
i

MULTITHREADED SCALABLE MATCHING ALGORITHM FOR
INTRUSION DETECTION SYSTEMS

By

ADNAN AHMAD ABDELFATTAH HNAIF

Thesis submitted in fulfillment of the requirements

for the degree of

Doctor of philosophy

May 2010

ii

ACKNOWLEDGMENTS

"All praises and thanks to ALLAH"

A major research like this is never done without the contributions of many different

people, in their different ways. Therefore, I would like to extend my appreciation

especially to the following.

First of all, the praises and thanks go to almighty ALLAH for giving me the patience,

the health as well as giving me the chance to work in such an environment in

Malaysia and in USM in particular. Second, I wish to deeply thank my supervisor

Prof. Dr. Sureswaran Ramadass for introducing me to the world of research and

giving me the golden chance to work in this field. I am also grateful to my co-

supervisor Dr. Omar Amer Abouabdalla, for his help and support throughout my

period of study.

Special thanks to National Advanced IPv6 Center of Excellence (NAv6) and the

USM Fellowship Scheme respectively, for providing a conductive environment and

support me during the course of my research.

Last but not the least, I would like to thank those who are close to my heart; my

father Mr. Ahmed Hnaif, for his endless, support, and continuous encouragement, to

my beloved mother, to my wonderful wife Ahlam and our children Aya, Abdullah,

and Izzuddin for their understanding, patience and supporting me throughout the

period of research, to my dearest brothers {Khaled, Nader, Amer, Omar, Emad,

Ala’a and Hatem} Hnaif for keeping me smiling and motivated, to my father, mother

iii

and brothers in law, and to all my colleagues. Finally I would like to express my

thanks to my friend Dr. Mohamed Faizal and his wife Khadija Beevi. I dedicated this

work to all of them as without whose support and understanding, this thesis would

not have been completed.

Thank you!

Adnan Ahmad Hnaif

Penang, Malaysia. May 2010.

iv

TABLE OF CONTENTS

Acknowledgements ii

Table of Contents iv

List of Tables vii

List of Figures viii

List of Abbreviations xii

List of Appendices xiii

Abstrak xiv

Abstract xvi

CHAPTER 1: INTRODUCTION

1.1 Background 1

1.2 Intrusion Detection Systems (IDS) 3

1.3 Problem Statement 6

1.4 Research Goals and Objectives 8

1.5 Contribution of this thesis 9

1.6 Thesis Outline 10

CHAPTER 2: RELATED WORKS
2.1 Introduction 12

2.2 Related works 12

 2.2.1 IDS based on packets header 12

 2.2.1.1 Matching Algorithms 13

 2.2.1.1.1 RTN and OTN techniques 16

v

 2.2.1.1.2 Packet Filter (PF) Algorithm 18

 2.2.1.1.3 Early Filtering (EF) 19

 2.2.1.1.4 Packet Filtering 21

 2.2.1.2 Genetic Algorithm 22

 2.2.2 IDS based on packets payload 23

 2.2.2.1 Sequential Processing 24

 2.2.2.1.1 Rete Algorithm 25

 2.2.2.1.2 RHPNIDS detection engine 26

 2.2.2.1.3 PIRANHA Algorithm 28

 2.2.2.1.4 The ExB Algorithm 30

 2.2.2.1.5 The E2xB algorithm 31

 2.2.2.2 Parallel Processing 32

 2.2.2.2.1 Multi-threading technology 32

 2.2.2.2.2 Multi-processors technology 37

2.3 Summary 38

CHAPTER 3: METHODOLOGY AND DESIG

3.1 Introduction 45

3.2 DPHM Algorithm and Methodology 47

 3.2.1 Classification of the header rule sets 49

 3.2.2 Matching Process 53

 3.2.2.1 Sequential Matching Process 54

 3.2.2.2 Multi-threading matching Process 57

 3.2.3 Learning Process 60

3.3 NNIDS Platform and Methodology 61

 3.3.1 NNIDS Platform 61

vi

 3.3.2 NNIDS Methodology 65

3.4 Summary 67

CHAPTER 4: THE DPHM ALGORITHM AND THE NNIDS PLATFORM

IMPLEMENTATIONS

4.1 Implementations 67

 4.1.1 Programming Language 70

 4.1.2 Scalability 71

4.2 Overview of the DPHM Algorithm 73

 4.2.1 Convert header rule sets into lookup table (weight) 74

 4.2.2 Matching Process 81

 4.2.2.1 Sequential Matching Process 81

 4.2.2.2 Parallel Matching Process 84

 4.2.3 Learning Process 86

4.3 Overview of NNIDS platform 87

 4.3.1 Distribute the packets payload among available processors

 87

 4.3.2 Distribute the packets payload into available processors with

multiple-cores using MPI library and OpenMP library (Hybrid) 92

4.4 Summary 94

CHAPTER 5: DISCUSSION AND RESULTS

5.1 Introduction 96

5.2 Experiment Environment 96

 5.2.1 Hardware Environment of DPHM Algorithm 97

 5.2.2 Software for DPHM Algorithm 97

 5.2.3 Hardware Environment of NNIDS platform 97

vii

 5.2.4 Software for NNIDS platform 100

5.3 Evaluation of the DPHM Algorithm 100

 5.3.1 Evaluation performance of the DPHM Algorithm 101

 5.3.1.1 Sequential Evaluation Process 101

 5.3.1.2 Parallel Evaluation Process 102

 5.3.2 Evaluation matching process of the DPHM algorithm Vs

SNORT-NIDS 103

 5.3.3 The DPHM algorithm efficiency and overhead 104

5.4 Evaluation of the NNIDS Platform 107

 5.4.1 Factors affecting the minimal optimal # of threads 107

 5.4.2 Evaluation results of the minimal # of threads 109

 5.4.3 Evaluation results of the Multi-threading technology Vs

PME Vs NNIDS 110

 5.4.4 The NNIDS Platform efficiency and overhead 114

5.5 Summary 116

CHAPTER 6: CONCLUSION AND FUTURE WORK

6.1 Conclusion 117

6.2 Future Work 118

References 120

APPENDIX A: Performance of the DPHM Algorithm 126

APPENDIX B: Performance of the NNIDS Platform 129

LIST OF PUBLICATIONS 135

viii

 LIST OF TABLES

Page

Table 2.1 Complexity of some exact string matching algorithm

16

Table 2.2 The Advantages and Disadvantages of misuse detection and
anomaly detection

