess the ability of xylene isomerization as well as 

separation of p-xylene from the reaction products. In order to optimize p-xylene yield 

and to avoid side reactions other than isomerization, a suitable operating condition 

such as weight hourly space velocity for isomerization of xylene need to be studied. 

Another challenge is the selective separation of p-xylene after isomerization reaction. 

High separation factor of p-xylene to its isomers should be achieved. By reactive 

separation of p-xylene from the reaction products, it is believed that the conversion 

of xylene and selectivity of p-xylene will be improved.  

 

            There is a need for developing a detailed theoretical model that can help in 

the understanding the performance, potentialities and limitations of the separation of 
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xylene isomer through silicalite-1 membrane, isomerization reaction as well as 

combined process of xylene isomerization reaction and separation using acid-

functionalized silicalite-1 membrane in a catalytic membrane reactor. 

 

            For separation of p-xylene from its isomers, the transport mechanism of 

xylene molecule through membrane is complex; especially for separation based on 

adsorption and surface diffusion where the adsorption rate is a function of pressure 

and temperature. The quantification of the adsorption parameters is the basic 

information that is needed to model the transport mechanism of xylene isomers 

through silicalite-1 membrane. Although the adsorption of p-xylene in silicalite-1 has 

been studied by various researchers (Pope et al., 1986; Richards et al., 1988; 

Choudhary et al., 1997), the adsorption data are reported at lower temperature range 

of 20
 o
C – 80 

o
C. Most of the adsorption parameters at higher temperature (> 150 

o
C) 

reported in the literature were determined by extrapolation of data obtained at 

relatively lower temperature (Tarditi et al., 2008a). However, as reported by van de 

Graaf et al. (2000), the adsorption parameters such as saturation amount adsorbed on 

silicalite-1 are a function of temperature and should be determined experimentally. 

To the best of our knowledge, the adsorption parameters of xylene isomers at higher 

temperature, i.e. >150 
o
C are still not reported in the literature. Besides, the 

experimental data for the adsorption of o-xylene in silicalite-1 membrane are hardly 

reported in the literature. Therefore, it is important to determine the adsorption 

parameters for p-xylene and o-xylene in order to obtain the permeation flux of xylene 

molecules through silicalite-1 membrane. 
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         A suitable mathematical model (reaction and diffusional transport) that can 

help in the understanding of the performance of acid-functionalized silicalite-1 

membrane in xylene isomerization reaction needs to be derived. Although the 

reaction scheme of xylene isomerization using acid catalysts has been reported by 

various researchers, there are still inconsistencies need to be addressed (Li et al., 

1992; Iliyas and Al-Khattaf, 2005). Therefore, a suitable reaction scheme that can 

describe the catalytic activity of the acid-functionalized silicalite-1 membranes need 

to be figured out. The kinetic parameters of the reaction for the purpose of design 

and scale up of catalytic membrane reactor need to be determined. It is also crucial to 

understand the rate controlling steps of the reaction process. The kinetic parameters 

obtained at different reaction temperature from the reaction scheme model would 

indentify the rate control factor in the process.           

 

The development of a suitable model of catalytic membrane reactor in order 

to simulate conversion of xylene at different operating conditions will be extremely 

important. It would lead to the better understanding of the process and factors 

responsible for the combined xylene isomerization and reactive separation of p-

xylene through acid-functionalized silicalite-1 membrane. The data and knowledge 

generated will be a first step leading to the development of catalytic membrane 

reactor to be used in the petrochemical industry for the production of p-xylene in a 

single unit. The validity of the model could be verified by comparing the 

experimental data with the simulated data obtained from the model. 
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1.6 Objectives 

The objectives of the present research are: 

1) To synthesize and characterize silicalite-1 and acid-functionalized silicalite-1 

membranes. 

2) To test the performance of silicalite-1 and acid-functionalized silicalite-1 

membranes for the separation of binary and ternary xylene mixture. 

3) To develop a mathematical model suitable to describe the separation of 

xylene isomers through silicalite-1 membrane. 

4) To study the performance of acid-functionalized silicalite-1 membranes as 

catalyst in xylene isomerization reaction and to determine the reaction rate 

parameters.  

5) To propose a suitable mathematical model to represent combined xylene 

isomerization reaction and permeation of xylene through acid functionalized 

silicalite-1 membrane in the catalytic membrane reactor. 

