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Cg and Cu–P–Cg–SiC 
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LIST OF SYMBOLS, ABBREVIATIONS AND NOMENCLATURE 

Symbols Descriptions 

ABS Acrylonitrile–butadiene–styrene  

AC Alternating current 

AFM Atomic Force Microscopy 

ϐa Anodic Tafel slope 

ϐc Cathodic Tafel slope 

Cg Graphite 

CS Carbon steel 

CTE Coefficient of thermal expansion 

Cu–P Electroless copper–phosphorous 

Cu–P–Cg Electroless copper–phosphorous reinforced with graphite 

particles 

Cu–P–Cg–SiC Electroless copper–phosphorous reinforced with silicon 

carbide and graphite particles 

Cu–P–SiC Electroless copper–phosphorous reinforced with silicon 

carbide particles  

CuSO4·5H2O Copper sulfate 

DSC Differential Scanning Calorimetry 

EC Electroless copper 

EDTA Ethylenediaminetetraacetic acid 

EDX Energy Dispersive X-ray 

EIS Electrochemical Impedance Spectroscopy 

El Electroless 

FC-4 C20H20F23N2O4I 

FD Freeze drying 

H3BO3 Boric acid 

HTAB Hexadecyltrimethyl ammonium bromide  

Icorr Corrosion current 

MEMS Microelectromechanical system 

MMCs Metal matrix composites 

Na3C6H5O7 Sodium citrate 
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NaH2PO2·H2O Sodium hypophosphite 

NASP National aero-space plane 

NiSO4·6H2O Nickel sulfate 

OCP Open circuit potential 

Ox Oxidation  

PCB Printed circuit board 

POP Plating on plastics 

PTFE Polytetrafluoroethylene 

Ra Roughness 

RC Randles cell 

Rct Charge transfer resistance 

R.E. Reference electrode terminal 

Rp Polarisation resistance 

Rs Solution resistance 

RT Room temperature 

SCE Saturated calomel electrode 

SEM Scanning Electron Microscopy 

SiC Silicon carbide 

ULSI Ultra large scale integration 

WC Tungsten carbide 

W.E. Working electrode terminal 

WLoss Weight loss 

XRD X-Ray Diffraction 

Z Impedance 
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PENYADURAN TANPA ELEKTRIK LITUPAN KOMPOSIT KUPRUM 

YANG DIPERKUKUHKAN DENGAN ZARAH SILIKON KARBIDA DAN 

GRAFIT 

 

ABSTRAKT 

 

 Dalam kajian ini, litupan komposit Cu–P, Cu–P–SiC, Cu–P–Cg dan Cu–P–

Cg–SiC telah dienapkan dengan menggunakan kaedah penyaduran tanpa elektrik. 

Kesan-kesan pH, suhu dan perbezaan kepekatan NaH2PO2·H2O, NiSO4·6H2O, 

silikon karbida (SiC) and grafit (Cg) ke atas kadar pengenapan dan komposisi litupan 

telah dinilai dan formulasi rendaman bagi litupan komposit Cu–P–Cg–SiC telah 

dioptimumkan. Parameter operasi optimum bagi pengenapan Cu–P–Cg–SiC adalah 

dikenal pasti pada pH 9, suhu pada 90 ºC, pada kepekatan masing-masing 125 g L
-1 

bagi NaH2PO2·H2O, 25 g L
-1

 bagi CuSO4·5H2O, 3.125 g L
-1

 bagi NiSO4·6H2O, 5 g 

L
-1

 bagi SiC, 5 g L
-1

 bagi Cg, 50 g L
-1

 bagi C6H5Na3O7·2H2O dan 25 g L
-1

 bagi 

H3BO3. Morfologi permukaan litupan yang telah dianalisa menggunakan mikroskop 

pengimbas elektron (SEM) menunjukkan bahawa taburan zarah Cu adalah seragam 

dengan beberapa sebatian Si dan zarah Cg. Teknik pembelauan sinar -X (XRD) dan 

SEM  telah digunakan dalam pencirian struktur dan morfologi litupan. Fasa seperti 

Cu, Cu2O, Cu3P, Cu3Si, SiC dan Cg telah dilihat daripada pola XRD dan kehadiran 

Cu2O, Cu3P dan Cu3Si telah dipastikan oleh kaedah kalorimeter pembezaan imbasan 

(DSC). Keputusan telah menunjukkan bahawa SiC dan zarah Cg mempunyai sedikit 

pengaruh ke atas peralihan fasa litupan. Keputusan yang diperoleh daripada 

mikroskop tenaga atom (AFM) bagi litupan menunjukkan kekasaran permukaan 

semakin meningkat dengan penambahan SiC di dalam matriks litupan Cu–P dan 

berkurangan dengan kehadiran Cg. Litupan komposit Cu–P–Cg–SiC menunjukkan 

kekasaran yang sederhana diantara kekasaran Cu–P–SiC dan Cu–P–Cg. 
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 Sifat anti-kakisan litupan komposit Cu–P, Cu–P–SiC, Cu–P–Cg dan Cu–P–

