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Abstract: In this paper, a new variant of particle swarm optimisation (PSO) called PSO 
with improved learning strategy (PSO-ILS) is developed. Specifically, an ILS module is 
proposed to generate a more effective and efficient exemplar, which could offer a more 
promising search direction to the PSO-ILS particle. Comparison is made on the PSO-ILS 
with 6 well-established PSO variants on 10 benchmark functions to investigate the 
optimisation capability of the proposed algorithm. The simulation results reveal that 
PSO-ILS outperforms its peers for the majority of the tested benchmarks by 
demonstrating superior search accuracy, reliability and efficiency.   
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1.  INTRODUCTION  
 

Inspired by the collective and collaborative behaviours of bird flocking 
and fish schooling in searching for food sources,1,2 Kennedy and Eberhart1 
proposed a new population-based metaheuristic search (MS) algorithm called 
particle swarm optimisation (PSO) in 1995. From the optimisation perspective, 
each individual member (i.e., particle) of the PSO swarm represents a potential 
solution to a given problem, whereas the location of the food source denotes the 
global optimum solution. Each particle moves stochastically to locate the food 
source during the search process. In addition, all the population members of the 
PSO swarm collaborate with each other through information sharing. This 
interaction enables all the particles to gradually move towards the food sources 
and eventually leads to the swarm convergence.2 Since the inception of PSO, this 
algorithm has been applied to address various real-world problems due to its 
simplicity.3,4 
 

Despite the popularity of PSO in computational intelligence research, 
previous study5 revealed that this algorithm suffers from the premature 
convergence issue because the particle has a high tendency to be trapped in local 
optima regions of the search space. Another notable drawback of PSO is the 
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intense conflict between the exploration and exploitation searches of the 
algorithm. Excessive exploration tends to inhibit the swarm convergence, 
whereas too much exploitation can lead to the rapid diversity loss of swarm.6 
Numerous works2–4 have been conducted by researchers in the past decades to 
address the aforementioned drawbacks of PSO. While some improved PSO 
variants can preserve the swarm diversity to some extent, these improvements are 
usually attained at the expense of slow convergence or complicated algorithmic 
structures. Addressing the premature convergence issue of PSO without 
significantly jeopardising the simplicity of the algorithmic frameworks and the 
algorithm's convergence speed remains a challenge.  
 

In this paper, a new PSO variant called the PSO with improved learning 
strategy (PSO-ILS) is proposed. The main innovation of this study is the 
development of a novel ILS module, which aims to generate promising 
exemplars to guide the search directions of PSO-ILS particles. Unlike most 
existing PSO variants, the exemplar of each PSO-ILS particle is unique and is 
generated by the ILS module by considering the useful information contributed 
by all population members of PSO-ILS.  
 

The remainder of this paper is organised as follows. Section 2 briefly 
discusses some related works. Section 3 details the methodologies of the PSO-
ILS. Section 4 provides the experimental settings and simulation results. Finally, 
Section 5 presents the conclusion drawn from the work performed. 
 
 
2.  RELATED WORKS 
 

In this section, the mechanism of the basic PSO (BPSO) is briefly 
discussed and is followed by a literature review of several well-established PSO 
variants.  
 
2.1  Basic PSO 
 

In BPSO, each particle i represents a potential solution of a D-
dimensional problem, and its current state is associated with 2 vectors, i.e., the 
position vector Xi = [Xi1, Xi2,  …, XiD] and the velocity vector Vi = [Vi1, Vi2, …, 
ViD]. Unlike most existing MS algorithms, each PSO particle i can memorise the 
best experience that it ever achieved, which is represented by the personal best 
position Pi = [Pi1, Pi2, …, PiD]. During the search process, the trajectory of each 
particle i in the search space is dynamically adjusted according to particle i's self-
cognitive component Pi, as well as the group best experience observed by the 
population, Pg = [Pg1, Pg2, …, PgD] [1, 6]. At the (t + 1)-th iteration of the search 
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process, the d-th dimension of particle i's velocity, Vi, d (t + 1), and position Xi, d (t 
+ 1), are updated as follows: 
 

))()(())()(()()1( ,,22,,11,, tXtPrctXtPrctVtV didgdidididi −+−+=+ ω  (1) 

)1()()1( ,,, ++=+ tVtXtX dididi  (2) 
 
where i = 1, 2, …, S is the particle's index; S is the population size; c1 and c2 are 
the acceleration coefficients that control the effects of the self-cognitive (i.e., Pi) 
and social (i.e., Pg) components, respectively; r1 and r2 are two random numbers 
generated from a uniform distribution with the range of [0, 1]; and ω is the inertia 
weight used to balance the exploration/exploitation searches of particles.6 
 