26

Table 2.3 Summary of the NIDS algorithms Vs the DPHM algorithm 42

Table 2.4 Summary of the NIDS platforms Vs NNIDS platform 44

Table 3.1 Weight of the headers rule set 53

Table 5.1 Speedup comparison between all experiments tests

113

Table A.1 DPHM algorithm results in sequential mode 126

Table A.2 DPHM algorithm results in parallel mode 126

Table A.3 Matching process of the DPHM algorithm (sequential and

parallel) Vs SNORT-NIDS

127

Table A.4 The DPHM algorithm efficiency and overhead 128

Table B.1(a) Different input packets size with fixed rule set size 129

Table B.1(b) Fixed input packets size with different rule set size 129

Table B.2(a) Optimal number of threads on 0.5MB data 130

Table B.2(b) Optimal number of threads on 1MB data 130

ix

Table B.2(c) Optimal number of threads on 10MB data 131

Table B.3(a) Snort results with 3000 packets and 1MB rule set 131

Table B.3(b) Snort results with 14000 packets and 1MB rule set 132

Table B.3(c) Snort results with 25000 packets and 1MB rule set 132

Table B.4(a) NNIDS platform with 3000 packets and 1 MB rule set 132

Table B.4(b) NNIDS platform with 14000 packets and 1 MB rule set 133

Table B.4(c) NNIDS platform with 25000 packets and 1 MB rule set 133

Table B.5(a) Hybrid platform with 3000 packets and 1 MB rule set 133

Table B.5(b) Hybrid platform with 14000 packets and 1 MB rule set 134

Table B.5(c) Hybrid platform with 25000 packets and 1 MB rule set 134

x

 LIST OF FIGURES Page

Figure 1.1 Intrusion Detection System Architecture. 4

Figure 2.1 Structure of SNORT rule sets 17

Figure 2.2 NIDS splitter architecture (I. Charitakis, 2003) 20

Figure 2.3 Architecture of applying GA into intrusion detection 23

Figure 2.4 Eduardo’s Misuse Detection architecture 25

Figure 2.5 The proposed RHPNIDS detection engine 27

Figure 2.6 R1 and R2 according to the PIRANHA algorithm 29

Figure 2.7 Optimal phase for R1 and R2 29

Figure 2.8 Snort sunning on four execution cores in parallel without

pipelining

33

Figure 2.9 Snort sunning on four execution cores in parallel with

pipelining

34

Figure 2.10 Parallel signature matching 35

Figure 2.11 System architecture to parallelized IDS 35

Figure 2.12 Paralleled AC algorithm 38

Figure 3.1 The proposed solution for NIDS 46

Figure 3.2 Design of the header rule sets 48

Figure 3.3 Neural Network with multi-connect architecture 49

Figure 3.4 The same results matrices for values in identical colored

boxes

52

Figure 3.5 Storing process 52

Figure 3.6 Data flow diagram of sequential matching process for DPH

algorithm

56

xi

Figure 3.7 Multi-Threaded Searching 58

Figure 3.8 Parallel searching process in same group 58

Figure 3.9 Data flow diagram of parallel matching process for DPH

algorithm

60

Figure 3.10 Matching Link List 60

Figure 3.11 NNIDS design 63

Figure 3.12 Architecture of Stage1 64

Figure 3.13 Detection engine and payload rule sets architecture within

each core.

65

Figure 3.14 Hardware architecture for one machine 65

Figure 4.1 DPHM Algorithm on single core 72

Figure 4.2 DPHM Algorithm on multi-cores 72

Figure 4.3 Header rule set in IPv4 format 74

Figure 4.4 Source address in binary format 75

Figure 4.5 Destination address in binary format 75

Figure 4.6 Convert headers rule set into binary and 0 into -1 75

Figure 4.7 Padding function 75

Figure 4.8 Convert each 0 in source address into -1 76

Figure 4.9 Convert each 0 in destination address into -1 76

Figure 4.10 Multiply the first 3-bit by itself 76

Figure 4.11 Multiply each 3-bit by itself 77

Figure 4.12 Zero diagonal 77

Figure 4.13 Saving the above 3-bit of the diagonal 77

Figure 4.14 Different arrays have the same results when they are

multiplied by themselves.