Cg–SiC di dalam larutan NaCl dan HCl telah dikaji menggunakan kaedah kehilagan 

berat, polarisasi potensiodinamik dan teknik spektroskopi elektrokimia impedans 

(EIS). Anjakan nilai keupayaan kakisan (Ecorr) ke arah lengai, penurunan nilai 

ketumpatan arus kakisan (icorr), peningkatan rintangan pemindahan cas (Rct) dan 

penurunan kapasitans lapisan ganda dua (Cdl) menunjukkan penambahbaikan dalam 

rintangan kakisan dengan kehadiran zarah SiC di dalam matriks Cu–P. Kesan 

kepekatan SiC ke atas rintangan kakisan Cu–P–SiC telah dikaji dan didapati bahawa 

kesan anti-kakisan terbaik bagi Cu–P–SiC adalah pada kepekatan 5 g L
-1

 SiC di 

dalam formulasi rendaman. 

 Kekerasan dan ketahanan haus bagi litupan komposit Cu-P telah ditingkatkan 

dengan kehadiran zarah SiC dan peningkatan kepekatan SiC juga meningkatkan 

kekerasan dan ketahanan haus Cu–P. Pekali geseran bagi litupan komposit Cu–P 

berkurang dengan kehadiranan zarah Cg. Litupan komposit Cu–P–Cg–SiC 

menunjukkan kekerasan yang sederhana diantara Cu–P–SiC dan Cu–P–Cg, dan 

geseranyang rendah, anti-haus yang baik dan menunjukkan sifat anti-kakisan. 
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ELECTROLESS COPPER COMPOSITE COATINGS REINFORCED WITH 

SILICON CARBIDE AND GRAPHITE PARTICLES 

 

ABSTRACT 

 

In this work, Cu–P, Cu–P–SiC, Cu–P–Cg and Cu–P–Cg–SiC composite 

coatings were deposited by means of electroless plating. The effects of pH, 

temperature and different concentrations of NaH2PO2·H2O, NiSO4·6H2O, silicon 

carbide (SiC) and graphite (Cg) on the deposition rate and the coating compositions 

were evaluated and the bath formulation for the Cu–P–Cg–SiC composite coatings 

was optimised. The corresponding optimal operating parameters for depositing Cu–

P–Cg–SiC were found to be pH 9, temperature at 90 ºC, concentrations of 

NaH2PO2·H2O at 125 g L
-1

, CuSO4·5H2O at 25 g L
-1

, NiSO4·6H2O at 3.125 g L
-1

, 

SiC at 5 g L
-1

, Cg at 5 g L
-1

, C6H5Na3O7·2H2O at 50 g L
-1

 and H3BO3 at 25 g L
-1

. The 

surface morphology of the coatings that were analysed using scanning electron 

microscopy (SEM) showed that Cu particles were uniformly distributed with some Si 

compounds and Cg particles. X-ray diffraction (XRD) and scanning electron 

microscopy (SEM) techniques were used to characterise the structure and 

morphology of the coatings. Phases such as Cu, Cu2O, Cu3P, Cu3Si, SiC and Cg were 

observed from X-ray diffraction patterns and the presence of Cu2O, Cu3P and Cu3Si 

was confirmed by differential scanning calorimeter (DSC) studies. The results 

demonstrated that SiC and Cg particles have little influence on the phase transition of 

the coating. Atomic force microscopy (AFM) results of coatings showed that the 

roughness of the coatings increased with the incorporation of SiC to the matrix of 

Cu-P coatings and decreased with the incorporation of Cg. Cu–P–Cg–SiC composite 

coatings showed a moderate roughness between Cu–P–SiC and Cu–P–Cg. 
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The anti-corrosion properties of Cu–P, Cu–P–SiC, Cu–P–Cg and Cu–P–Cg–

SiC composite coatings in NaCl and HCl solutions were investigated by the weight 

loss method, potentiodynamic polarisation and electrochemical impedance 

spectroscopy (EIS) techniques. The shift in the corrosion potential (Ecorr) towards the 

noble direction, decrease in the corrosion current density (icorr), increase in the charge 

transfer resistance (Rct) and decrease in the double layer capacitance (Cdl) values 

indicated the improvement in corrosion resistance with the incorporation of SiC 

particles in the Cu–P matrix. The effects of SiC concentrations on the corrosion 

resistance of Cu-P-SiC were investigated and it was found that the best anti–

corrosion of Cu–P–SiC was at 5 g L
-1

 SiC in the bath formulation.  

The hardness and wear resistance of Cu–P composite coatings were improved 

with the incorporation of SiC particles and with the increase of SiC concentration, 

the hardness and wear resistance also increased. The friction coefficient of Cu–P 

composite coatings decreased with the incorporation of Cg particles. Cu–P–Cg–SiC 

composite coatings showed a moderate hardness between Cu–P–SiC and Cu–P–Cg, 

and had low friction, good anti-wear and showed some anti-corrosion properties. 
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CHAPTER ONE 

INTRODUCTION AND LITERATURE REVIEW 

 

1.1 Electroless plating 

Thin film metallic coatings have been the focus of much interest in recent 

years. As the cost of metals soars, manufacturers are increasingly turning to more 

economical means of coating their products. Metal deposition by aqueous solutions 

can broadly be divided into two categories: electrolytic and electroless. The 

electroless process supplements and in some cases replaces electrodeposition for 

several practical reasons. Electroless depositions have excellent throwing power and 

allow plating on articles with very complex shapes and plating through holes. 

