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KAJIAN KE ATAS SIFAT-SIFAT PAPAN SERPAI TANPA 

PENGIKAT DARIPADA BIOMAS KELAPA SAWIT (Elaeis 

guineensis ) 

 

ABSTRAK 
 

Papan serpai tanpa pengikat telah dihasilkan daripada partikel-partikel kulit, daun, 

pelepah, bahagian tengah dan teras batang kelapa sawit pada dua perbezaan ketumpatan 

sasaran iaitu 0.8 g/cm
3
 dan 1.0 g/cm

3 
dan dua tekanan yang berbeza iaitu 5 MPa dan 12 

MPa. Ujian fizikal dan mekanikal telah dijalankan ke atas papan serpai tersebut. 

Sebahagian analisis kimia juga telah dijalankan seperti penentuan ekstraktif, 

holoselulosa, alfa-selulosa, lignin, kandungan kanji, gula individu, dan jumlah gula yang 

hadir dalam bahan-bahan tersebut. Pencirian spektroskopi juga dilakukan dengan 

menggunakan Spektrofotometer Inframerah Transformasi Fourier (FT-IR) untuk 

mengkaji kewujudan kumpulan berfungsi yang terdapat di dalam gentian kelapa sawit 

sebelum dan selepas panel dihasilkan. Pemerhatian anatomi bahan mentah dan panel 

diperhatikan dengan menggunakan Mikroskop Elektron Pengimbas (FESEM). Keputusan 

menunjukkan panel yang diperbuat daripada teras batang kelapa sawit mempunyai nilai 

kekuatan modulus kepecahan (MOR) dan kekuatan ikatan dalaman (IB) yang paling 

tinggi, pengembangan ketebalan (TS) dan penyerapan air (WA) yang paling rendah 

berbanding dengan semua sampel yang lain.  Sebahagian daripada panel yang dihasilkan 

telah memenuhi Japanese Industrial Standards (JIS A- 5908) untuk  Type 8, Type 13 dan 

Type 18. Walau bagaimanapun, panel yang diperbuat daripada kulit batang dan daun 

kelapa sawit tidak mempunyai kekuatan dan kestabilan dimensi yang memuaskan. 



 xviii 

Berdasarkan keputusan yang diperolehi, biomas kelapa sawit dapat dipertimbangkan 

sebagai bahan mentah alternatif mesra alam untuk menghasilkan panel papan serpai tanpa 

pengikat. 
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STUDY ON PROPERTIES OF BINDERLESS PARTICLEBOARD 

FROM OIL PALM (Elaeis guineensis) BIOMASS 

ABSTRACT 

Binderless panels were manufactured from the particles of bark, leaves, fronds, middle-

part and core-part of oil palm trunks at two different target densities (0.8 g/cm
3
 and 1.0 

g/cm
3
) using two different pressures (5 MPa and 12 MPa). Binderless panels produced 

were tested for the physical and mechanical properties. Chemical analysis had also been 

conducted including determination of extractives, holocellulose, alpha-cellulose, lignin 

content, starch content, individual sugar, and total sugar content in oil palm fibers. 

Spectroscopic characterization was done using Fourier Transform Infrared (FT-IR) 

spectroscopy to detect the presence of the functional group that exists in oil palm fibres 

before and after the board was made. The anatomical features of the raw materials and 

the manufactured panels were viewed using Field Emission Scanning Electron 

Microscopy (FESEM). The results showed that panels produced from core portion of the 

trunks exhibited the highest Modulus of Rupture (MOR) and internal bond (IB) strength, 

but lowest thickness swelling (TS) and water absorption (WA) values among the 

samples. Some of the tested panels had met Japanese Industrial Standards (JIS A- 5908) 

for the Type 8, Type 13 and Type 18. However, panels made from bark and leaves did 

not have satisfactory strength and dimensional stability. Based on the results of this 

study, oil palm biomass could be considered as environmentally friendly alternative raw 

material for the manufacture of binderless particleboard. 
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CHAPTER ONE: INTRODUCTION 

 

1.0 Background of the study  

 Malaysia is one of the world’s largest producers and exporters of palm oil. The 

production of palm oil is reflecting on many sides as economic, environmental and 

social benefits. Solid wastes and oil palm by parts available in huge amount all over the 

year. Oil palm biomass of trunk, fronds, empty fruit bunches, fiber, shell and waste 

matter would be obtained during assiduous life of the palm covering about 25 years. 

The oil palm biomass such as oil palm trunks produced during felling of old trees were 

normally shredded and left in the field to decompose naturally (Khozirah et al., 1991; 

Mohamad et al., 1985). Previously, some estate burn these waste in the field for fast 

disposal. This will produce more carbon dioxide emission to the environment.  The 

utilization of oil palm biomass to produce a value added product can reduce the effect 

of the activity in decomposing the waste due to environmental concern. Furthermore 

utilization of this waste will reduce the consumption of wood as raw material.  