 

1.7    Scope of the Study 

The scope of the study in the present research is presented in the following 

section. 

 

1.7.1   Synthesis  and  Characterization  of Silicalite-1 and Acid-functionalized 

Silicalite-1 Membranes 

Silicalite-1 membrane was synthesized using in-situ hydrothermal 

crystallization method. Two types of acid-functionalized membranes: (1) 

propylsulfonic acid-functionalized silicalite-1 membrane and (2) arenesulfonic acid-

functionalized membrane were synthesized using one-step in-situ hydrothermal 
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crystallization and subsequent post-synthesis modification. The membranes were 

characterized using HR-XRD, SEM, TEM, FT-IR, 
29

Si MAS NMR and 
13

C CP-MAS 

solid state NMR, Elemental analysis, TGA, NH3-TPD, acid-base titration using 

different ion-exchange agent and nitrogen adsorption-desorption, respectively.  

 

1.7.2  Performance of Silicalite-1 Membrane in the Separation of Binary and 

Ternary Xylene Mixtures 

A vapor permeation test rig was set-up and fabricated for finding the 

performance of disc type membrane. The test rig was set-up to conduct xylene 

single-component permeation and separation study for binary and ternary xylene 

mixture using silicalite-1 membrane at different operating conditions. The rig could 

be operated as a catalytic membrane reactor system for combined xylene 

isomerization reaction and separation using acid-functionalized membrane. The 

operating parameters such as feed composition, feed partial pressure, feed flow rate, 

temperature and sweep gas flow rate were studied. The performance and 

optimization of operating process variables (temperature, p-xylene feed partial 

pressure and p-xylene feed composition) on the selectivity and flux of the silicalite-1 

membrane were studied for the separation of p-xylene from binary and ternary 

xylene mixtures.  

  

1.7.3 Modeling of Xylene Mixture Separation using Silicalite-1 Membrane 

            The permeation of single component xylene isomer, p-xylene and o-xylene 

through silicalite-1 membrane was modeled based on the combination of adsorption 

and diffusion theory.  
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1.7.4  Performance of Acid-functionalized Silicalite-1 Membranes in Xylene 

Isomerization Reaction and Kinetic Parameters Determination 

            The optimum conditions obtained from DoE approach for binary and ternary 

xylene mixture separation process was used to evaluate the separation performance 

of propylsulfonic acid-functionalized silicalite-1 membranes and arenesulfonic acid-

functionalized silicalite-1 membranes, respectively. After the separation study, 

combined m-xylene isomerization reaction and separation process using acid-

functionalized silicalite-1 membranes was carried out in the membrane reactor. A 

kinetic model based on time on stream (TOS) was proposed to describe the xylene 

isomerization reaction using acid-functionalized silicalite-1 membranes at different 

reaction temperature. 

 

1.7.5  Modeling of Combined Xylene Isomerization Reaction and Separation 

using Acid-functionalized Silicalite-1 Membrane in the Catalytic 

Membrane Reactor 

 The mathematical model is based on the steady state mass balance equations 

for the membrane and the respective boundary conditions to study the catalytic 

membrane reactor performance for combined reaction and separation.  

 

The overview research activities flow chart carried out throughout the present 

study is presented in Figure 1.7. 



 21 

 

Figure 1.7: Research activities flow chart 
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1.8     Organization of Thesis 

This thesis describes the research work to study the synthesis and 

characterization of silicailte-1 and acid-functionalized silicalite-1 membranes and 

their performance in xylene isomer separation and reactive separation of xylene 

isomers. The fundamental aspects related with transport mechanism of xylene 

isomers permeation through silicalite-1 were investigated.  The isomerization and 

separation activity in the catalytic membrane reactor using acid-functionalized 

silicalite-1 membranes was described by a series of mathematical models. 

 

In the chapter 1 (Introduction), a brief introduction about the production of      

p-xylene from the current technologies and the prospects of membrane technologies 

for p-xylene separation are presented. The recent application of zeolite membrane in          

p-xylene separation and the development of acid-functionalized zeolite membrane 

for combined xylene isomerization reaction and separation are presented. At the end 

of this chapter, problem statements that provide basis and rationale to justify the 

research direction to be followed in the current study are included. The objectives of 

the present study are elaborated in detail together with scope of the study. 

 

Chapter 2 (Literature Review) presents literature review on the synthesis 

methods for MFI type zeolite membrane which are developed for the last decade. 