Deposits obtained by electroless deposition are more dense (more pores-free) and 

exhibit better properties for corrosion and electronics applications. Other important 

advantages include its applicability for metallisation of nonconductive surfaces 

(glass, ceramics, polymers, etc.) and the ability to selectively deposit thin metal films 

only on catalysed areas of the substrate. Finally, in electroless metal deposition 

process, no external current supply is required to deposit materials on a substrate. 

Electroless plating is an autocatalytic process where the substrate develops a 

potential when it is dipped in an electroless solution called bath, which contains a 

source metal of metallic ions, reducing agent, stabiliser and others. Due to the 

developed potential, both positive and negative ions are attracted towards the 

substrate surface and release their energy through charge transfer process. Each 

process parameter has its specific role on the process and influences the process 

response variables. Temperature initiates the reaction mechanism which controls the 
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ionisation process in the solution and charge transfer process from source to 

substrate. In addition to this, the substrate is activated before dipping into the 

electroless bath and sensitised to initiate the charge transfer process (Li, 2003; Oraon 

et al., 2006). 

 

There are many different processes that can be considered under the heading 

of nonelectrolytic plating and coating. These include electroless plating (in which a 

metal compound is reduced to the metallic state by means of a chemical reducing 

agent in solution), hot dipping, plasma spraying, chemical vapor deposition, 

diffusion processes, vacuum coating and sputtering. All these different methods have 

the goal of applying the desired thickness of metal onto a surface in the shortest 

period of time and at the lowest possible cost (Li, 2003). 

 

Since the discovery of autocatalytic electroless plating by Brenner and Riddel 

in 1946, its use has continued to grow because of its useful combination of properties 

and characteristics (Delaunois et al., 2000; Mallory & Hadju, 1990; Oraon et al., 

2006). Indeed, electroless plating offers unique deposit properties, including 

uniformity whatever the substrate geometry. Other features are excellent corrosion, 

wear and abrasion resistances, good ductility, lubricity, solderability, excellent 

electrical properties and high hardness (Duffy, 1980). 

 

Surface properties, such as strength and wear resistance of pure copper and 

carbon steel can be improved by internal oxidation, chemical vapor deposition, 

electroplating and many other means. However, electroless deposition has the 

advantages of simplicity and feasibility over other processes. It improves the 
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adherence between coating and the substrate besides improving properties, like wear 

resistance (Apachitei & Duszczyk, 2000; Ebrahimian-Hosseinabadi et al., 2006; 

Sahoo, 2009), hardness (Alirezaei et al., 2004; Tien et al., 2004; Zangeneh-Madar & 

Monir Vaghefi, 2004), corrosion resistance (Lee et al., 2010; Rabizadeh & 

Allahkaram, 2011; Tian et al., 2010) and surface roughness (Balaraju et al., 2006a; 

Huang & Cui, 2007; Yu et al., 2002). The applications of electroless platings have 

been reported in many industries, such as petroleum, chemical, plastics, optics, 

aerospace, nuclear, electronic, computer, and printing because of its excellent 

corrosion and wear resistance properties (Jin et al., 2004; Kumar et al., 2010; Li et 

al., 2008). Cumbersome wiring and vaccum tubes have been replaced by printed 

circuits and transistors, and the industry has discovered new and better ways of 

producing electrically conductive coatings. Better ways of adhering these metals to 

plastic and ceramic substrates have also recieved much attention (Duffy, 1980; 

Mallory & Hadju, 1990). The computer industry has also benefitted from recent 

advances in the area of magnetic coatings, which are used to produce memory tapes 

and discs. New processes have produced coatings which are more oxidation-resistant 

and which can contain a larger amount of information using less space. New 

processes involving photosensitive coatings are also used in television screens, 

photographic and photocopy uses. Less traditional application includes solar cell 

technology (Duffy, 1980; Mallory & Hadju, 1990). 
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1.2 General process and bath composition 

Electroless plating includes general processes which produce deposits without 

the use of an electric current when all parameters of the bath are correctly maintained 

(Fig. 1.1-a). Electrons are supplied by a chemical reaction in solution which involves 

an exchange between two oxido-reduction couples in which one is an oxidising agent 

and the other a reducing agent according to equation 1.1 (Mallory & Hadju, 1990). 

Me
n+

 + Red1 •      Me + Ox1      (1.1) 

 

 

 

Figure 1.1 Equilibrium established at: (a) mixed potential (b) mixed potential- the 

catalytic power of metal (Delaunois et al., 2000). 

 

When the reducing agent is present in solution, ready to be oxidised, the 

process is an electroless reduction. It can lead to non-limited thickness of deposits 

when the parameters are correctly maintained. The main difficulty of this electroless 

process is preventing spontaneous metal deposition with solution decomposition 

(loss of bath stability). 
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In the case of catalytic deposition, the reduction of the metallic ions in 

solution is under control and the baths only deposit on metallic substrates. With the 

addition of complexing agents and stabilisers, the reduction reaction in solution is 

thermodynamically possible (the potential URed/Ox must at least be more negative than 

the equilibrium potential of the system UMe
n+

/ Me (Fig. 1.1-a) but cannot take place 

due to kinetics which are too slow. The immersion of a catalytic surface breaks this 

inertia and the reduction reaction can only occur on the immersed catalytic surface. 