 Particleboard is one of the extensively used wood based panels to manufacture 

building elements such as furniture components for interior purposes. The use of 

agricultural resources such as empty fruit bunch (EFB), kenaf, padi stalks, jute, flax, 

reed, cotton, grapevine, bagasse, straw, rice husks and bamboo have been used to make 

particleboards. As known, synthetic adhesive is required to manufacture a wood panel 

product. In particleboard manufacturing, adhesive is generally accepted to be the most 

costly raw material for making particleboard. Even though it is used only 8 % to 10 % 

of the weight of oven dries of the raw material, it still contributes 60 % to the overall 

cost of final product (Hashim et al., 2005; Laemsak & Okuma, 2000). Moreover, there 

are some harmful side effects such as health risks caused by the emission of volatile 
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organic compounds from the adhesives. Many consumer products containing 

formaldehyde based resins release formaldehyde vapour, leading to consumer 

dissatisfaction and health related complaints. Therefore, manufacturing particleboard 

without any adhesive would provide an alternative to those with synthetic adhesive. The 

strategy of high income and zero waste are the goals towards sustainability because 

producing products such as binderless particleboard from oil palm biomass will benefit 

society, being environmentally friendly, recyclable, renewable and biodegradable. 

 

1.1 Problem statement 

 

 Nowadays, there are global concerns for new energy resources from biomass. 

Huge amounts of oil palm biomass are being left unexploited in oil palm plantation. 

There were less old felled trunks and other oil palm biomasses been utilized and most of 

them have no convenient way of utilization and become troublesome wastes. In 

addition, the cost of particleboard manufacturing is high due to the use of adhesives 

because adhesive is one of the most costly raw materials for making particleboard 

(Laemsak & Okuma, 1999). Besides, emission of formaldehyde can cause health 

hazards contributed by formaldehyde based adhesives especially in particleboard 

manufacturing. Thus, in this research, a study on properties of binderless particleboards 

made from different types of oil palm biomass was being carried out. 
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1.2 Objectives 

 

The main objective of this study is to produce binderless particleboard from different 

types of oil palm biomass. 

The specific objectives are as follows: 

a) to study and compare the physical and mechanical properties of binderless 

particleboard made from different types of oil palm biomass. 

b) to compare the performance of binderless particleboard with the phenol 

formaldehyde particleboard, in accordance to JIS standard for particleboard 

Type 8, Type 13 and Type 18. 
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CHAPTER TWO: LITERATURE REVIEW 

  

2.0 Oil palm industry in Malaysia 

 The oil palm in Malaysia is more than a century old. Oil palm (Elaeis guineensis 

Jacq) becomes better known crop, especially in Southeast Asia, than in its origin 

country, West Africa (Basiron & Chan, 2000). Currently, Malaysia and Indonesia are 

the main producers and supplying more than 85% of world oil consumption (Table 2.1). 

The table illustrates the world major producers of palm oil from 1999 to 2008. The 

producer countries have been facing a stern environmental problems concerning solid 

biowaste handling of oil palm industry. In the year of 1999, Malaysia produced about 

10 554 000 tonnes of palm oil. The values had increased up to 17 734 000 tonnes in 

2008, showing an increase of 68 % in the period of nine years.  

 In 2008, Malaysia was the world’s major exporter of palm oil with 15.41 million 

tonnes or 45.84 % of the total world’s exporters (Table 2.2). In Malaysia, palm oil has 

reached extraordinary growth in production and exports in the last few decades. 

Concurrence to Oil World Annual Statistics 2008, over the last decade between 1990-

2008, the main palm oil producing countries have steadily increased their production. 

By the end of 2008, the major exporters of palm oil (in ‘000 tonnes), were Malaysia 

(15.41), Indonesia (14.47), Papua New Guinea (0.40), Columbia (0.33), and many other 

countries with smaller oil palm areas.  