2.2  PSO Variants and Improvements 
 

Numerous studies have been performed to alleviate the drawbacks of 
BPSO. One of the most commonly used strategies is known as parameter 
adaptation. Clerc and Kennedy7 incorporated a constriction factor χ into the PSO 
to prevent swarm explosion. To achieve better regulation of exploration and 
exploitation searches, Ratnaweera et al.8 developed a time-varying acceleration 
coefficient strategy to dynamically change c1 and c2 with time. Alternatively, 
Juang et al.9 utilised the fuzzy set theory to adaptively adjust c1 and c2. Zhan et 
al.10 developed an evolutionary state estimation (ESE) module to identify the 
swarm's evolutionary state of their proposed adaptive PSO (APSO). The outputs 
of the ESE module are used to adaptively adjust the ω, c1 and c2 of each APSO 
particle. Recently, Leu and Yeh11 proposed a grey PSO by capitalising on the 
grey relational analysis to tune the particles' ω, c1 and c2.  
 

Population topology emerges as another crucial factor to determine the 
PSO's performance because this factor controls the information flow rate of the 
best solution within the swarm.12 Mendes et al.13 advocated that each particle's 
movement is affected by all of its neighbourhood members and subsequently 
proposed the fully connected PSO (FIPS). A flexible PSO (FlexiPSO) was 
developed by Kathrada14 by combining the global and local versions of PSO. 
Montes de Oca et al.15 incorporated the concept of time-varying population 
topology into their Frankenstein PSO (FPSO). Initially, all FPSO particles are 
connected with fully connected topology. The topology connectivity of each 
FPSO particle is gradually decreased over time and eventually reduced into the 
ring topology. Marinakis and Marinaki16 proposed a PSO with expanding 
neighbourhood topology (PSOENT), where the particle's neighbourhood expands 
based on the quality of the produced solutions.  
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 Another promising line of research involves the exploration of the PSO 
learning strategy. Liang et al.17 proposed a comprehensive learning PSO 
(CLPSO) by suggesting that each dimensional component of a particle can learn 
from its Pi or from the other particle's personal best position. An improved 
variant called feedback learning PSO with quadratic inertia weight (FLPSO-
QIW) was proposed by Tang et al.,18 where each particle generates the potential 
exemplars from the first 50% of the fitter particles. Alternatively, Nasir et al.19 
proposed the dynamic-neighbourhood-learning-based PSO (DNLPSO). The 
exemplar of each DNLPSO particle is selected from its neighbourhood made 
dynamic in nature. Huang et al.20 employed multiple global best particles to 
update the particle's velocity in their example-based learning PSO (ELPSO). 
Zhan et al.21 capitalised on the excellent prediction capability of the orthogonal 
experiment design (OED) technique to construct effective exemplars for their 
proposed orthogonal learning PSO (OLPSO). Conversely, Zhou et al.22 proposed 
a random position PSO (RPPSO) by employing the random particle to guide the 
swarm.  
 
 
3.  METHODOLOGY 
 

The motivation for developing the ILS module is first described in this 
section, followed by a presentation of detailed descriptions of the ILS module. 
The velocity updating mechanism and the complete framework of the proposed 
PSO-ILS are then presented.  
 
3.1  Motivation 
 

Premature convergence remains a challenging issue for PSO, despite 
many improved variants of this algorithm having been developed to address this 
drawback.17 This issue occurs because the particles of most existing PSO variants 
tend to learn from the Pg particle and neglect the information contributed by the 
non-global best particle during the search process. The lack of interaction 
between the particles and other non-global best particles can lead to the rapid 
diversity loss of the swarm, especially when the algorithm is used to solve 
problems with complex search environments. This scenario tends to increase the 
likelihood of the PSO swarm being trapped in the inferior regions of the search 
space, which consequently leads to poor optimisation results.  
 

Considering that there is no convincing evidence to indicate that the 
fittest particle in the neighbourhood can actually find a better region than the 
second or third fittest particles in the swarm,13 Liang et al.17 proposed a 
comprehensive learning strategy by advocating that all particles' personal best 
positions could be used to update the velocity of each particle. The excellent 
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performances of CLPSO17 and its descendants (e.g., FLPSO-QIW,18 DNLPSO,19 
OLPSO,21 etc.) in solving the complex multimodal problems demonstrate that the 
derivation of exemplars from the non-fittest candidate solutions is a viable 
approach to sustain swarm diversity and to discourage the premature 
convergence.  
 