When the deposited metal is also catalytic, the reaction continues by itself and the 

deposits are described as autocatalytic (Delaunois et al., 2000). 

 

Therefore, with a catalytic support, the anodic oxidation overvoltage of the 

reducing agent is limited and the mixed potential is shifted to more negative values 

(Fig. 1.1-b). The oxidation curve of the reducing agent obtained on a non-catalytic 

metal (Red2) presents a very low oxidation current up to a value near the current 

potential UMe
n+

/ Me. On the other hand, the same curve obtained for a catalytic metal 

(Red1) leads to an important oxidation current close to this UMe
n+

/ Me. A classification 

of metals was made from galvanostatic tests taking into account their catalytic 

activity in the presence of different reducing agents (Fig. 1.2), i.e. the potential taken 

by the metal examined in a solution containing a chosen reducing agent when an 

anodic current of 10
-4

 A cm
-2

 is applied. In order for the metal to present catalytic 

activity with the reducing agent, and that this reducing agent be used for the 

electroless plating of this metal, the potential URed/Ox must at least be more negative 

that the equilibrium potential of the system UMe
n+

/ Me (Fig. 1.1-a). With these 

considerations, it is possible to choose a series of reducing agents which can be used 

for electroless deposition. The general composition and the functions of the 
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components of an electroless bath are given in Table 1.1. These baths are used at 

high temperatures to obtain a good deposition rate. The principle parameters 

controlling the compositon of coatings from electroless baths are the concentrations 

of the source metal ion, the complexing agent, stabiliser, buffer, temperature, pH, 

bath age, bath loading and agitation (Delaunois et al., 2000). 

 

 

Figure 1.2 Catalytic activities of metals at 25 °C with different reducing agents 

(Delaunois et al., 2000). 
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Table 1.1 General electroless bath composition (Delaunois et al., 2000). 

 

Compound Function 

Metallic ions 

 

Reducing agent 

 

Complexing agent 

 

 

 

 

 

Stabiliser  

 

Buffer 

Supply of metal to be deposited 

 

Electron source 

 

Forms a complex with the metal: 

increases the metallic ion solubility 

and avoids hydroxides precipitation due 

to the increase in the stability but the 

decrease in the deposit current 

 

Increases the bath stability 

 

Increases the pH stability 

 

Some literatures point out that the most important reactions occurring in 

electroless plating, using chlorides (Ashassi-Sorkhabi et al., 2002; Oraon et al., 

2006; Rajendran et al., 2010) and sulphates (Tian et al., 2010; Yan et al., 2008; Zhao 

& Liu, 2005a) of metallic salts for supplying of metal to be deposited. The following 

chemicals viz., sodium hypophoshphite (NaH2PO2) (Amell et al., 2010; Ramalho & 

Miranda, 2005; Ramalho & Miranda, 2007), dimethylamine borane (DMAB) (Zhu et 

al., 2004), glyoxylic acid (HCOCOOH) (Sung et al., 2009; Wu & Sha, 2008a; Wu & 

Sha, 2008b) formaldehyde (HCHO) (Cheng et al., 1997; Ramesh et al., 2009; Sung 

et al., 2009) and sodium borohydride (NaBH4) (Oraon et al., 2006; Zhang et al., 

2008b) were used as reducing agents. 

 

 Sodium citrate (Na3C6H5O7·2H2O) (Gan et al., 2008b; Rudnik & Gorgosz, 

2007; Yan et al., 2008), tartrate (KNaC4H8O6·4H2O) (Cheng et al., 1997), 

ethylenediaminetetraacetic acid (EDTA) (Mallory & Hadju, 1990) and lactic acid 

(CH3CHOHCOOH) (Amell et al., 2010; Balaraju & Rajam, 2005; Huang et al., 

2003; Jiaqiang et al., 2006) were added as a complexing agent while boric acid 
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(H3BO3) (Krishnaveni et al., 2008; Krishnaveni et al., 2005; Rudnik & Gorgosz, 

2007), ammonium acetate (NH4CH3COO) (Zhao & Liu, 2004; Zhao et al., 2004) and 

sodium acetate (CH3COONa·H2O) (Tian et al., 2010) were used as buffer. 

 

Thiourea (Huang et al., 2003; Zhang et al., 2008b), (CH2)CS (Liu & Zhao, 

2004; Zhao & Liu, 2005a; Zhao et al., 2004) and maleic acid (C4H4O4) (Rudnik & 

Gorgosz, 2007; Rudnik et al., 2008) were added as stabilisers whereas polyglycol 

(Liu et al., 2007a), hexadecyltrimethyl ammonium bromide (HTAB) (Wu et al., 

2006a; Wu et al., 2006b; Wu et al., 2006c) and C20H20F23N2O4I (FC-4) (Tian et al., 

2010; Zhao & Liu, 2004; Zhao et al., 2004) were used as surfactants. 