 

 

 

 

 

 

 

Table 2.1: World Major Producers of Palm Oil: 1999 – 2008 (‘000 tonnes) 

 

Country 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

 

Malaysia 10 554 10 842 11 804 11 909 13 355 13 976 14 962  15 881 15 824 17 734 

Indonesia 6 250 7 050 8 080 9 370 10 600 12 380 14 100 16 050 17 270 19 330 

Thailand 560 525 625 600 690 735 700 860 1 020 1 170 

Nigeria 720 740 770 775 785 790 800 815 835 860 

Columbia 500 524 548 528 527 632 661 713 732 800 

Ecuador 263 218 228 238 262 279 319 352 396 415 

Papua New Guinea 264 336 329 316 326 345 310 365 384 400 

Cote d'Ivoire 264 278 205 265 240 270 320 330 320 330 

Honduras 90 101 130 126 158 170 180 195 220 268 

Brazil 92 108 110 118 129 142 160 170 190 220 

Costa Rica 122 137 150 128 155 180 210 198 200 202 

Guatemela 53 65 70 86 85 87 92 125 130 139 

Vanezuela 60 70 52 55 41 61 63 65 70 56 

Others 833 873 883 895 906 940 969 1 023 1 083 1 194 

 

Total 20 625 21 367 23 984 25 409 28 259 30 987 33 846 37 142 38 674 43 676 

                      

 

Source: Oil World Annual (1999-2008) & Oil World Weekly (12 December 2008) 
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Table 2.2: World Major Exporters of Palm Oil: 1999-2008 (' 000 tonnes) 

Country 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

           

Malaysia 8 912 9 081 10 625 10 886 12 266 12 575 13 445 14 424 13 747 15 413 

           

Indonesia 3 319 4 139 4 940 6 490 7 370 8 996 10 438 12 540 12 650 14 470 

           

Papua New Guinea 254 336 327 324 327 339 295 362 368 395 

           

Colombia 90 97 90 85 115 214 224 214 316 328 

           

Singapore* 292 240 224 220 250 237 205 207 186 205 

           

Cote d'lvoire 101 72 74 65 78 109 122 109 106 116 

           

Hong Kong* 94 158 192 318 185 127 39 20 20 28 

           

Others 788 896 1 099 1 027 1 320 1 647 1 736 2 121 2 474 2 665 

           

Total 13 850 15 019 17 571 19 415 21 911 24 244 26 502 29 996 29 887 33 620 

                      

 

Note: * - Includes Re-Exporrting Countries 

Source: Oil World Annual (1999-2008) & Oil World Weekly (12 December 2008) 



2.0.1 Oil palm planted area in Malaysia 

 

The oil palm was commercially exploited as an oil crop only from 1911 when 

the first oil palm estate was established in 1917 (Basiron et al., 2000). The expansion of 

the palm oil industry, in terms of planted area has been very speedy from 1975 until 

2009 as seen in Table 2.3 and Table 2.4. In 2009, the total area planted with oil palm 

was 4.69 million, 53.1% or 2.49 million hectares being in Peninsular Malaysia, 29% or 

1.36 million hectares in Sabah and 17.9% or 4.69 million hectares in Sarawak. The last 

decade had seen a quick extension in the cultivated area in Sabah and Sarawak while 

planting in Peninsular Malaysia had slowed down because of diminishing availability of 

new land for the crop. 

Table 2.3: Oil palm planted area: 1975-1991 (Hectares) 

Year P.Malaysia Sabah Sarawak Total 

          

1975 568 561 59 139 14 091 641 791 

1976 629 558 69 708 15 334 714 600 

1977 691 706 73 303 16 805 781 814 

1978 755 525 78 212 19 242 852 979 

1979 830 536 86 683 21 644 938 863 

1980 906 590 93 967 22 749 1 023 306 

1981 983 148 100 611 24 104 1 107 863 

1982 1 048 015 110 717 24 065 1 182 797 

1983 1 099 694 128 248 25 098 1 253 040 

1984 1 143 522 160 507 26 237 1 330 266 

1985 1 292 399 161 500 28 500 1 482 399 

1986 1 410 923 162 645 25 743 1 599 311 

1987 1 460 502 182 612 29 761 1 672 875 

1988 1 556 540 213 124 36 259 1 805 923 

1989 1 644 309 252 954 49 296 1 946 559 

1990 1698 498 276 171 54 795 2 029 464 

1991 1 744 615 289 054 60 359 2 094 028 

          

 

Source: Malaysian Oil Palm Statistic, 2009 
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Table 2.4: Oil palm planted area: 1992-2009 (Hectares)  

Year P.Malaysia Sabah Sarawak Total 

          

1992 1 775 633 344 885 77 142 2 197 660 

1993 1 831 776 387 122 87 027 2 305 925 

1994 1 857 626 452 485 101 888 2 411 999 

1995 1 903 171 518 133 118 783 2 540 087 

1996 1 926 378 626 008 139 900 2 692 286 

1997 1 959 377 758 587 175 125 2 893 089 

1998 1 987 190 842 496 248 430 3 078 116 

1999 2 051 595 941 322 320 476 3 313 393 

2000 2 051 595 1 000 777 330 387 3 376 664 

2001 2 045 500 1 027 328 374 828 3 499 012 

2002 2 096 856 1 068 973 414 260 3 670 243 

2003 2 202 166 1 135 100 464 774 3 802 040 

2004 2 201 606 1 165 412 508 309 3 875 327 

2005 2 298 608 1 209 368 543 398 4 051 374 

2006 2 334 247 1 239 497 591 471 4 165 215 

2007 2 362 057 1 278 244 664 612 4 304 913 

2008 2 410 019 1 333 566 744 372 4 487 957 

2009 

 