78

xii

Figure 4.15 Summation for each 3-bit (index) 79

Figure 4.16 Pseudo code for SortRuleset () 80

Figure 4.17 Incoming packet header 81

Figure 4.18 Convert each 0 into -1 82

Figure 4.19 The first 3-bit from the incoming packet header multiply by

itself

82

Figure 4.20 Incoming packet header with “I” & “J” variables 82

Figure 4.21 Weight matrix for Group-0 82

Figure 4.22 Applying energy function on group-0 83

Figure 4.23 Weight matrix for group-4 83

Figure 4.24 Applying energy function on group-4 83

Figure 4.25 Identify number of cores in Openmp 84

Figure 4.26 Multi-Threaded searching 85

Figure 4.27 Parallel searching in one rule 85

Figure 4.28 Learning process of the DPHM Algorithm 86

Figure 4.29 The NNIDS platform on one processor 87

Figure 4.30 Saving the incoming packets payload into a buffer 88

Figure 4.31 Distribute the packet_array among available processors. 88

Figure 4.32 Distribute 12 elements into 3 processors 89

Figure 4.33 Convert array of packets into array of characters 90

Figure 4.34 Determine the actual position and actual length of the

packets payload

90

Figure 4.35 Actual length and actual position 91

Figure 4.36 The MPI_Recv function at the receiver’s end 91

Figure 4.37 Receiving function in every processor 92

xiii

Figure 4.38 MPI_Reduce function 92

Figure 4.39 Distribute packets payload among processors and cores 93

Figure 4.40 Distribute the packet payload among available cores 94

Figure 5.1 Hardware architecture for NNIDS platform 99

Figure 5.2 DPHM algorithm Vs Boyer-Moore Algorithm 101

Figure 5.3 Results for parallel DPHM algorithm 102

Figure 5.4 Results of matching comparison between DPHM algorithm

and SNORT-NIDS

103

Figure 5.5 Speedup, efficiency, and overhead for parallel DPHM

algorithm

105

Figure 5.6 Input packet size affect on minimal optimal # of threads 108

Figure 5.7 Rule set size affect on minimal optimal # of threads 108

Figure 5.8 Optimal minimal number of threads 109

Figure 5.9 SNORT Vs PME Vs NNIDS on 3000 pps input data 110

Figure 5.10 SNORT Vs PME Vs NNIDS on 25000 pps input data 111

Figure 5.11 SNORT Vs PME Vs NNIDS on 14000 pps input data 112

Figure 5.12 Comparison results of efficiency between all techniques 114

Figure 5.13 Comparison results of overhead between all techniques 115

xiv

LIST OF ABBREVIATIONS

AC_BM Aho-Corassick, Boyer-Moore algorithm

BM Boyer-Moore Algorithm

BMBC Boyer-Moore Bad Character table

DPHM Distribute Packet Header Matching

EF Early Filtering Algorithm / Energy Function

ExB Exclusion-based String Matching Algorithm

GA Genetic Algorithm

HIDS Host Intrusion Detection System

HTTP Hypertext Transfer Protocol

ICMP Internet Control Message Protocol

IDS Intrusion Detection System

LAN Local Area Network

MPI Message Passing Interface

NIDS Network Intrusion Detection System

NNIDS New Network Intrusion Detection System

OTN Option Tree Nodes

PF Packet Filter Algorithm

PME Pattern Matching Engine

PPS Packet per second

RHPNID
S

Rule-based High Performance NIDS

RTN Rule Tree Nodes

SSPP-BM SHIFT, SUFFIX, PREFIX, and PATTERN_LIST–
Boyer Moore

TCP/IP Transmission Control Protocol/Internet Protocol

UDP User Datagram Protocol

VoIP Voice Over Internet Protocol

xv

LIST OF APPENDICES

Appendix A Performance of the DPHM Algorithm 126

Appendix B Performance of the NNIDS Platform 129

xvi

ALGORITMA PEMADANAN BERBILANG BENANG YANG BERSKALA

UNTUK SISTEM PENGESANAN PENCEROBOHAN RANGKAIAN

ABSTRAK

Peningkatan kelajuan dalam rangkaian komputer memberi kesan secara lansung

terhadap prestasi Sistem Pengesanan Penerobosan Rangkaian (Network Intrusion

Detection System, NIDS) dari segi kelajuan dalam mengesan ancaman. Oleh itu,

prestasi algoritma yang sedia ada perlu diperbaiki dari segi turutan dan keselarian

untuk mempertingkatkan kelajuan enjin pengesanan yang digunakan dalam SNORT-

NIDS. Tesis ini menghuraikan satu algoritma baru yang dinamakan Padanan Kepala

Paket Teragih (Distributed Packet Header Matching, DPHM) dan platform Sistem

Baru Pengesanan Penerobosan Rangkaian (New NIDS, NNIDS) dengan

menggunakan teknologi hibrid dalam meningkatkan prestasi keseluruhan SNORT-

NIDS.

Algoritma DPHM menukarkan set aturan kepala ke dalam bentuk berat dan

menyimpannya dalam satu jadual carian (lookup table). Ia kemudiannya dipadankan

di antara kepala paket masuk (incoming packet header) dan set aturan kepala

(headers rule set). Proses padanan kelajuan SNORT-NIDS dipertingkatkan dengan

menggunakan cadangan proses pembelajaran yang terdapat dalam algoritma DPHM.

Platform NNIDS akan mengagihkan paket masuk beban bayar (incoming packets

payload) dalam dua senario. Dalam senario yang pertama, paket masuk beban bayar

(incoming packets payload) akan diagihkan kepada pemproses yang sedia ada dalam

xvii

seni bina memori yang di kongsi dengan menggunakan simpanan Antara Muka

Penghantaran Mesej (Message Passing Interface, MPI). Bagi senario kedua, paket

masuk beban bayar (incoming packets payload) akan diagihkan di kalangan

pemproses yang mempunyai pelbagai teras memproses dengan menggunakan

simpanan hibrid MPI dan simpanan OpenMP dalam seni bina memori yang dikongsi.

Prestasi algoritma DPHM telah diperbaiki sebanyak 25 peratus berbanding dengan

SNORT-NIDS (Algoritma DPHM memerlukan 2.33 saat dan SNORT-NIDS

memerlukan 3.22 saat) untuk memproses 3000 kepala paket dengan 0.5MB set

aturan kepala di mana bilangan pemproses bersamaan dengan dua. Di samping itu,

NNIDS juga telah memperbaiki prestasi SNORT-NIDS yang sedia ada sebanyak 80

peratus (NNIDS memerlukan 0.28 saat dan SNORT-NIDS memerlukan 1.71 saat)

untuk memproses 3000 paket dengan 1MB beban bayar set aturan di mana bilangan

pemproses bersamaan dengan dua yang setiap satunya mempunyai empat teras.

Keseluruhan prestasi SNORT-NIDS dari segi kelajuan telah meningkat sebanyak 50

peratus (dari 3.90 saat kepada 1.71 saat) bergantung kepada beban paket, saiz set

aturan dan bilangan pemproses yang digunakan.

xviii

MULTITHREADED SCALABLE MATCHING ALGORITHM FOR

INTRUSION DETECTION SYSTEMS

ABSTRACT

The increasing speed of today’s computer networks directly affects the performance

of Network Intrusion Detection Systems (NIDS) in terms of speed of detection of

threats. Therefore, the performance of the existing algorithms needs to be improved

both in sequential and parallel to enhance the speed of the detection engine used in

SNORT-NIDS. Hence, this thesis defines a new algorithm called the Distributed

Packet Header Matching algorithm (DPHM), and a New Network Intrusion

Detection Systems (NNIDS) platform using hybrid technology in order to increase

the overall performance of SNORT-NIDS.