It is noteworthy that the modified learning strategy of CLPSO and most 
of its descendants achieve the preservation of swarm diversity by reducing the 
effect of the Pg particle during the search process. This strategy, however, could 
introduce different trade-offs. For example, although CLPSO exhibits excellent 
capability in avoiding the local optima in complex multimodal problems, the 
convergence speed of this algorithm in solving unimodal and simple multimodal 
problems is significantly compromised.17 In addition, OLPSO has a more 
complicated algorithmic framework because this approach employs the OED 
technique, which is more mathematically intensive, to derive the exemplars.21  
 

Motivated by these observations, we propose an ILS module that offers 
an innovative mechanism to generate a unique exemplar for each PSO-ILS 
particle. Specifically, these exemplars are derived to replace both the self-
cognitive and social components to guide the particle's search. Unlike the 
previous approaches, the proposed ILS module is less computationally intensive 
and is able to generate the exemplar with more promising guidance capability. 
The working mechanism of the ILS module is described in the following 
subsection. 
 
3.2  ILS Module 
 

The proposed ILS module works as follows. Initially, two exemplars 
called the cognitive exemplar (cexp,i) and the social exemplar (sexp,i) are generated 
for each PSO-ILS particle i. The proposed ILS module begins the derivations of 
both the cexp,i and sexp,i exemplars by sorting the personal best positions of all the 
population members based on the personal best fitness criterion. Specifically, the 
fittest members with personal best fitness ranked in the first quartile range are 
stored in upperi, whereas the members in the remaining 3 quartiles are stored in 
loweri. The approaches used to generate the sexp,i and cexp,i exemplars are 
explained as follows. 
 

The sexp,i exemplar of particle i is generated from upperi via the random 
selection technique. Specifically, for each d-th dimensional component of sexp,i, 
i.e., sexp,i(d), one member of upperi is randomly selected, and the d-th dimensional 
component of this selected member is assigned to sexp,i(d). Considering that all the 
members of upperi have the same probability to be selected, each upperi member 
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is regarded as having an equal opportunity to contribute itself in deriving each 
dimensional component of sexp,i.   
 

On the other hand, the idea of constructing the cexp,i exemplar is inspired 
from Mendes et al.13 and is computed as follows: 
 

∑

∑

∈

∈=

ilowerkP
kk

ilowerkP
kkk

i rc

Prc
cexp,  (3) 

 
where Pk refers to the personal best positions of all the population members 
stored in loweri; rk is a random number in the range of [0, 1] and ck is the 
acceleration coefficient that is equally distributed among the Ni members from 
loweri, which is calculated as ck = call/Ni, where ck = 4.113 Equation 3 also allows 
all the members in the loweri to have equal chances to contribute themselves 
during the derivation of the cexp,i exemplar.  
 

Considering that the guidance of two exemplars might cause the 
"oscillation" phenomenon, as described in literature,21 the third exemplar called 
the overall exemplar (oexp,i) is derived from both the sexp,i and cexp,i exemplars (via 
a simple crossover procedure) to guide the particle i during the optimisation 
process. Specifically, if a randomly generated number is smaller than 0.5, the d-th 
dimensional component of oexp,i, i.e., oexp,i(d), is donated by the sexp,i(d). 
Otherwise, it is obtained from the d-th dimensional component of cexp,i. 
 

The overall implementation of the proposed ILS module is illustrated in 
Figure 1 and includes the procedures for deriving the sexp,i, cexp,i and oexp,i 
exemplars. Notably, the Pg particle in the population could be replaced by the 
newly obtained oexp,i exemplar if the latter has a more promising fitness value 
than the former.  
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oexp,i = ILS(particle i, P, f(P), Pg, f(Pg), fes) 

1:     Sort all population members according to their personal best fitness;  
2:     Assign the members with better personal best fitness values (in the first quartile range)  
        into upperi; 
3:     Assign the remaining members with worse personal best fitness values into loweri; 
4:     /*Generate the sexp,i exemplar*/ 
5:     for each dimension d do 
6:           Randomly select a member, i.e., rand_member, from upperi; 
7:           sexp,i(d) = d-th component of the selected rand_member; 
8:     end for 
9:      /*Generate the cexp,i exemplar*/ 
10:    Calculate cexp,i from loweri using Equation (3); 
11:    /*Generate the oexp,i exemplar*/ 
12:    for each dimension d do   
13:          if rand < 0.5 then 
14:               oexp,i(d) = sexp,i(d); 
15:          else 
16:                oexp,i(d) = cexp,i(d); 
17:          end if 
18:    end for 
19:    Perform fitness evaluation on oexp,i; 
20:    Update Pg and f(Pg) if oexp,i has better fitness; 
21:    fes = fes + 1; 

 

Figure 1: Implementation of ILS module. 
 

3.3  Velocity Updating Mechanism of PSO-ILS 
 

Unlike BPSO, the proposed PSO-ILS updates the velocity of particle i 
based on the oexp,i exemplar instead of Pi and Pg. Considering that the derivation 
of oexp,i involves the stochastic mechanism, two possible cases can be 
encountered: (1) the oexp,i exemplar has better fitness than the personal best fitness 
of particle i [i.e., f(oexp,i) <f (Pi)]; or (2) the oexp,i exemplar has equal or worse 
fitness than the personal best fitness of particle i [i.e., f(oexp,i) ≥ f (Pi)].  
 