2 490 000 

 

1 360 000 

 

840 000 

 

4 690 000 

  

 

Source: Malaysian Oil Palm Statistic, 2009 

 

2.0.2 Botanical classification of oil palm 

 

 Elaeis guineensis Jacq. which is universally known as the oil palm is the most 

vital species in the genus Elaeis. According to Taxonomic Information System, (2009) 

the oil palm taxonomy is shown below: 

Kingdom  : Plantae 

Sub-Kingdom  : Tracheobionta 

Division  : Angiospermae 

Class   : Monocotyledons 

Sub-Class  : Arecidae 

Order   : Arecales 

Family   : Arecaceae 

Genus   : Elaeis 

Species  : Elaeis guineensis Jacq 

Common name : African oil palm 
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2.0.3 Oil palm biomass 

 

 Biomass can be defined as any organic plant product that has general uses. 

Lignocellulosics have been included in the term biomass. Therefore, oil palm biomass; 

the palm kernel, trunks, fronds, leaves, empty fruit bunches, pressed fruit fibers and 

shells consist of cellulosic fibers. Oil palm contains lignocellulosics material (Akmar & 

Kennedy 2001) which could be ideal for producing value-added composite panels and 

oil palm is one of the most versatile crops where nearly every part of the palm, from oil 

to the entire biomass can be utilized. Table 2.5 shows the wet weight of oil palm 

biomass available in Malaysia. The amount of oil palm biomass (wet weight) available 

annually is estimated to be from OPT: 13.93 million tonnes or 21.63 million cubic 

meters from replanting; and OPF, 75.90 million tonnes from the field. 

 

Table 2.5: The wet weight of oil palm biomass available in Malaysia 

Sources of oil palm biomass Unit 

 Million tonnes per year Million cubic meter 

 (wet weight) (per year) 

      

Peninsular Malaysia     

Oil Palm Trunk (OPT) 7.91 12.29 

Oil Palm Frond (OPF) 43.12  

Empty Fruit Bunch (EFB) 9.69  

   

Sabah and Sarawak   

Oil Palm Trunk (OPT) 6.01 9.34 

Oil Palm Frond (OPF) 32.78  

Empty Fruit Bunch (EFB) 6.36  

      

Total 105.87 21.63 

      

 

(Source: Anis et al., 2008) 
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 The oil palm biomass supply outlooks in Malaysia from 1996 to 2020 (t/yr, dry 

weight) is  shown in Table 2.6. In future, total amount of the whole trunk in 2017-2020 

will be estimated up to 2 971 934 t/yr, dry weight and total amount of leaf stalks and 

petiole (fronds) will be 13 643 185 and 7 141 490 t/yr, dry weight (Table 2.6). As the 

oil palm biomass consists of lignocellulosic material, it is a valuable raw material for 

value added products.  
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Table 2.6: Oil Palm Biomass Supply Outlooks in Malaysia from 1996 to 2020 (t/yr, dry weight) 

        Year       

 1996 1997-2000 2001-2003 2004-2006 2007-2010 2011-2013 2014-2016 2017-2020 

Oil Palm Trunk                 

Total oil palm hectarage in 1994 (ha) 2 339 884        

         

Area due for replanting (% per year) 2.4 2.5 4.5 4.6 3.7 4.9 4.1 3.4 

         

Total replanting hectarage (ha) 56 157 58 497 105 295 107 635 86 576 114 654 95 935 79 556 

         

Number of felled palms 7 637 381 7 955 606 14 320 090 14 638 314 11 774 296 15 592 987 13 047 193 10 819 624 

         

Amount of fibre bundles (t/yr, dry weight) 1 130 180 1 177 271 2 119 087 2 166 178 1 742 360 2 307 450 1 930 724 1 601 088 

         

Amount of parenchyma (t/yr, dry weight) 664 605 692 297 1 246 134 1 273 826 1 024 599 1 356 902 1 135 367 941 524 

         

Amount of bark (t/yr, dry weight) 303 051 315 678 568 221 580 848 467 204 618 730 517 713 429 323 

         

Total amount of the whole trunk (t/yr, dry 

weight) 2 097 836 2 185 246 3 933 442 4 020 852 3 234 164 4 283 082 3 583 803 2 971 934 

         

Pruned Fronds         

Area of palms aged 7 years and above (%) 79 82.9 76.7 72.7 71.3 70.4 72.9 73.9 

         