The DPHM algorithm converts the header rule sets into weights and stores them in a

lookup table. It then matches the incoming packets header with the headers rule sets.

The speed of the SNORT-NIDS matching process is enhanced using the proposed

learning process which is contained within the DPHM algorithm.

Furthermore, the NNIDS platform will distribute the incoming packets payload into

two scenarios: In the first scenario, the incoming packets payload will distribute

among available processor in shared memory architecture using Message Passing

Interface (MPI) library. In the second scenario, the incoming packets payloads will

be distributed amongst available processors with multiple-cores processors using a

hybrid of MPI library and OpenMP library in shared memory architecture.

xix

The performance of the DPHM algorithm has been improved about 25% comparing

with SNORT-NIDS (DPHM algorithms need 2.33 seconds and SNORT-NIDS needs

3.22 seconds) to process 3000 packets header with 0.5MB headers rule sets, when

the number of processors are equal 2. Whereas, the NNIDS improved the

performance of the current SNORT-NIDS about 80% (NNIDS needs 0.28 seconds

and SNORT-NIDS needs 1.71 seconds) to process 3000 packets with 1MB payload

rule sets when the number of processors are equal 2 with 4 cores each. The overall

performance in terms of speed of the SNORT-NIDS has been improved about 50%

(from 3.90 seconds to 1.71 seconds) depending on the packets load; rule sets size and

the number of processor used.

1

CHAPTER ONE

INTRODUCTION

With the rapid evolution of the Internet and its applications, the Network Intrusion

Detection Systems (NIDS) are becoming inefficient because of the amount of the

traffic that needs to be processed daily. Moreover, current SNORT-NIDS

implementations are inadequate to process all the traffic in real time. Therefore, the

main objective of this thesis is to enhance the speed of engine detection in real time

for packets header and packets payload in SNORT-NIDS. For the packets header, we

proposed a new algorithm called Distributed Packet Header Matching algorithm

(DPHM). This algorithm can be run on a single processor or multiple-cores platform.

For the packets payload, this thesis also proposed a new platform called New

Network Intrusion Detection Systems (NNIDS). This platform can utilize any exact

string matching algorithms.

1.1 BACKGROUND

Network security is responsible for protecting the information passing through any

network from the intruders. Moreover, network security refers to all hardware and

software functionalities such as: identifying network characteristics and features,

operational procedures, measures of accountability, access controls administrative

and regulatory policies that are necessary to provide an acceptable level of protection

to the network (Alan R. Simon, 1994; Stallings, 2006; and Thomas, 2002).

2

For example, a firewall is a system that is used to secure the internal network from

the external traffic (Muhammad Abedin, 2006). A firewall swaps the information

between the Internet and the intranet and provides the first level of defense for the

networks. This will also stop unauthorized people from accessing the network.

However, the traditional firewalls are insufficient to ensure network security because

(Li W., 2004; Dressler, 2004/2005).

Ø A firewall usually cannot detect any threats from the internal network, such

as the trojans and botnets. A firewall is meant to protect the network

boundaries.

Ø A firewall filters all unwanted network traffic, but allows some of the

services (i.e. VoIP traffic data) to pass (Chen, 2008). Intruders can use this

limitation to break into the network.

Firewalls can be grouped into three main categories (Innella, 2000):

Ø Packet-filtering router firewall: this determines which traffic is allowed to

pass through the router to the local area network (LAN).

Ø Application-level gateway firewall: it is used to identify and validate the

network applications access privileges based on the application usage level.

Ø Circuit-level gateway firewall: this is used to identify and authenticate the

users’ network access.

Because of the weaknesses of the firewalls, the intruders can still find different

methods to penetrate the network every time. Intrusion Detection Systems (IDS) can

be used to detect these intrusions that could affect the network. This makes the IDS

3

being regarded as a complimentary solution within most organizations (M. M. Pillai,

2004; Giovanni Vigan, 2004; and Konstantions Xinidis, 2006) because IDS will

monitor the internal activities against the intrusions and warn the network

adminestrator about them.

1.2 Intrusion Detection Systems (IDS)

Intrusion Detection Systems (IDS) is a system that works after the firewall to prevent

unauthorized people from accessing the network. In addition, Intrusion Detection

Systems is a system to detect intrusions that are trying to steal information and

reporting these intrusions’ existence to the network administrator (Li W. , 2004).

IDS work a mechanism for protecting confidentiality, availability, and integrity to

avoid bypassing the boundary security mechanisms. Other researchers like (S.

Antonatos K. G., 2004) defined IDS as a process of determining whether the attack

was an attack attempts or the attack is taking place. Where (Eduardo Mosqueira-Rey,

2007) and (Alan R. Simon, 1994) defined IDS as the detection of the activities that

are contrary to the normal behavior of the network.

The real time IDS overview is depicted in Figure 1.1 that consists of four engines:

1. Capture engine: this engine is used to capture all the incoming packets from

the network.

2. Preprocessor engine: used to prepare the captured packets for the detection

engine.

4

3. Detection engine: used to check all the preprocessed packets against any

possible intrusions.

4. Alert, log, and pass engine1: used to generate a suitable level of alert to the

network administrator

Figure 1.1: Intrusion Detection Systems Architecture.

IDS can be classified based on their techniques into two categories: (Zhou Chunyue,

2006; Varghese, 2004; and Mahadeo, 2008):

Ø Misuse Detection IDS.

Ø Anomaly Detection IDS.

1 Three cases discussed in chapter two, section 2.3.1

5

Misuse Detection IDS is based on known patterns/signatures. The IDS is using this

technique to identify the existence of a pattern in the monitored network traffic.

Anomaly Detection IDS is based on network behaviors. The IDS used it to

differentiate between normal and abnormal network behavior (Dr. Fengmin Gong,

2002).