For case 1, particle i is allowed to be attracted towards the fitter oexp,i 
exemplar because the latter has better fitness and hence is more likely to offer a 
prominent search direction to guide the former. For case 2, particle i is 
encouraged to be repelled away from the inferior oexp,i exemplar because it is 
unlikely for the latter to improve the former's fitness. The new velocity update 
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mechanism that is used to update the velocity of each PSO-ILS particle (i.e., Vi) 
is mathematically described as: 
 


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where r3 and r4 are random numbers ranging between 0 and 1.  
 

Once the new velocity of particle i is obtained from Equation 4, the new 
position of particle i (i.e., Xi) is computed using Equation 2. The updated fitness 
of particle i, i.e., f(Xi), is then evaluated and compared with those of Pi and Pg. 
The updated position of particle i will replace both Pi and Pg if the former has 
better fitness than the latter two.  
 
3.4  Complete Framework of PSO-ILS 
 
 The complete implementation of the proposed PSO-ILS is presented in 
Figure 2. To conserve computational resources, particle i will only reconstruct 
the oexp,i exemplar if this exemplar fails to update the Pg m successive times. The 
variable flagi is defined to monitor the successive iteration when particle i fails to 
improve the global best solution. Notably, too small or too large values of m are 
undesirable. The former tends to reconstruct the oexp,i exemplar frequently and 
thus jeopardises the particle's search direction, while the latter could waste many 
computational resources on the local optima with the oexp,i exemplar, which is no 
longer effective.  
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PSO-ILS 
1:   Generate initial swarm and set up parameters for each particle; 
2:   while fes<FEmax do 
3:          for each particle i do 
4:               if  flagi>m then  /Execute ILS module to generate new oexp,i exemplar*/ 
5:                  oexp,i= ILS(particle i, P, f(P), Pg, f(Pg), fes); 
6:                  flagi= 0; 
7:          end if 
8:          Calculate Viand Xi using Equations (4) and (2), respectively; 
9:          Perform the fitness evaluation on updated Xi; 
10:        fes= fes + 1; 
11:        Update Pi, f (Pi), Pg, and f (Pg); 
12:                if f (Xi) <f (Pg) then 
13:                      flagi = 0; 
14:                else 
15:                      flagi = flagi + 1; 
16:                end if 
17:          end for 
18:  end while 

 

Figure 2: Complete framework of PSO-ILS. 
 
 
4.  EXPERIMENTAL  
 
4.1  Benchmark Functions 
 

Ten benchmark functions used for the performance evaluations are 
presented in Tables 1 and 2, which provides brief descriptions of the benchmarks' 
formulae, their feasible search range RG, and their accuracy level ε. All the 
employed benchmarks have different fitness landscapes, and the fitness value of 
their respective global optimum is equal to zero, i.e., Fmin = 0.  
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Table 1: Formulae of ten benchmark functions used in this study. 
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Table 2: The search range and accuracy level of ten employed benchmark functions.  
 

f Function  RG ε  

F1 Sphere [–100,100]D 1.0E–6 
F2 Schewefel 2.22 [–10,10]D 1.0E–6 
F3 Schewefel 1.2 [–100,100]D 1.0E–6 
F4 Schwefel 1.2 [–100,100]D 1.0E–6 
F5 Hyper Ellipsoid [–100,100]D 1.0E–6 
F6 Rastrigin [–5.12,5.12]D 1.0E–2 
F7 Noncontinuous Rastrigin [–5.12,5.12]D 1.0E–2 
F8 Griewank [–600,600]D 1.0E–2 
F9 Ackley [–32,32]D 1.0E–2 
F10 Weierstrass [–0.5,0.5]D 1.0E–2 
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4.2  Simulation Settings of All Involved PSO Variants 
 

6 well-established PSO variants are employed for extensive comparison 
with PSO-ILS. CLPSO, FLPSO-QIW, FIPS and OLPSO were selected because 
their learning strategies share specific similarities with that of PSO-ILS, i.e., 
these variants derive the exemplars from non-fittest solutions to guide the search. 
APSO is used to investigate the effectiveness of our proposed strategy against the 
parameter adaptation approach. In addition, FlexiPSO is the representative PSO 
variant developed from the different swarm topology.  
 

The parameter settings of all the tested algorithms were extracted from 
their respective literature and are summarised in Table 3. The parameter settings 
of the selected peer algorithms are optimal, considering that their respective 
authors tuned these parameters using similar benchmarks. In addition, our 
empirical study reveals that the proposed PSO-ISL with m = 8 delivers 
satisfactory search performance. In this paper, the employed benchmarks are 
solved in 10 dimensions. All the involved algorithms were tested using the same 
population size of S = 10, with the stopping criterion of FEmax = 5.00E+04.  
 