 

1.3 Electroless copper (EC) and functional applications 

Electroless copper chemistry was first reported in the mid-1950s with the 

developments of plating solutions plated through-hole (PTH) for printed wiring 

boards (Sharma et al., 2006). 

 

Diversified metallic and nonmetallic surfaces endowed with attractive 

appearance, high corrosion resistance, electromagnetism low density, and some other 

special functions were produced by electroless copper (EC). The EC technique is a 

cost-effective and is a widely used electrochemical process for the deposition of Cu 

films. It has been widely used in the electronic industry, machinery manufacturing 

and National Aero-Space Plane (NASP) airframe because of its excellent thermal 

conductivity (Guo et al., 2009; Han et al., 2010; Hwang et al., 2009; Li, 2003). 
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 In view of the ease with which it may be deposited itself and electroplated 

with other metals, copper is particularly useful as a pre-coating for soft soldered 

work, pewter and zinc alloy diecastings before the deposition of Ni, gold, silver, etc. 

Another large scale use of copper plating is in the electronics industry where, 

because of its conductivity, it is used to produce the millions of square feet of printed 

circuit boards each year (Li, 2003; Mallory & Hadju, 1990). 

 

Copper is plated on to slowly revolving stainless steel drums and because 

there is no adhesion it can be peeled off in a continuous manner to be subsequently 

bonded to epoxy resin or phenolic sheets. When this material has been cut up, drilled 

and suitable circuit patterns defined on the surface, copper plating is again used as 

part of the through–hole plating technique (Mallory & Hadju, 1990). With the 

recurrent shortage of Ni, considerable attention has been paid to the possibility of 

using electrodeposited Cu as a partial or complete replacement for plating (Li, 2003). 

 

 An interesting application of Cu plating is in connection with the selective 

case hardening of steel. The Cu deposit is applied or retained on those areas which 

are to remain unhardened, and its presence prevents penetration by the carbon during 

the subsequent carburizing process. Selective case hardening is now applied to a 

wide range of engineering components which are subjected to wear, including gears, 

spline shafts, motor and aircraft fillings. Through the use of this technique the actual 

wearing surfaces are made extremely hard while the remaining surface of the 

component is soft enough to permit further machining. A further advantage to be 

gained from the use of selective case hardening is that by restricting the area of the 
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component which is hardened, the loss in fatigue strength in the material is greatly 

reduced (Li, 2003). 

 

 In the printing industry copper is used for the production of electrotypes and 

for providing the printing surface in gravure printing. Copper is used in 

electroforming for the production of wave guides and other electrical and electronic 

hardware. The metal has also found use in the production of electroformed slush 

moulds for rubber and plastic items and is employed as a back-up material for the 

harder nickel electroforms used  in pressure moulds (Li, 2003). 

 

Other occasional uses are in the building up of surfaces where mechanical 

loading is not too high, and for the plating of wire to act as a lubricant prior to 

drawing. Carbon brushes and arc electrodes are sometimes copper plated in order to 

improve their electrical conductivity. Copper plating is also useful for providing an 

anti-fret coating on bearings and housing (Li, 2003; Mallory & Hadju, 1990). 

 

Conventional EC plating baths usually use formaldehyde (HCHO) as the 

reducing agent (Ramesh et al., 2009; Vaskelis et al., 2007) which is carcinogenic in 

nature. This technique was operated at pH values above 11 (Cheng et al., 1997): 

2Cu
2+

 + HCHO + 4OH
-
  2Cu + CO2 + 3H2O     (1.2) 

the Cannizzaro reaction: 

2HCHO + NaOH  HCOONa + CH3OH                                                     (1.3) 

and the carbonation reaction 1.3: 

2NaOH + CO2  Na2CO3 + H2O                                                                   (1.4) 
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Fluctuations in component concentration and bath temperatures are inherent 

and unavoidable in the course of commercial use of the bath and these are normally 

detrimental to protracted use of formaldehyde-reduced copper solutions. The bath 

stability is maintained better, in spite of these inherent fluctuations by using sodium 

hypophosphite as a reducing agent. 

 

Therefore, sodium hypophosphite that has been used to replace formaldehyde 

is especially attractive because of its low pH, low cost, and relatively safe features 

compared with high pH formaldehyde-based solutions (Afzali et al., 2010; Cheng et 

al., 1997; Gan et al., 2007b; Gan et al., 2008b). However, Cheng et al. (1997) 

reported that the catalytic activities of metals for the oxidation of hypophosphite 

decreased in the following order: Au > Ni > Pd > Co > Pt > Cu; thus, the reaction of 

EC deposition in hypophosphite-type baths was impossible without a catalyst. 