Total hectarage (ha) 1 848 508 1 939 764 1 794 691 1 701 096 1 668 337 1 647 278 1 708 775 1 729 174 

         

Amount of leaf stalks (t/yr, dry weight) 14 584 731 15 304 737 14 160 112 13 421 645 13 163 181 12 997 026 13 458 568 13 643 185 

         

Amount of petiole (t/yr, dry weight) 7 634 340 8 011 225 7 412 074 7 025 525 6 890 233 6 803 260 7 044 853 7 141 490 

                  

Source: Malaysian Oil Palm Statistic, 2008
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2.0.4 Oil palm trunk 

 

2.0.4.1 Anatomical review of oil palm trunk 

 Oil palm is monocotyledonous species that does not have cambium, secondary 

growth, ray cells, annual or growth rings, sapwood and heartwood or branches and 

knots (Killman & Lim, 1985). The growth and increase in diameter of the trunk 

outcome from the overall cell division and cell enlargement in the parenchymatous 

ground tissue, together with the growth of the fibers of the vascular bundles (Khozirah 

et al., 1991). There are three main parts, namely cortex, peripheral region based and 

central region based on a cross sectional view of the oil palm trunk (Killman & Lim, 

1985). 

 

2.0.4.2 Cortex, periphery and central region 

 Cortex is approximately 1.5 to 3.5 cm wide, makes up the outer part of the 

trunk. It is largely composed of ground parenchyma with abundant longitudinal fibrous 

strands of small and irregular shaped fibrous strands and vascular bundles (Killman & 

Choon, 2001) as shown in Figure 2.1. Periphery area with slender layers of parenchyma 

is crowded with vascular bundles. It provides the main mechanical support for the palm 

trunk (Killman & Choon, 2001). The central region is composed of slightly larger and 

widely spotted vascular bundles embedded in the thin wall parenchymatous ground 

tissues. The bundles increase in size and are more widely spotted towards the core of 

the trunk (Killman & Choon, 2001). 
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Figure 2.1: Cross section of an oil palm stem division into various anatomical parts. 

(Source: Killman & Lim, 1985) 

 

2.0.4.3 Vascular bundles and parenchymatous tissue  

 The number of vascular bundles per unit area decrease towards the inner zones 

and increase from the butt end to the top of the palm (Killman & Lim, 1985). Each 

vascular bundle is mainly made up of a fibrous sheath, phloem cells, xylem and 

parenchyma cells (Figure 2.2). According to Lim & Khoo (1986) the xylem is sheathed 

by parenchyma and contains mainly one or two wide vessels in the peripheral region 

and two or three vessels of similar width in the central and inner region. Lim & Khoo 

(1986) also further stated that the distribution of fibrous strands depends on the number 

of bundles nearby. The ground parenchymatous cells consist mainly of thin-walled 

spherical cells, except in the area around the vascular bundles. The walls are 

progressively thicker and darker from the inner to the outer region (Killman & Lim, 

Vascular bundle 

Ground parenchyma 

Bark 

Cortex 

Peripheral region 

Central region 

Inner region 
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1985; Basiron et al., 2001). The distribution of vascular bundles in the inner zone of the 

oil palm trunk varies depending on the palm. The fibers usually have a well developed 

secondary wall with a typically multilayered appearance. The trunk is primary tissue 

and is not compare in developmental terms to the wood of dicotyledons and 

gymnosperms. Vascular bundles in oil palm trunk range from about 1 to 3 mm in 

diameter depending on their location within the stem and the species (Parthasarathy & 

Klotz, 1976). 

 

 

Figure 2.2: Fiber 

(Source: Killman & Lim, 1985) 
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2.0.4.4 Physical properties of oil palm trunk 

 

2.0.4.4.1 Moisture content 

 

 The initial moisture content of the oil palm trunk varies from 100 and 500% 

(Killmann & Lim, 1985). In the other study, oil palm trunks contain very high moisture 

content from 60-300% depending on the height and age of the trunk (Singh, 1994 and 

Mohammad 2000). A gradual increase in moisture content is indicated along the trunk 

height and towards the central region, with the outer and lower zone having far lower 

values than the other two zones. Based on depth of the trunk, the highest moisture 

content was reached at the central of trunk and a gradual decrease to the outer part of 

trunk while based on the trunk height factor, the moisture content was decreased from 

the bottom to the top of the oil palm tree (Lim & Khoo, 1986). 