The recent development on acid-functionalized zeolite materials by various 

researchers is presented. This is followed by the review of characterization 

techniques used to study the physical and chemical properties of the membrane. The 

separation of p-xylene from binary and ternary xylene mixture using MFI type 

zeolite membrane reported in the literature are presented subsequently.  Beside that, 
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the background information and a review of experimental data for combined xylene 

isomerization reaction and separation using catalytic membrane is presented for the 

purpose of comparison.  

 

Chapter 3 (Modeling and Simulation) presents the process modeling and 

simulation study. It is divided into three main sections: (i) transport mechanism of 

xylene permeation and separation through silicalite-1 membrane and (ii) kinetic 

parameters determination based xylene isomerization reaction scheme and (iii) 

process modeling for combined xylene isomerization reaction and separation through 

acid-functionalized silicalite-1 membrane based on mass balance and reaction 

equations. This chapter presents the theoretical background of the process modeling 

and solution methodology for the simulation. The assumptions to perform the 

proposed model are also included in the chapter. 

 

In chapter 4 (Materials and Methods), a detailed description of the 

experimental work is elaborated. It starts by listing all the materials and chemicals 

used together with their respective supplier name and purity. The procedure applied 

for the synthesis of different silicalite-1 and acid-functionalized silicalite-1 

membranes and the equipment used during the preparation of membrane are given. 

The procedure of sample preparation for various characterization methods used in the 

present study are provided.  The set-up of the membrane permeation cell, operating 

procedure of the vapor permeation test rig, permeation measurement and samples 

collection and analysis are included. In the following section, the separation process 

conditions for binary and ternary xylene mixtures were given. The experimental 

procedure and operating parameters for combined xylene isomerization reaction and 
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separation in a catalytic membrane reactor is given in this chapter. Lastly, the 

procedure for products analysis is included. 

 

Chapter 5 (Results and Discussion) includes the results of the experimental 

data obtained in the present study followed by discussion. This chapter is divided 

into four sections. The first section presented the characterization of silicalite-1 and 

acid-functionalized silicalite-1 membranes. This is followed by the performance of 

silicalite-1 membrane in p-xylene separation from binary and ternary xylene 

mixtures. Design of Experiment (DoE) approach is applied in determination of 

optimum operating process variables. The third section covers the process studies of 

combined xylene isomerization reaction and separation in acid-functionalized 

silicalite-1 catalytic membrane reactor. In the final section, the modeling study for 

separation and combined reaction and separation processes are presented. The 

adsorption parameters obtained from separation modeling are applied in the 

simulation of binary xylene mixture and p-/o-xylene separation factor. The kinetic 

parameters obtained from kinetic modeling are applied in the steady state mass 

balance equations in the membrane, with respective boundary conditions at retentate 

and permeate sides, to study the catalytic membrane reactor performance in 

combined xylene reaction and separation. The simulated results are compared with 

the experimental results. 

 

Chapter 6 (Conclusions and Recommendations) concludes all the major 

findings obtained in the present study. At last, suggestions and recommendations to 

improve the present research work as well as the future direction of the current study 

are presented. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

 

This chapter covers the literature review on: 

i. Synthesis methods for zeolite membrane (especially MFI-type zeolite 

membrane) reported in the recent years.  

ii. Different types of chemical and physical techniques for membrane 

characterization. 

iii. Separation results of p-xylene from binary and ternary xylene mixture using 

MFI type zeolite membrane.  

iv. The recent developments about acid-functionalized zeolite materials reported 

by various researchers.   

v. The background information of xylene isomerization using zeolite acid 

catalyst and a review of experimental data for combined xylene isomerization 

reaction and separation using catalytic membrane reactor.  

 

2.1       Zeolite Membrane Synthesis 

 Two critical stages are important to be considered during the formation of 

supported zeolite membrane; (a) nucleation and (b) crystal growth. These two stages 

are very sensitive to the experimental conditions such as synthesis solution/gel 

composition, synthesis temperature, synthesis time and type of supports which could 

be manipulated to control the crystal growth. The most common methods for the 

synthesis of supported zeolite membranes reported so far are in situ crystallization 

(Wang et al., 2001), secondary (seeding) growth (Nair et al., 2001) , vapor phase 

transport method or dry gel conversion method (Matsukata et al.,1993) and 

microwave-assisted hydrothermal synthesis (Motuzas et al.,2006). Figure 2.1 
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