Therefore Ni
2+ 

ions are used as catalysts for the EC deposition. The reactions of Ni as 

a catalyst are as follows: 

Nickel deposition reaction 

Ni
2+

 + 2H2PO2
 - 

 + 2OH
-
  Ni + 2H2PO3

- 
+ H2     (1.5) 

Replacement reaction 

Ni + Cu
2+

  Cu + Ni
2+

        (1.6) 

Adding Eq. 1.3 and 1.4, 

Cu
2+

 + 2H2PO2
-
 + 2OH

-
  Cu + 2H2PO3

- 
+ H2     (1.7) 

It can be seen that Ni
2+

 ions do not appear in reaction 1.7 and that nickel only plays 

the role of a catalyst for the hypophosphite oxidation (Cheng et al., 1997). 
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Although dimethylamine borane (DMAB) is not widely used in the 

electroless plating of metals due to the high cost, its good reduction ability provides 

the convenience for controlling the deposition rate at an ideal level. The special 

electroless bath solutions were prepared with DMAB as a reducing agent and sodium 

citrate (Na3C6H5O7) as a complexing agent to trigger the formation of nano-sized 

copper particles in the solution by Zhu et al. (2004). No catalyst was employed and 

the half reaction is as follows: 

(CH3)2NHBH3 + 2H2O  BO2
-
 + (CH3)2NH + 7H

+
 + 6e

-   
(1.8) 

 

1.4 Carbon steel (CS) 

Most large metal structures are made from carbon steel-the world's most 

useful structural material. Carbon steel is inexpensive, readily available in a variety 

of forms, and can be machined, welded, and formed into many shapes. Carbon steel 

is widely used in the fabrication of reaction vessels, store tanks and petroleum 

refineries (Noor & Al-Moubaraki, 2008; Quraishi et al., 2003). Carbon steel has been 

widely employed as a construction material for pipe work in the oil and gas 

production, such as down hole tubulars, flow lines and transmission pipelines. 

However, one of the major problems related to its use is its low corrosion resistance 

in these environments. For example, one of the largest problems in operating pipe 

flow lines is their internal corrosion. This kind of corrosion depends mainly on the 

composition of the oil. Carbon dioxide (CO2) corrosion, which is commonly called 

sweet corrosion, is one of the most serious forms of corrosion in the oil and gas 

production and transport industry (Ghareba & Omanovic, 2010). CO2 is normally 

present in deep natural gas reservoirs and it could be present in the oil due to its 

injection to the reservoir to force the oil to flow out more easily for enhanced oil 
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recovery (Jiang et al., 2006). Sweet corrosion failures have been reported to account 

for some 25 % of all safety-related incidents (Bayliss & Deacon, 2002). Corrosion 

behaviour of steels is very important and mainly investigated in inorganic acids 

(Arslan et al., 2009; Behpour et al., 2008; Quraishi et al., 2010), salts (Ai et al., 

2006; Al-Refaie et al., 2010; Amar et al., 2008), non-oxidation organic acids (Nagies 

& Heusler, 1998; Wang et al., 2001), alkaline solutions (Abd El Haleem et al., 2010; 

Macías & Escudero, 1994; Singh et al., 2002), and marine media (Melchers, 2008; 

Meng et al., 2007; Wan et al., 2010).       

 

Several methods are present for corrosion prevention of carbon steel. One 

such method is the use of an organic (Bentiss et al., 2002; Lagrenée et al., 2002; 

Sathiyanarayanan et al., 2005) or inorganic (Oguzie, 2004; Refaey et al., 2000; 

Umoren et al., 2008) inhibitors. Because of their aggressiveness, inhibitors are used 

to reduce the rate of dissolution of metals. Compounds containing nitrogen, sulphur 

and oxygen are being used for this purpose (Bothi Raja & Sethuraman, 2008; Rahim 

et al., 2008; Rahim et al., 2007; Sastry, 1998).      

 

Conducting polymers as either film forming corrosion inhibitors or in 

protective coating have attracted more and more attention due to the excellent anti-

corrosion ability and environmental friendliness. Several studies have been carried 

out and reported on the protective behaviour of conducting and insulating forms of 

polymers on steel. Conducting polymer coatings such as polyaniline (PAni) 

(Benchikh et al., 2009; Sathiyanarayanan et al., 2010; Yao et al., 2008) and 

polypyrrole (Ferreira et al., 1996; Herrasti & Ocón, 2001; Hosseini et al., 2007) on 

steel electrodes can be obtained electrochemically and these coatings provide 
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important protective properties against corrosion. Conducting polymer coatings on 

steel surface also inhibit the formation of pitting corrosion in chloride medium. 

 

1.5 Composite coating 

The development of ‘clean’ technologies in all spheres of industrial 

manufacturing is today an essential task and initiated by environmental laws and 

programmes of countries around the world. Among the major sources of 

environmental pollution are technologies and processes used in conventional metal 

finishing operations such as electroless and electroplating of protective functional 

and decorative coatings (Navinsek et al., 1999). 

 

Electroless plating is one of the methods by which composite coatings can be 

produced. It is well known that electroless metal coating has a high plating 

capability, high bonding strength, excellent weldability, electrical conductivity, good 

antiwear and controllable magnetic properties through suitable heat treatment (Hu et 

al., 2003). 