 

2.0.4.4.2 Density  

 

 Density values of the oil palm trunk range from 200 to 600 kg/m
3
 with an 

average density of 370 kg/m
3
. There is a variation of density values at different parts of 

the oil palm trunk consequently of its monocotyledonous nature. The density of oil palm 

trunk decreases linearly with the trunk height and towards the centre of the trunk and 

the outer region throughout the trunk shows density values over twice those of the inner 

areas (Lim & Khoo, 1986). Across the trunk the density is influenced largely by the 

number of vascular bundles per square unit which decreases towards the center. 

However, variations in density along trunk height are due to the vascular bundles being 

younger at the top and of the palm ( Killmann et al., 1985; Husin et al., 1985).  
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2.0.4.4.3 Fiber dimensions  

 
 The palm development in trunk diameter caused by the widen of the fibrous 

bundle sheath, mostly those complementary the vascular bundles in the central region 

and the oil palm fiber length enlarges from periphery to the inner part. The fiber 

diameter decreases along trunk height because broader fibers are to be found in the 

larger vascular bundles nearer the base of the palm trunk (Lim & Khoo 1986). The fiber 

dimensions of oil palm trunk, fronds, rubberwood and douglas fir are shown in Table 

2.7.  

 

Table 2.7: Comparison of fiber dimension between oil palm trunk, fronds, EFB, 

rubberwood and douglas fir. 

 

Dimension Trunk Fronds EFB Rubberwood D/Fir 

            

Fiber length (mm) 1.22 1.52 0.89 1.50 3.4 

      

Fiber diameter (µ) 35.3 *19.4 25.0 40.0 40.0 

      

Cell wall thickness 4.5 *4.6 2.8 5.3 **na 

       

  

(Source: Mohamad et al., 1985) 

* Liew, 1996 

**na: not available 
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2.0.5 Oil palm fronds 

  

 The oil palm fronds are available during felling operations and during fruit 

harvesting. These are potential sources of fibers and are now used in the production of 

building materials, panel products, and for pulp and paper (Salleh et al., 2007). The 

fronds are also used as mulch in the field (Mohamad et al., 1985). In the process of 

replanting, pruned fronds are available in the field. The requirement of oil palm fronds 

for value-added is now had been competitive. While petiole is harvested, the rachis and 

leaflets are left behind (Mohamad et al., 1995 and Gurmit et al., 1999). 

 

 

2.0.6 Oil palm leaves 

 

 

 The oil palm leaves are also available seasonally during felling operations. The 

oil palm leaf consists of leaflets, each with a lamina and midrib, a central rachis, to 

which the leaflets are attached, a petiole (the part of the leaf stalk between the lowest 

leaflets and the trunk), and a leaf sheath. The total number of leaves on a plantation 

palm depends largely on the harvesting and pruning methods in use. The oil palm single 

vegetative growing point is situated in a depression at the stem apex, as with other large 

palms. This meristem is continuously active, producing a new leaf primordium about 

every two weeks in a mature palm and the leaf takes about two years to develop from 

initiation to the time the leaflets unfold in the centre of the palm crown, and may then 

spend a further two years actively photosynthesizing, before senescence sets in (Corley, 

et al., 1982). 
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 The leaf is pinnate, with the pinnae (leaflets) arranged in two or more planes on 

each side of the rachis. Leaf size increases progressively up to about eight or ten years 

after planting, when it reaches a maximum which is maintained for at least ten years and 

probably much longer (Corley, et al., 1982). 

 

2.0.7 Chemical properties of oil palm biomass 

 The main constituent in oil palm fibers is cellulose. Oil palm trunk (OPT) fiber 

exhibited the highest content of extractives and lignin compared to empty fruit bunch 

(EFB), oil palm frond (OPF), hardwood and softwood (Abdul Khalil et al., 2008). The 

quantity of cellulose in fibers influences the property and economic production of fibers 

for different uses. Chemical composition varies from plant to plant and within plants 

from different parts of the same plant. It also varies between plants from different 

geographic locations, ages, climate and soil conditions (Rowell et al., 2000). The 

chemical compositions of oil palm biomass are presented in Table 2.8 together with the 

previously mentioned species as comparison. 
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Table 2.8: Chemical composition of oil palm biomass and wood fibers 

  Extractives Holocellulose Alpha-cellulose Lignin Ash 

  (%) (%) (%) (%) (%) 

Oil palm trunk -  45.70* 29.20* 18.80* 2.30* 

 5.35** 73.06** 41.02** 24.51** 2.20** 

Oil palm frond - 80.50* - 18.30* 2.50* 

 4.40** 83.54** 56.03** 20.48** 2.40** 

Empty fruit bunch - 65.50* - 21.20* 3.50* 

 3.21** 80.09** 50.49** 17.84** 3.40** 

Hardwood 

0.1 - 

7.7*** 71 - 89*** 31 - 64*** 

14 - 

34*** <1*** 

Softwood 

0.2 - 

8.5*** 60 - 80*** 30 - 60*** 

21 - 

37*** <1*** 

Rubberwood - 67* 41.50* 26* 1.50* 

            