Furthermore, IDS can be divided into three groups based on the intrusion behavior

(Pels, 2005; Sinn, 2007):

1. Network Intrusion Detection Systems (NIDS) (Network-based IDS).

2. Host Intrusion Detection Systems (HIDS) (Host-based IDS).

3. Stack-Based IDS: works closely with the TCP/IP stack to allow network

traffic to be examined/checked against any known intrusion.

The NIDS is used to identify intrusions by monitoring the network traffic. The HIDS

is used to monitor the hosts of the local files and process the activities. Moreover, the

HIDS listens or links to the network traffic to identify known attacks against the host

(Rehman, 2003; Laing, 2000; Bezroukov, 2003; Ericsson, 2006; Michael Gregg,

2007.

NIDS offers the following additional functionalities that HIDS does not provide.

Ø Packet Analysis: NIDS examines all incoming packets header to detect any

malicious activity. In addition, NIDS can also check the packet payload for

special commands or syntax.

6

Ø Real-Time detection and response: In order to save the information from

being damaged or stolen, NIDS can detect network attacks and then reports

them to the network administrator in real time.

On the other hand, HIDS has an advantage over NIDS in determining if the attack

has been successful. This is due to the fact that NIDS suffers from high false

positives alerts. However, it is argued that the IDS must include both NIDS and

HIDS for more efficiency and detection accuracy (Benjamin Morin, 2007).

1.3 Problem Statement

NIDS works by matching the string patterns or signatures against packets header and

packets payload using exact string matching algorithm such as (ESMAJ, 1997).

1- Boyer-Moore Algorithm (BM). BM is widely used because of its efficiency

in using a single pattern matching to problems. BM uses bad character shift

and good suffix shift to find the pattern in the text.

2- AC_BM (Aho-Corassick, Boyer-Moore) Algorithm. This algorithm examines

the text from right to left and uses a common prefix approach instead of a

common suffix approach. The keyword tree moves from the right end of the

packet payload to the left end. Meanwhile, the character comparisons are

performed from the left to the right.

3- Horspool Algorithm. This algorithm works in any order and the average

number of comparisons for one text character is between 1)+(2/ and 1/ ss .

Horspool algorithm is faster than BM algorithm and AC_BM algorithm for

the medium size patterns.

7

These exact string matching algorithms work in the linear mode and all of them were

depended upon to create the Boyer-Moore Bad Character (BMBC) table with some

modifications (Rafiq, 2004). Some algorithms are a little bit faster than the others,

especially in a short text (Rong-Tai Liu, 2004).

In addition, Intel’s Communication Technology laboratory parallelized a SNORT-

NIDS Intrusion Detection Systems on four execution cores (Verplanke, 2007). They

used the POSIX threading library (Pthreads for win32, 2006) to implement their

technique. Each thread will be executing the same loop, reading incoming packets

and processing the packets independently (Verplanke, 2007).

The (Bart Haagdorens1, 2004) presented five designs for the multi-threaded NIDS

sensors. The main idea from their work is to save incoming packets into a queue.

After the packet goes to the preprocessor phase, all the threads regardless of their

number will be processing one single packet at a time until the queue is empty.

However, this technique has two problems:

1. In the case of one packet in the queue, all the threads will rush to process

this single packet. In this case, one thread could be faster than multiple

threads because of the synchronization between the threads.

2. Each thread will process its own data in one single packet. The borderline

(the area between one part and another in the same packet) data will not be

processed until all the threads are finished. Thus, the system will stop for a

while, to process the borderline data.

8

As a result, the open source Network Intrusion Detection Systems (SNORT, 2010) is

one of the famous tools known for intrusion detection in this field. In linear

processing, SNORT-NIDS typically consumes 31% of the total processing time due

to string matching and consumes 80% of the total processing time in the case of http

traffic (S. Antonatos K. G., 2004). This means that, the matching process is the most

expensive process. Since SNORT-NIDS is a real time IDS that required a lot of time

to process the whole incoming packets (YU Jianming, October 2007). NIDS needs to

increase its performance in high speed networks links.

The (Lambert Schaelicke, 2003; W. Lee, 2002; and Haoyu Song, 2005) proved in

their experiments that on high speed networks, the software alone is not enough to

process all the traffic. The exact string matching algorithms are used to detect

intrusions, but these algorithms are insufficient to process all the network traffic in a

linear phase. This is because; nowadays the speed link can reach up to 10 Gbps

(Xiang, 2006; and Deri, September, 2007). The need for Network based Intrusion

Detection Systems (NIDS) as complimentary software to the firewall is required to

detect all kinds of intrusions whether the intrusion is of internal or external threads.

1.4 Research Goals and Objectives

The main goal of this thesis is to propose a new algorithm to enhance the speed of

the intrusion detection engine based on the packets header called Distributed Packet

Header Matching algorithm (DPHM). This thesis also proposed a new platform to

enhance the speed of the detection engine for packets payload called New Network

Intrusion Detection Systems platform (NNIDS). Furthermore, the NNIDS platform

9

can be used along with any exact string matching algorithms. Therefore, the

objectives of this thesis are:

Ø To propose a new exact matching algorithm for enhancing the speed of the

detection engine based on packets header in both sequential and parallel

modes using multi threading technology.

Ø To enhance the speed of the existing SNORT-NIDS detection engine based

on packets payload in real time by using multi-processors technology coupled

with multiple-cores platform (Hybrid).

1.5 Contribution of this thesis

NIDS suffers from a slow speed of its detection engine in linear and in parallel

modes, and a lot of overhead costs in some of the parallelized technology. Therefore,

this thesis contribution can be summarized as follow:

1. Matching algorithm: A new algorithm called Distributed Packet Header

Matching algorithm (DPHM) is introduced to enhance the speed of the

detection engine for the packets header in a linear and multiple-cores

platform.

2. Load Balancing: A new platform called the New Network Intrusion

Detection Systems platform (NNIDS) is introduced to increase the speed of

the detection engine for the packets payload in real time. By utilizing both:

a. Multi-processing technology.

b. Multi-processors technology with Multi-threading techniques

(Hybrid).