 

In the chemical, petrochemical, metallurgical and marine industrial 

environments, many mechanical components often work in environments which are 

subjected to the simultaneous action of mechanical wear and chemical attack, and 

thus are always liable to the premature failure of materials (De Las Heras et al., 

2008; Smith et al., 2006). The phenomenon is usually initiated by synergistic effects 

of electrochemical corrosion and mechanical erosion, which result in a greater rate of 

materials damages than the sum of the individual contribution of wear and corrosion 

(Malka et al., 2007). Because of a lack of a combination of wear and corrosion 
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properties, the traditional corrosion or wear-resistance engineering materials, such as 

stainless steels and alloy tool steels, are hard to be applied in those environments. 

Consequently, the optimisation of the balance between mechanical erosion and 

corrosion resistance to achieve the least synergism is an appropriate way to reduce 

mass loss of materials exposed to erosion–corrosion environment. Furthermore, the 

mechanical and tribological properties of metal coatings can be improved by the 

incorporation of different solid particles which are categorised as hard such as: 

silicon carbide (SiC) (Apachitei et al., 2001; Chen et al., 2002; Gou et al., 2010; Lin 

& He, 2006; Liu et al., 2007b; Yuan et al., 2009; Zoikis-Karathanasis et al., 2010), 

aluminium oxide (Al2O3) (Balaraju et al., 2006b; Tian & Cheng, 2007), titanium 

oxide (TiO2) (Chen et al., 2010; Novakovic et al., 2006; Shibli & Dilimon, 2007; 

Zhang et al., 2010), zirconium oxide (ZrO2) (Gay et al., 2007; Szczygiel & 

Turkiewicz, 2009; Szczygiel et al., 2008), boron carbide (B4C) (Ebrahimian-

Hosseinabadi et al., 2006), tungsten carbide (WC) (Hamid et al., 2007) and diamond 

(Sheela & Pushpavanam, 2002) to enhance the hardness and/or wear resistance of the 

deposits, or can be dry lubricants such as: graphite (Cg), molybdenum disulfide 

(MoS2) (Moonir-Vaghefi et al., 1997a; Moonir-Vaghefi et al., 1997b) and 

polytetrafluoroethylene (PTFE) (Zhao et al., 2002) to impart lubricity and reduce the 

coefficient of friction. 

 

In recent years, electroless plating has won great popularity in preparing 

composite coatings, which are generally prepared by adding solid particles to the 

regular electroless plating solution to achieve co-deposition of the solid particles and 

matrix (Araghi & Paydar, 2010; Balaraju et al., 2010; Chen et al., 2010; León et al., 

2006). Among the solid particles used for reinforcement, SiC is most frequently 
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studied and applied. SiC particles are of great technological importance for their 

applications as semiconductor materials and structural ceramics and have high 

material strength with excellent corrosion, erosion resistance, thermal conductivity 

and mechanical and physical properties (Grosjean et al., 2001; Pelleg et al., 1996). In 

recent years, SiC has found new applications in the electronic industry for its 

excellent and adjustable dielectric properties (Zhao et al., 2008). With the electroless 

plating process, solid SiC particles used for reinforcements are added to the plating 

solution and are stirred to avoid sedimentation of particles in the solution so that co-

deposition of the discrete SiC particles can be obtained (Zhang et al., 2008a). 

Consequently, corrosion resistance (Yuan et al., 2009), the micro-hardness and wear 

resistance (Apachitei et al., 2002; Grosjean et al., 2001; Liu et al., 2007b) of 

composite coatings is greatly improved with incorporation of SiC particles. 

 

In joining metals to ceramics one major problem is the considerable 

difference in coefficient of thermal expansion (CTE) between the generally low CTE 

ceramic and the higher CTE metal. One possible solution to this problem is the use 

of ductile metal interlayers to accommodate differential thermal strain. Copper is one 

such potential interlayer material (Qin & Derby, 1991). In particular one can find 

applications for SiC in many different areas, such as coatings against corrosion 

covering fuel particles used in a high-temperature gas-cooled reactors, protective 

layers to be used at high temperatures, or corrosion resistant coatings in biological 

media on metal implants (Ordine et al., 2000). The interactions between SiC and Cu 

have been investigated by some authors (Lee & Lee, 1992; Nikolopoulos et al., 

1992; Qin & Derby, 1991; Wang & Wynblatt, 1998). 
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1.5.1 Reinforcement of coatings by silicon carbide 

SiC also known as carborundum, is a compound of silicon and carbon. It 

occurs in nature as the extremely rare mineral moissanite. Silicon carbide powder has 

been mass-produced since 1893 for use as an abrasive. Grains of silicon carbide can 

be bonded together by sintering to form very hard ceramics which are widely used in 

applications requiring high endurance, such as car brakes and ceramic plates in 

bulletproof vests. Electronic applications of silicon carbide as light emitting diodes 

and detectors in early radios were first demonstrated around 1907, and nowadays SiC 

is widely used in high-temperature/high-voltage semiconductor electronics. Silicon 

carbide with a high surface area can be produced from SiO2 contained in plant 

materials (Bansal, 2005; Harris, 1995). Silicon carbide is a covalent ceramic of great 

technological interest because of its good mechanical properties, high thermal 

conductivity, good thermal shock behaviour and high oxidation resistance. It is 

especially used as a structural material in high temperature applications or as 

reinforcement in metal matrix composites. Metal/ceramic interface properties are 

very important for these applications, i.e. for metal/ceramic and ceramic/ceramic 

joining by brazing alloys or for infiltration of ceramic fibres by liquid metals or 

alloys (Bansal, 2005). Generally good wetting (Rado et al., 2000; Rado et al., 1999) 

and low reactivity (Rado et al., 2000) are required, in order to facilitate fabrication 

processes, to avoid degradation of ceramics by excessive bulk reactivity and to 

achieve the desired properties during service. 