 

Source:  

*Mohamad et al., 1985 

**Abdul Khalil et al., 2008 

***Tsoumis, 1991 

  

 In general, oil palm has low lignin and holocellulose content as compared to 

hardwood, softwood and rubberwood (Table 2.8). The lignin content in oil palm range 

varies between 17 % and 25 %. Besides, Halimahton and Ahmad, (1990) observed that 

the lignin content was fairly evenly distributed throughout the tree except that the core 

in the upper region was slightly lacking in the component even as the bottom contained 

an extreme amount. The ash content also observed to be similar throughout the oil palm 

with the range varies between 2.2 % and 3.5 %. 
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2.0.7.1 Cellulose 

 Cellulose is a linear polymer of D-glucopyranose sugar units (the dimer, 

cellobiose) linked in a beta configuration and the average cellulose chain has a degree 

of polymerization of about 9,000 to 10,000 units (Rowell, 2005). Besides, 

approximately 65 percent of the cellulose is highly oriented, crystalline, and not 

accessible to water or other solvents. The strongest component of the lignocellulosic 

resource is the cellulose polymer. The remaining cellulose, composed of less oriented 

chains, is only partially accessible to water and other solvents as a result of its 

association with hemicellulose and lignin. None of the cellulose is in direct contact with 

the lignin in the cell wall (Tsoumis, 1991; Sjostrom 1993).  

 

2.0.7.2 Hemicellulose 

 The hemicelluloses are a group of polysaccharide polymers containing the 

pentose sugars D-xylose and L-arabinose and the hexose sugars D-glucose, D-galactose, 

D-mannose, and 4-0-methylglucuronic acid (Tsoumis, 1991). Hemicellulose is 

amorphous and highly branched with a much lower degree of polymerization than 

cellulose. Hemicellulose varies in structure and sugar composition depending on the 

source (Reddy & Yang, 2005). Hemicellulose is soluble in alkali and is easily 

hydrolyzed by acids (Rowell, 2005). 
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2.0.7.3 Lignin, extractives and ash content 

 Lignin is amorphous, highly complex, and aromatic polymers of phenylpropane 

units (Sjostrom, 1993). Lignin does not have a single repeating unit of the 

hemicelluloses like cellulose, but consists of a complex arrangement of substituted 

phenolic units. Lignins are composed of nine carbon units derived from substituted 

cinnamyl alcohol; coumaryl, coniferyl, and syringyl alcohols that are highly branched, 

not crystalline, and their structure and chemical composition is a function of their 

source (Donaldson, 2001; Reddy & Yang, 2005). The molecular weight of lignin 

depends on the method of extraction. Klason lignin, because it is highly condensed, has 

molecular weights as low as 260 and as high as 50 million (Goring, 1962).  

 The extractives are a group of cell wall chemicals mainly consisting of fats, fatty 

acids, fatty alcohols, phenols, terpenes, steroids, resin acids, rosin, waxes, and many 

other minor organic compounds (Rowell, 2005). These chemicals exist as monomers, 

dimers and polymers. Extractives are responsible for the colour, smell and durability of 

the wood. The qualitative difference in extractive content from species to species is the 

basis of chemotaxonomy (taxonomy based on chemical constituents). The extractive 

materials are primarily composed of cyclic hydrocarbons. The remaining mass of 

lignocellulosics consists of water, organic soluble extractives, and inorganic materials. 

These vary in structure depending on the source and play a major role in natural decay 

and insect resistance and combustion properties of lignocellulosics (Mukherjee, 1972). 

 Ash content is the inorganic portion can vary from a few percent to over 15 

percent, depending on the source. Ash content may be high for plant which has higher 

amount of silica (Rowell, 2005). 
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2.1 Particleboard 

2.1.1 General 

 

 Particleboard is a composite material and product manufactured from wood 

particles, flakes, sawdust, or sawmill shavings using suitable binder or synthetic 

adhesive which is pressed together (Abdul Khalil & Hashim, 2004). It is produced by 

mechanically reducing the material into small particles, drying, screening, mixing with 

adhesives and additives, forming, consolidating a loose mat of the particles with heat 

and pressure into a panel product and finishing. The first industrial production of 

particleboard using synthetic resins is believed to have occurred in 1941 in Bremen, 

Germany using phenolic binders and spruce particles (Moslemi, 1973). Various size of 

wood particles were glued together to produce particleboard (Rowell, 2005). According 

to Moslemi, (1973) particleboard is cheaper, denser and more uniform than 

conventional wood and plywood. The properties of the board can be engineered to meet 

specific requirements such as sufficient bending strength and dimensional stability, flat 

and smooth surfaces and good machining characteristics. Dimensional stability of 

particleboard varies depending on the amount and type of adhesives and internal bond 

of particleboard (Rowell, 2005). 
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2.1.2 Raw materials of particleboard 