10

The MPI stands for "Message Passing Interface". It is a library of functions in C that

can be used to perform data communication between processes. The OpenMP is

another example of a multiple-cores platform and it can be used to direct multi-

threaded, shared memory programs on shared memory system. By using the

OpenMP, the incoming packets payload will distribute among available cores that

will reduce the synchronization between threads.

These two contributions will improve the performance of NIDS detection engine,

and reduces the overhead problem resulting from the synchronization between the

threads (see chapter 5).

1.6 Thesis Outline

This thesis is organized into six chapters. This chapter (Chapter 1) presents the

objectives of this thesis. It starts by presenting a background discussion for the

Network Intrusion Detection Systems (NIDS) along with our research objectives and

contributions.

In Chapter 2, we discuss the most current and related works in NIDS. The researcher

will also discuss the most important exact string matching algorithms used in NIDS.

The reasons why we choose the methodologies for our system are discussed

Chapter 3 covers the methodology discussion on how the proposed solution was

designed. The new algorithm for the packets headers detection is introduced in this

chapter. The new platform for the packets payload is also described in this chapter.

11

The implementation details and issues are discussed in Chapter 4. The illustration of

the experimental direction and the implementation of a real time detection engine are

also mentioned.

The results obtained from the experiments in Chapter 4 are the primary content of

Chapter 5. This chapter is divided into two parts. The first part reports the results of

the detection engine for the packets header in a linear and on a multiple-cores

platform. The second part reports the result of the detection engine for the packets

payload on multi-processors with multiple-cores platform.

Finally, in Chapter 6, the conclusion, recommendation and the possible future work

for this study are presented in details.

12

CHAPTER TWO

RELATED WORKS

2.1 Introduction

This chapter will explore the related works of the detection engine in Network

Intrusion Detection Systems (NIDS).The detection engines categorized into two

types of detection engine namely: the detection engine for packet header and the

detection engine for packet payload. Each type is discussed with the corresponding

related works. Later, the proposed solution is also described in this chapter, while the

design and the methodology of the proposed solution are discussed in detail in the

Chapter Three.

2.2 Related Works

2.2.1 Intrusion Detection Systems Based on Packets Header

Any pattern based NIDS must contain a detection engine as part of its components.

This detection engine is responsible to detect any intrusion that exists in a packet.

Accordingly, the detection engine is the most important part in NIDS and therefore,

many of the researchers previously tried to enhance this part to increase the

performance of NIDS through modifying the above exact string matching algorithm,

or by proposing a new algorithm altogether. However, in this section, the related

13

works of the detection engine for packets header are divided into two groups based

on their techniques:

Ø Group 1: Matching Algorithms.

Ø Group 2: Genetic Algorithm.

2.2.1.1 Matching Algorithms:

1- Boyer-Moore Algorithm

Boyer-Moore algorithm is considered as one of the most famous pattern matching

algorithms, one that is considered very fast in practice, and it was designed for the

exact string matching of many strings against a single keyword (Lecroq, 2004). The

first heuristic phrase used is “bad character shift”. Bad character shift starts a

comparison from the right to the left and if a character is seen that does not exist in

the text to search for, then the search algorithm can be shift forward to an “Μ”

character where “Μ” is the length of the pattern. The second heuristic phrase used in

the Boyer-Moore algorithm is “good suffix shift”. Good suffix shift starts a

comparison from the right to the left and if it is matches, then the algorithm check the

next character in the text with the next character in the pattern, until matching all the

strings. In the case of mismatching, the Boyer-Moore algorithm is looking for the

next occurrence of a substring that was matched before.

Boyer-Moore algorithm suffers from two issues: (Zhou Chunyue, 2006) (RONG-

TAI, August 2004)

3. Table skips function: This function is complicated and is used only in the

case of a short text. When BMBC (Boyer-Moore Bad Character) shift fails

14

to find a character in a short text, then Boyer-Moore returns to the values

in the table skip function to determine the number for further shifting.

4. Boyer-Moore algorithm depends on the text information and rarely refers

to pattern information. Usually, all the exact strings matching algorithms

will determine the number of shifting according to the characters in the

pattern because the pattern is usually shorter than the text.

Therefore, (Rafiq, 2004) modified Boyer-Moore algorithm as follows:

1. The mismatched character of pattern is searched in the text instead of

mismatched character of text being searched in the pattern. This technique

makes the searching process working faster.

2. There is no need to calculate the distance between the two sub strings as

Boyer-Moore algorithm does, because it is costly to compute.

3. He developed an algorithm to find all the occurrences of a pattern in the text.

2- AC_BM algorithm (Aho-Corassick, Boyer-Moore)

AC_BM algorithm examines the text from the right to the left using a common prefix

approach instead of a common suffix approach. The keyword tree moves from the

right end of the packet payload to the left end, while the character comparisons are

performed from the left to the right.

The AC_BM algorithm can be used only by one of two ways: Firstly, the AC_BM

algorithm used “bad character shift”, which is similar to the heuristic of Boyer-

Moore algorithm. Meaning, if a mismatch occurs, then AC_BM algorithm will

15

automatically shift to the next occurrence in some other keyword in the pattern tree.

If it is a mismatch, the AC_BM algorithm will shift according to the length of the

smallest pattern in the tree. Secondly, the AC_BM algorithm used the “good prefix

shift”, which is similar to the “bad character shift”, but here the AC_BM algorithm

will shift to the next occurrence according to the smallest pattern length (C. Jason

Coit, 2001).

The AC_BM algorithm is faster than the Boyer-Moore algorithm from between 1.02

to 3.32 times. On the other hand, the AC_BM algorithm does not support any priority

search in its searching phase. In non case-sensitive patterns as well, the AC_BM

algorithm needs an additional structure to solve this problem. (Rong-Tai Liu, 2004).

On the other hand, the AC_BM algorithm has a problem which is the maximum

number of shifting depends on the length of the shortest pattern size

3- Quick Search Algorithm

The Quick Search algorithm is more simplified version of Boyer-Moore algorithm,

but the Quick Search algorithm used only the “bad character shift”. The Quick

Search algorithm work like a Horspool algorithm as well by working on one of two

shifts of pattern. The Quick Search algorithm is easy to implement and is very fast in

practice for short and large patterns (Lecroq, 2004).