Table 3: Parameter settings of the involved PSO algorithms. 
 

Algorithm Parameter settings 

APSO10  4.09.0: −ω , ]0.4,0.3[:21 cc + , 

]1.0,05.0[=δ , 0.1max =σ , 1.0min =σ  

 
CLPSO17  4.09.0: −ω , 0.2=c , 7=m  

 
FLPSO-QIW18  2.09.0: −ω , 5.12:1 −c , 5.11:2 −c , 1=m , 

]1,1.0[=iP , 1.01 =K , 001.02 =K , 11 =σ , 02 =σ  

 
FlexiPSO14 0.05.0: −ω , ]0.2,0.0[:,, 321 ccc , 1.0=ε , %01.0=α  

 
FIPS13 729.0=χ ,∑ = 1.4ic  

 
OLPSO21  4.09.0: −ω , 0.2=c , G = 5 

 
PSO-ILS 4.09.0: −ω , 0.221 == cc , m = 5 
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4.3  Performance Metrics 
 

In this paper, the authors evaluate the algorithm's performances based on 
three criteria, namely accuracy, reliability and efficiency, using the mean fitness 
value (Fmean), success rate (SR) and success performances (SP), respectively.18 
Fmean is defined as the mean value of the differences between the best (i.e., 
lowest) fitness obtained by the algorithm and the fitness at the global optima 
(Fmin). SR denotes the consistency of an algorithm to achieve a successful run, 
i.e., when the algorithm achieves the solution with predefined ε. Finally, SP 
computes the number of FEs required by the algorithm to solve the problems 
with predefined ε.  
 

The authors also employ a set of non-parametric statistical procedures23 
to perform rigorous comparisons between PSO-ILS and its peers. Specifically, 
the Wilcoxon test23 is used for a pairwise comparison between the PSO-ISL and 
its peers. This test is conducted at the 5% significance level (i.e., α = 0.05), and 
the values of h, R+, R– and p are reported. The h value indicates whether the 
performance of PSO-ISL is better (i.e., h = '+'), insignificant (i.e., h = '='), or 
worse (i.e., h = '–') than the other six algorithms at the statistical level. R+ and R– 
denote the sum of ranks that PSO-ISL outperforms and underperforms compared 
with the other methods. In addition, the p-value represents the minimal level of 
significance for detecting differences. A p-value less thanα  provides strong 
evidence to indicate the better results achieved by the best algorithm are 
statistically significant and did not occur by chance.  
 

To conduct the multiple comparisons of the algorithms in the set of test 
suite employed, the Friedman test23 and a set of post-hoc procedures to 
characterise the concrete differences among the algorithms were employed. In 
this study, the adjusted p-values (APVs) obtained were reported using the 
Bonferroni-Dunn, Holm and Hochberg methods.23 
 
4.4  Comparison of PSO-MSCL with Other PSO Variants 
 
4.4.1  Comparison of the Fmean results 
 

In Table 4, it is observed that the proposed PSO-ILS exhibits the best 
search accuracy because this method outperforms its peers by a large margin for 
the majority of tested problems. Specifically, PSO-ILS is the only algorithm that 
successfully locates the global optima of all the tested benchmarks by achieving 
Fmean = 0.00E+00. CLPSO, FLPSO-QIW and OLPSO also exhibit their 
competitive searching accuracies in solving the tested benchmarks because these 
algorithms solve the functions F1, F2, F5, F9 and F10 with satisfactory Fmean 
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values. However, FIPS is observed as the worst performing optimiser, exhibiting 
the largest (i.e., worst) Fmean values for almost all the tested problems.  
 

Table 4: Mean fitness, standard deviation and Wilcoxon test results for 10-D problems. 
 

    APSO CLPSO FLPSO-QIW FlexiPSO FIPS OLPSO PSO-ILS 

F1 
Fmean 3.54E–03 3.34E–77 2.76E–50 3.63E–05 1.03E–01 5.90E – 63 0.00E+00 
SD 5.83E–03 1.53E–76 1.51E–49 2.92E–05 2.30E–01 2.73E – 62 0.00E+00 
h + + + + + +  

F2 
Fmean 3.88E–03 2.00E–45 3.42E–39 2.21E–03 4.38E–02 7.93E–35 0.00E+00 
SD 5.45E–03 5.70E–45 1.23E–38 8.31E–04 6.42E–02 1.89E–34 0.00E+00 
h + + + + + +  