 The main components in particleboard are wood particle and adhesive. Soft 

wood and medium density hard wood are the common type of wood used to produce 

particleboard. Adhesive level usually is around 5 – 15% based on oven dry weight of 

the board. Urea formaldehyde and phenol formaldehyde is the common adhesive used 

in manufacturing particleboard (Rowell, 1992). At present, particleboards are 

manufactured from residues of non-commercial and low-grade timbers generated by the 

wood-based mills. The demand for rubberwood as sawn timber, furniture and other 

composites products has been increasing in the last ten years resulting in a price 

increase of rubberwood. Due to the increasing cost of rubberwood, the particleboard 

industry in Malaysia is looking into alternative supply of raw materials. The oil palm 

biomass seems to be potential raw materials in particleboard industry in Malaysia. The 

plentiful lignocellulosic residues are existing from the palm oil mills and plantations. 

This alternative raw material could be expected to ease the dependence on the forest.  

 

2.1.3 Particle preparation and blending 

  
 Debarking process of log is the first step before being fed into disk chipper or 

flake machine (Chew, 1987). Then, the log is fed into disk chipper to be reduced to 

particle. Size particle varies and depends on manufacture. After chipping process, the 

particles are screened out and oversized particles are fed to the chipper again. Particles 

with required size will be dried up before it is used to produce particleboard. Particle is 

required to dry to uniform moisture content and the type of adhesive used depends on 

end use of the product (Moslemi, 1973).  
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2.1.4 Mat forming and pressing 

 
 The particles mixture is made into a mat after the adhesive has been mixed with 

the particles. The particles were spread by an air jet or extruder which throws finer 

particles further than coarse ones. The sheets formed were then cold compressed to 

reduce their thickness and sent to the hot press. Boards were compressed again, under 

pressures and temperatures between 140 to 220 °C (Moslemi, 1973). All aspects of this 

entire process were carefully controlled to ensure the accuracy of size, density and 

consistency of the board.  

 

2.1.5 Properties and application of particleboard 

 The properties of particleboard depend on many factors including the type and 

size of particles, techniques of manufacture, type and amount of resin, particle 

distribution and orientation, board density, quality of manufacture (effectiveness of 

resin spread and forming), furnish moisture content, and post manufacturing treatments 

(Moslemi, 1973). Particleboard bonded using melamine formaldehyde and phenol 

formaldehyde was reported to have better dimensional stability than urea formaldehyde 

(Moslemi, 1973).  Higher board densities are related with higher strengths, more 

difficult machining characteristics, a greater degree of dimensional instability, and 

higher cost per unit volume. Low density board offers better insulating characteristics, 

higher dimensional stability, lower strength, and less unit cost. The direct influence of 

density over product weight is basic importance in many applications (Chew, 1987). 

Particleboard with low density was less than 0.6g/cm
3
, medium density between 0.6 

g/cm
3
 – 0.8 g/cm

3 
and high density with more than 0.8 g/cm

3
. 
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 The applications of particleboard are commonly used as core material for 

furniture panels, flush doors, veneer wall panels, desk tops, drawer fronts, chest and 

table tops, dust dividers, shelves, chest sides, sewing machine cabinets, bed rails, 

headboards, bookcase sides, backs and shelves, interior ceilings and walls, components 

for interior millwork such as kitchen cabinets, wardrobe, flooring and other storage 

compartments (Carll, 1986). 

 

2.1.6 Formaldehyde emissions 

 Formaldehyde is an important precursor for the preparation of urea, melamine 

and phenol formaldehyde resins which are used as binders in the wood based panel 

manufacturing. It is very reactive chemical and goes through a series of technically 

significant reactions. Formaldehyde release is highly unwanted because it causes 

assorted uneasiness including itchy and watery eyes. Formaldehyde release 

continuously sticks with at a high level for a long period of time after the product has 

begun service in the particular application (Roffael, 1993). 

 The past decade ago, publicity has come up about formaldehyde vapor 

contaminating air in dwelling. This infectivity can come from many sources, including 

tobacco smoke, urea formaldehyde foam insulation, carpeting, soft goods furnishings, 

particleboard and decorative plywood (Carll, 1986). Hydrolysis of the cured urea 

formaldehyde occurs in such an environment, and results in release of formaldehyde 

vapors and loss of the board strength. Carll (1986) further stated that hydrolysis can 

theoretically continue indefinitely if humidity and temperature remain at high levels.  
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