16

4- The Horspool Algorithm

The Horspool algorithm looks like the Quick Search algorithm and Boyer-Moore

algorithm but in a slightly different way. The Horspool algorithm works in any order,

and the average number of comparisons for one text character is between

1)+(2/ and 1/ ss (Lecroq, 2004).The Horspool algorithm has a teething problem

like the AC_BM algorithm which is the maximum number of shifting depends on the

length of the shortest pattern size (Rong-Tai Liu, 2004).

Table 2.1 summarizes the complexity, preprocessing phase and searching phase for

the mentioned algorithms.

Table 2.1: Complexity of some exact string matching algorithms (Rafiq, 2004)

2.2.1.1.1 Rule Tree Nodes (RTN) and Option Tree Nodes (OTN) Techniques

(C. Jason Coit, 2001; and S. Antonatos K. G., 2004) find out that SNORT-NIDS

relies on pattern matching to determine the intruders, and that the total number of

rules is growing from time to time. Therefore, SNORT-NIDS divided its rule sets

into two dimensional link lists as follows:

Algorithm Name

Complexity

Preprocessing Phase Searching
Phase Space Time

Boyer-Moore O(m + |∑|) O(m + |∑|) A: O(mn)

Horspool O(|∑|) O(m + |∑|) A: O(mn)

Quick Search O(|∑|) O(m + |∑|) A: O(mn)

Where A is the average case, m is the pattern length, and n is the
string length

17

RTN RTN RTN …

OTN

OTN

OTN

Ø The Rule Tree Nodes (RTNs)

Ø The Option Tree Nodes (OTNs)

The Rule Tree Nodes (RTNs) hold the main information of each rule, such as:

source/destination address, source/destination port and protocols type (i.e. TCP,

ICMP, UDP). While The Option Tree Nodes (OTNs) hold the information for the

various options that can be added to each rule such as: TCP flags, ICMP codes and

types, packet payload size and packet payloads. These two structures are organized

into chains where the RTNs are strung from the left to the right as the chain headers

and the OTNs are hanging down from the RTNs’. Figure 2.1 depicts the structure of

SNORT-NIDS rule sets.

Figure 2.1: Structure of SNORT-NIDS rule sets (C. Jason Coit, 2001)

Through analyzing the SNORT-NIDS rule sets, there are over 3100 rules in SNORT-

NIDS 2.3.3 (Li X. W., 2006), 200 rules are header only without payload. Therefore,

the first procedure is to examine the RTNs’ from the left to the right, until the packet

matches the RTN. Then, the SNORT-NIDS detection engine checks the packet

against each OTN in the chain, until a match is found. To increase the performance

of SNORT-NIDS, it is better to leave the payload match to the last phase, because

checking the payloads required more time due to its various sizes. Therefore,

18

SNORT-NIDS checks all the other options before a payload match. If there is a need

to check a payload, SNORT-NIDS will utilizes the Boyer-Moore pattern matching

algorithm to check the payload string held in the OTN against the entire packet

payload and if there is no match, SNORT-NIDS will then check the next OTN in the

list.

Algorithm: Boyer-Moore algorithm cannot determine the rule that it may match with

the incoming packet header directly, and must search from the beginning to the end

of the header rule set. Also, Boyer-Moore algorithm has to create the Boyer-Moore

Bad Character (BMBC) table for each incoming packet and good suffix shift for each

header rule set (wasted time).

Load Balancing: SNORT-NIDS structure does not Load Balancing the incoming

packet header into available processors/cores. It will process the first header rule set

with the incoming packet header, if matching then it will process the packet payload,

else it will go to the next packet header sequentially and so on.

2.2.1.1.2 Packet Filter (PF) Algorithm

The Packet Filter (PF) algorithm classified each packet into two fields: Header and

Payload (Randy Smith, 2006). The Header contains the main information of the

packet such as: source/destination address, source/destination port, protocol …etc.

They defined a packet filter as a rule sets since these rule sets determine which

packets are allowed to pass and which are not allow. When the incoming packets

arrived, its header information will be examined to check; if the packet header

matches with one of the rule sets (Yang, 2003).

19

In some cases, there are more than one rule set that can be matched with any of

incoming packets. In this case, the PF algorithm will take the highest priority.

Therefore (Yang, 2003) divided the packets filters into two policies. The first policy

is allowing all the packets to pass except for the specific type of packets. The second

policy is considered contrary to the first policy in that it is rejecting all packets

except some specific types of packets that can be allowed according to the policy.

Furthermore, the authors divided their algorithm into two parts: build algorithm and

searching algorithm. The build algorithm is used to build the decision tree, while the

searching algorithm is used to find the matched rule in the decision tree for an input

packet.

Algorithm: The PF algorithm is also used exact string matching algorithm to find the

pattern in the string. Hence, PF algorithm has to create the BMBC table for each

incoming packet and good suffix shift for each header rule set.

Load Balancing: The PF algorithm does not use any Load Balancing for the

incoming packet header to spread the process into available processors/cores. It

builds the decision tree and search on it sequentially.

2.2.1.1.3 Early Filtering (EF)

Some researchers focus on developing a new architecture to split the packet

headerinto chunks of packets (I. Charitakis, 2003). The author’s categorizes the

NIDS rulesets into two categories: the header rule set without any payload, and the

header ruleset with a payload. The former category is called the Early Filtering (EF)

rule set. When the incoming packet reaches to the EF rule set without payload. It will

20

check if it matches with one of the EF rule sets. If it matches, then the packet will be

discarded but if there is no rule matches even though the packet has a payload, then

the packet will be sent to one of the sensors to evaluate the packet again. The

researchers have also developed the locality buffer technique to improve the

performances of NIDS sensors. The locality buffer technique is based on the fact that

each specific rule sets is for a specific type of traffic. Here it means that each sensor

will process the corresponding rules of that traffic. Figure 2.2 depicts the EF splitter

architecture

Figure 2.2: NIDS splitter architecture (I. Charitakis, 2003)

Algorithm: The EF splitter architecture split the incoming packets header into

buffers according to the specific type of traffic. In this approach, the buffer that is

involved to save the http traffic will be always full because 80% of the traffic is http

traffic. Therefore, the speed of processing time will not enhance because this will be

similar to the same scenario if we used one buffer.