F3 
Fmean 2.84E+00 2.48E–07 4.61E–03 9.33E–03 3.86E–01 3.63E–05 0.00E+00 
SD 2.79E+00 4.84E–07 2.03E–02 6.31E–03 9.50E–01 1.30E–04 0.00E+00 
h + + + + + +  

F4 

Fmean 3.28E–01 7.91E–06 3.90E–01 9.46E–03 3.05E–01 1.64E–10 0.00E+00 

SD 1.30E–01 3.87E–05 4.26E–01 2.18E–03 4.03E–01 3.32E–10 0.00E+00 

h + + + + + +  

F5 
Fmean 1.57E+00 2.07E–75 2.38E–56 6.39E–05 1.05E+01 9.28E–62 0.00E+00 
SD 3.15E+00 5.72E–75 1.29E–55 4.01E–05 2.69E+01 3.12E–61 0.00E+00 
h + + + + + +  

F6 
Fmean 2.61E–03 1.66E–01 5.77E–01 2.87E–05 9.05E–01 1.06E+00 0.00E+00 
SD 3.47E–03 4.59E–01 7.16E–01 2.18E–05 1.44E+00 1.14E+00 0.00E+00 
h + + + + + +  

F7 
Fmean 1.41E–03 1.67E–01 1.38E+00 1.83E+00 7.40E–01 2.47E+00 0.00E+00 
SD 1.82E–03 4.61E–01 1.16E+00 7.01E+00 1.51E+00 1.22E+00 0.00E+00 
h + + + + + +  

F8 
Fmean 7.66E–02 2.24E–02 1.49E–02 5.55E–02 1.73E–01 2.97E–02 0.00E+00 
SD 2.33E–02 1.65E–02 1.09E–02 2.63E–02 2.03E–01 2.19E–02 0.00E+00 
h + + + + + +  

F9 
Fmean 2.47E–02 3.55E–15 1.94E–14 6.67E–01 5.40E–01 3.55E–15 0.00E+00 
SD 1.99E–02 0.00E+00 1.93E–14 3.65E+00 8.35E–01 0.00E+00 0.00E+00 
h + + + + + +  

F10 
Fmean 3.97E–02 0.00E+00 1.75E–03 2.24E–02 3.78E–01 0.00E+00 0.00E+00 
SD 2.88E–02 0.00E+00 4.30E–03 6.74E–03 4.43E–01 0.00E+00 0.00E+00 
h + = + + + =  
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Notably, the proposed PSO-ILS shares similarities with CLPSO, FLPSO-
QIW, FIPS and OLPSO in terms of the algorithmic framework design because 
the particles of these PSO variants are also guided by exemplars generated from 
the non-fittest solutions. Based on these observations, it could be deduced that the 
search behaviours of these five PSO variants are governed by their respective 
exemplars. Intuitively, the qualities of the exemplars produced in the PSO-ILS, 
CLPSO, FLPSO-QIW, FIPS and OLPSO could be assessed by comparing the 
optimisation capabilities of these algorithms. Considering that the proposed PSO-
ILS outperforms or performs similarly to CLPSO, FLPSO-QIW, FIPS and 
OLPSO in all the tested benchmarks, it is reasonable to conclude that the 
exemplars generated by the proposed ILS module are more effective than those 
of CLPSO, FLPSO-QIW, FIPS and OLPSO. In other words, the exemplars of 
PSO-ILS are more capable of guiding their particles towards the promising 
regions of the search space compared with the other four peers.  
 
4.4.2  Comparison of the non-parametric statistical test 
 

The pairwise comparison results between PSO-ILS and its peers using 
the Wilcoxon test are summarised in Tables 4 and 5. Specifically, Table 4 presents 
the pairwise comparison results in each employed benchmark using the h values, 
whereas Table 5 reports the R+ and R– values obtained for each comparison and 
the associated p-value.  
 

Table 4: Wilcoxon test between PSO-ILS and 6 other variants. 
 

PSO-ILS vs. APSO CLPSO FLPSO-QIW FlexiPSO FIPS OLPSO 
R+ 55.0 45.0 55.0 55.0 55.0 45.0 
R– 0.0 0.0 0.0 0.0 0.0 0.0 

p-value 1.95E–03 3.91E–03 1.95E–03 1.95E–03 1.95E–03 3.91E–03 
 

Table 4 demonstrates that the h values obtained from the Wilcoxon test 
are consistent with the reported Fmean values. This finding implies that the number 
of problems for which PSO-ILS significantly outperforms its peers is much larger 
than the number of problems for which the former is statistically equivalent to the 
latter. Table 5 confirms the significant improvements of PSO-ILS over its six 
peers in the independent pairwise comparison because all the p-values attained 
from the Wilcoxon test in Table 4 are less thanα = 0.05.  
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Table 5: Average ranking and the associated p-value obtained through Friedman test. 
 

Algorithm PSO-ILS CLPSO OLPSO FLPSO-QIW FlexiPSO APSO 

Ranking 1.55 2.70 3.50 3.85 4.90 5.30 
Statistic 32.80 
p-value 1.10E-05 

 
Multiple comparisons23 are also employed to rigorously evaluate the 

effectiveness of PSO-ILS. The results of the Friedman test, which include the 
average rankings of the compared algorithms and the associated p-values, are 
summarised in Table 6. PSO-ILS emerges as the best performing algorithm with 
the smallest average rank value of 1.55. Another notable observation from Table 
6 is that the p-value computed using the Friedman test (i.e., p = 1.10E–05) is 
smaller than the level of significance considered (i.e., α = 0.05). This result 
implies that a significant global difference is detected among the compared 
algorithms.  
 

Table 6: Average ranking and associated p-value obtained using Friedman test. 
 

Algorithm PSO-ILS CLPSO OLPSO FLPSO-QIW FlexiPSO APSO 

Ranking 1.55 2.70 3.50 3.85 4.90 5.30 
Statistic 32.80 
p-value 1.10E–05 

 
Based on these results, a set of post-hoc statistical analyses23 was 

performed to identify the concrete differences for the control algorithm (i.e., 
PSO-ILS). The associated z values, unadjusted p-values and adjusted p-values 
(APVs) obtained from the aforementioned post-hoc procedures are presented in 
Table 7. At the significant level of α = 0.05, all the post-hoc procedures confirm 
the improvement of PSO-ILS over the FIPS, APSO and FlexiPSO algorithms. 
The Holm and Hochberg procedures reveal more powerful capabilities than the 
Bonferroni-Dunn procedure because the former tests are able to confirm the 
significant outperformance of PSO-ILS against FLPSO-QIW and OLPSO at α = 
0.10. 
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Table 7: Adjusted p-values (APVs) obtained using Bonferroni-Dunn, Holm and 
Hochberg procedures. 

 

PSO-ILS vs.  z Unadjusted p Bonferroni-Dunn p Holm p Hochberg p 

FIPS 4.81E+00 1.00E–06 9.00E–06 9.00E–06 9.00E–06 
APSO 3.88E+00 1.04E–04 6.23E–04 5.19E–04 5.19E–04 
FlexiPSO 3.47E+00 5.25E–04 3.15E–03 2.10E–03 2.10E–03 
FLPSO-QIW 2.38E+00 1.73E–02 1.04E–01 5.18E–02 5.18E–02 
OLPSO 2.02E+00 4.35E–02 2.61E–01 8.71E–02 8.71E–02 
CLPSO 1.19E+00 2.34E–01 1.00E+00 2.34E–01 2.34E–01 

 
4.4.3  Comparison of the SR results 
 

Table 8 demonstrates that PSO-ILS exhibits superior searching 
reliability, considering that this algorithm completely solves all the tested 
benchmarks with SR = 100%. Specifically, PSO-ILS is the only algorithm that 
successfully solves functions F3 and F8 within the predefined accuracy level in 
all the independent simulation runs. CLPSO, FLPSO-QIW and OLPSO also 
exhibit relatively robust search reliabilities because these PSO variants 
successfully solve some selected benchmarks (i.e., functions F1, F2, F4, F5, F9 
and F10) with 100% success rate. In contrast, FlexiPSO has the worst search 
reliability because this algorithm produces SR = 0.00% in most of the 
benchmarks, i.e., five out of ten tested problems.  
 

The competitive search reliabilities of the proposed PSO-ILS, CLPSO, 
FLPSO-QIW and OLPSO in solving the tested benchmarks imply that the 
strategy of deriving the exemplar from the non-fittest particles in the population 
is indeed viable to guide the PSO swarm towards the optimal regions of the 
search space. Among the four aforementioned PSO variants, the proposed PSO-
ILS is considered to generate the most effective exemplars because this algorithm 
exhibits the most robust search reliability in solving all the tested benchmarks.  
 
4.4.4  Comparison of the SP results 
 

Obtaining the SP value is impossible if an algorithm never solves a 
particle problem (i.e., SR = 0%) because the SP value denotes the computational 
cost, i.e., the number of fitness evaluations (FEs), required by an algorithm to 
solve the problem with pre-specified ε. In this scenario, an infinity value "Inf" is 
assigned to the SP value, and only the convergence graphs are used to justify the 
algorithm's speed, as illustrated in Figure 3.  
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

 

Figure 3: Convergence curves of the selected 10-D benchmark functions (a) F1, (b) F2, 
(c) F3, (d) F4, (e) F5, (f) F6, (g) F7, (h) F8, (i) F9 and (i) F10.  