Load Balancing: The EF splitter architecture does not distribute the incoming

packets header into available processors/cores. It is working in sequential mode only.

21

2.2.1.1.4 Packet Filtering

Some other researchers considered the packet filtering process as two sequence

procedures (Yoshiyuki Yamashita, 2007) as follows:

Ø Classify each incoming packet into one of three possibilities: To accept, to

drop, and to forward.

Ø Action that will be taken according to the classification procedure.

Thus, to make the loop optimization, (Yoshiyuki Yamashita, 2007) divided the loop

into two loops. For the first loop that is consists of logical and arithmetic operation, it

must process multiple consecutive packets together with software in a pipelined

procedure, that is considered a highly sophisticated aggressive instruction scheduling

technique for loops (Yoshiyuki Yamashita, 2007).

Algorithm: The Packet Filtering software tool is suffering from a high complexity

(O()) because it divided the loop into two loops where each loop process different

function.

Load Balancing: The Packet Filtering software tool working on sequential mode

where the system will finish from the first loop and then process the second loop.

Notice here, loop 2 is fully depending on loop 1. Therefore, this software tool is

impossible to work in parallel mode.

22

2.2.1.2 Genetic Algorithm (GA)

Genetic algorithm is an algorithm that can be used to find exact or approximate

solutions that achieve the optimized and search problems (Goldberg, 2005).

Therefore, some researchers used a Genetic Algorithm (GA) in the Intrusion

Detection Systems to create the rule sets from the network traffic. These rules are

stored in the rule base and take the following form:

IF {Condition}

Then {act}.

Where condition refers to the matching case between the current network connection

and the rules in IDS (e.g. source/destination address, source/destination ports,

protocol ...etc), while act refers to an action that is defined by the security policies

within the organization (e.g. reporting an alert, stopping the connection, etc...) (Chris

Sinclair, 1999).

The goal from applying Genetic Algorithm (GA) into IDS is to generate rules to

match anomalous traffic. These rules are used to filter new traffic to catch all

suspicious packets in the network. In addition, these rules are tested based on

historical traffic. These data sets are gathered using any popular network traffic

filters such as SNORT-NIDS, TCPDUMP (www.tcpdump.org) and Ethereal

(www.ethereal.com).

Other researchers used GA on a small random rule set (Li W. , 2004). GA can easily

generate a large amount of data set that contains the rule sets for IDS. These rule sets

are enough for filtering any new network traffic. They find out that there are many

23

parameters that can be considered for the application of GA, and the evaluation

function is considered one of the most important parameters in GA. Figure 2.3

depicts their proposed algorithm.

Figure 2.3: Architecture of applying GA into intrusion detection (Li W. , 2004)

Algorithm: Genetic Algorithm creates rule sets from the suspicious traffic.

Therefore, the rule set will be increased continuously, which will lead to increase the

searching/computational time.

Load Balancing: The two mentioned previous works that are used Genetic

Algorithm in their proposed solution don’t not load balance the incoming packets

header into processors/cores.

2.2.2 Intrusion Detection Systems Based on Packets payload

In fact, some researchers have used dedicated hardware to enhance the speed of the

detection engine (S. Ioannidis, 2002), (Sarang Dharmapurikar, 2003), and

(Lockwood, 2005). Software based solution has a slow speed; it only performs

lightweight processing on low network links. On the other hand, hardware based

solution is faster and perform intensive processing on network traffic and supports a

much higher network speed (Lambert Schaelicke, 2003).

DARPA

Data set
Rule Set GA Network

Sniffer
Rule
Base

24

However, the detection engine for packets payload should be faster than the detection

engine for packets header. Because usually, the size of the packet payload is larger

than the size of packets header that is always fixed size.

In this section, the researcher mentioned the related works of the detection engine for

packets payload into two groups:

Ø Sequential processing.

Ø Parallel processing.

2.2.2.1 Sequential Processing

In this section, we are going to briefly describe the related works of the detection

engine for packets payload using Exact Matching Algorithm.

The Misuse Detection Filter is considered as the simplest type of filters and it works

by looking for a specific signature in the packet over the network traffic where this

signature is called rule. Meanwhile, the Anomaly Detection is used to monitor and

detect special types of events in a system. This means that a system will generate an

alert when there are some changes that happen to the normal system behavior.

Therefore, the researchers find out that there is a subsystem from anomaly detection

called the Protocol Anomaly Filter, which is looking for specific types of protocols

that are misused (Defcom, 2001). The Protocol Anomaly Filter can be used to detect

all kinds of attacks that are trying to use the protocols outside normal usage.

25

Packet
Sniffer

Data
Model

Rule
Engine

Action
Model

Multi-
Agent

The Misuse Detection filter depends on signatures to detect intrusions. These

signatures are already registered in a database to detect the attacks. However, the

database will grow up exponentially causing performance degradation to the misuse

detection engine.

2.2.2.1.1 Developing a new architecture for the Misuse Detection Engine

However, the (Eduardo Mosqueira-Rey, 2007) proposed an architecture for The

Misuse Detection as depicted in Figure 2.4.

Figure 2.4: Eduardo’s Misuse Detection architecture (Eduardo Mosqueira-Rey,
2007)

From Figure 2.4, the authors have designed a new architecture that is similar to

SNORT-NIDS but in the JAVA environment. They also use Rete algorithm for the

pattern matching process. Specifically, an implementation in JAVA language

(drools-JBoss Rules) was used, and a parser was implemented that converts SNORT-

NIDS rule sets to Drools rules.

Finally, they grouped the advantages and disadvantages of the Misuse Detection and

Anomaly Detection as depicted in Table 2.2.