(continue on next page) 
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(g) (h) 

  
(i) (j) 

 

Figure 3: (continued) 
 

In Table 8, we observe that PSO-ILS achieves the best SP values in all 
the tested benchmarks. This observation implies that our proposed algorithms 
require the least FEs to solve the given problems with acceptable ε. The excellent 
convergence characteristics exhibited by the PSO-ILS in solving all the tested 
problems are also illustrated by their respective convergence curves, as observed 
in Figure 3. Specifically, we observe a typical feature exhibited by the 
convergence curves of the PSO-ILS in all the tested problems, that is, a curve that 
sharply drops off at one point, usually during the early stage of the optimisation. 
This observation implies that the proposed PSO-ILS tends to exhibit faster 
convergence compared with the other algorithms, especially during the early 
stage of search process. However, the convergence graphs in Figure 3 reveal that 
most of the compared peers tend to stagnate at local optima during the early or 
middle stages of optimisation. This demerit prevents the compared peers from 
achieving promising solutions for the tested problems. 
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Although the proposed PSO-ILS, CLPSO, FLPSO-QIW, FIPS and 
OLPSO algorithms employ exemplars derived from the non-fittest particles to 
guide the search, the SP values produced by these algorithms are significantly 
different. Specifically, the SP values produces by PSO-ILS range from 102 to 103, 
whereas the other four compared peers have SP values ranging from 103 to 105. 
These observations indicate that the exemplars generated by the proposed ILS 
modules are more efficient in guiding the PSO swarm compared with CLPSO, 
FLPSO-QIW, FIPS and OLPSO. The rapid convergence characteristic of PSO-
ILS enables the proposed algorithm to locate and exploit the optimal regions of 
the search space earlier than its peers. Thus, PSO-ILS has a greater opportunity to 
achieve higher quality solutions than the other algorithms in solving the tested 
benchmarks.  
 

Table 8: Success rate and success performance results for 50-D problem. 
 

    APSO CLPSO FLPSO-QIW FlexiPSO FIPS OLPSO PSO-ILS 

F1 
SR 13.33 100.00 100.00 0.00 60.00 100.00 100.00 
SP 2.38E+05 1.23E+04 6.88E+03 Inf 1.32E+04 1.75E+04 6.49E+02 

F2 
SR 6.67 100.00 100.00 0.00 50.00 100.00 100.00 
SP 3.36E+05 1.50E+04 8.17E+03 Inf 9.31E+03 2.15E+04 6.75E+02 

F3 
SR 0.00 93.33 10.00 0.00 60.00 73.33 100.00 
SP Inf 4.57E+04 2.64E+05 Inf 2.05E+04 4.62E+04 9.09E+02 

F4 
SR 0.00 76.67 0.00 0.00 50.00 100.00 100.00 
SP Inf 5.76E+04 Inf Inf 1.59E+04 3.47E+04 8.43E+02 

F5 
SR 0.00 100.00 100.00 0.00 50.00 100.00 100.00 
SP Inf 1.37E+04 7.65E+03 Inf 3.49E+04 1.96E+04 1.42E+03 

F6 
SR 93.33 86.67 43.33 100.00 50.00 33.33 100.00 
SP 4.10E+04 4.40E+04 5.00E+04 9.39E+03 1.83E+04 5.47E+04 9.58E+02 

F7 
SR 100.00 86.67 16.67 93.33 63.33 0.00 100.00 
SP 2.59E+04 4.40E+04 1.29E+05 1.12E+04 1.98E+04 Inf 1.27E+03 

F8 
SR 0.00 23.33 43.33 3.33 46.67 20.00 100.00 
SP Inf 1.57E+05 6.05E+04 1.01E+06 1.40E+04 1.00E+05 6.44E+02 

F9 
SR 23.33 100.00 100.00 96.67 50.00 100.00 100.00 
SP 1.94E+05 1.04E+04 5.51E+03 1.29E+04 7.86E+03 1.44E+04 9.11E+02 

F10 
SR 20.00 100.00 96.67 3.33 30.00 100.00 100.00 
SP 2.11E 05 1.29E+04 7.21E+03 1.30E+06 1.99E+04 1.79E+04 7.76E+02 
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5.  CONCLUSION 
 

This paper presents an enhanced PSO algorithm called PSO-ILS. An 
innovative mechanism has been developed in the proposed ILS module to 
construct a more promising and efficient exemplar. This exemplar replaces the 
particle's self-cognitive and social components and is used to guide the particle's 
search direction. Based on the experimental results, it can be concluded that the 
proposed PSO-ILS significantly outperforms its peers in terms of search 
accuracy, reliability and efficiency. The results further suggest that the exemplar 
generated by the ILS module is more effective and efficient than that generated 
by the other PSO variants, which employ similar search mechanisms, i.e., 
CLPSO, FLPSO-QIW, FIPS and OLPSO.  
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