 

 

 

http://en.wikipedia.org/wiki/Silicon
http://en.wikipedia.org/wiki/Silicon
http://en.wikipedia.org/wiki/Chemical_compound
http://en.wikipedia.org/wiki/Silicon
http://en.wikipedia.org/wiki/Carbon
http://en.wikipedia.org/wiki/Moissanite
http://en.wikipedia.org/wiki/Abrasive
http://en.wikipedia.org/wiki/Sintering
http://en.wikipedia.org/wiki/Ceramic
http://en.wikipedia.org/wiki/Ceramic_plate
http://en.wikipedia.org/wiki/Bulletproof_vest
http://en.wikipedia.org/wiki/Light_emitting_diode
http://en.wikipedia.org/wiki/Cat%27s_whisker_detector
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Co-deposits consist of solid particles incorporated in a metallic matrix are 

made in order to obtain the properties of the metal and particles. A composite is a 

multiphase solid in which two or several components are associated in order to 

obtain a macroscopic scale with completely new set of properties. The particles 

increase its mechanical, physical properties (Alirezaei et al., 2004; León et al., 2005) 

and corrosion resistance (Balaraju et al., 2006b). 

 

Apachitei and Duszczyk (2000) have reported that the properties of the NiP 

matrix depend in general on the phosphorus content and temperature. Phosphorus 

content is essential in establishing the structure of the NiP matrix. In the as-deposited 

state, the NiP matrix is nanocrystalline with supersaturated solid solution of 

phosphorus in nickel at low phosphorus contents (e.g. 1–6 wt. % P), or can exhibit an 

amorphous structure at high concentrations of the alloying element (e.g. 8–12 wt.% 

P). A transition structure where both types of phases coexist (small crystallites 

embedded in an amorphous matrix) can be expected for medium-phosphorus 

contents. Apachitei et al. (2001) have also investigated the influence on the structure 

of the as deposited NiP matrix with the incorporation of SiC particles and showed the 

formation of nickel silicides at the SiC/matrix interface at lower temperatures (i.e. 

500 
ο
C for 1 h). The formation of silicides appeared to be governed by the diffusion 

of nickel atoms into the SiC lattice, as indicated by transmission electron 

microscopy. Electroless Ni–P coatings containing SiC particles have been co-

deposited on SKD61 tool steel substrate and the effect of heat treatment on the 

microstructure of Ni–P–SiC composite coatings have been investigated by Chen et 

al. (2002). 
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The study of the mechanical (hardness) and tribological (friction resistance 

and wear) properties of the Ni–P–SiC composite coatings have been studied by 

Grosjean et al. (2001). The results show that increasing the size or the rate of SiC 

particles incorporated lead to an increase in both the hardness of the films and 

friction coefficient due to their abrasive properties when sliding against a steel ball. 

 

Jiaqiang et al. (2006) have shown that SiC particles with three sizes of 

superfine particles co-deposited homogeneously, and the structure of Ni–P–SiC 

composite coatings as deposited was amorphous. After certain heat treatment, the 

matrix of composite coatings crystallised into nickel crystal and nickel phosphide 

(Ni3P). At the higher temperature nickel reacted with SiC, and nickel silicides with 

free carbon were produced. The reaction temperature in electroless composites 

coatings decreased with the decrease in the size of SiC particles. 

 

Among many other possible technological applications SiC is an interesting 

material to be used as a protective coating to improve the lifetime or the performance 

of metallic substrates when exposed to aggressive environments. One acceptable 

explanation for these good properties could be the very strong covalent bonding 

between silicon and carbon and its tetrahedral coordination. However, it is well 

known that two main requirements must be fulfilled in order to achieve a remarkable 

effect by a protective layer. These are a strong adhesion to the substrate and a low 

density of pores and cracks (Ordine et al., 2000). 
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The effect of SiC content on the corrosion resistance of Ni–P–SiC composite 

coatings immersed in different corrosive solutions (i.e. 5 % H2SO4, 20 % NaOH and 

3.5% NaCl) have been investigated by Zhang et al. (2008). Corrosion tests indicate 

that in NaOH solution there is no difference in the corrosion resistance between Ni-P 

coatings and electroless Ni–P–SiC composite coatings, both being uncorroded. 

Exposed to NaCl solution, the corrosion resistance of electroless Ni–P–SiC 

composite coatings decreases gradually with the increasing of SiC content in 

coatings. In H2SO4 solution, the corrosion resistance of coatings increases initially 

and decreases afterwards with the sustained increasing of SiC content in coatings, 

and the optimised corrosion resistance is obtained at a SiC content of 9.41 wt. %. 

 

Electroless deposition of nickel and cobalt from alkaline baths as well as their 

codeposition with SiC particles have been compared by Rudnik et al. (2008). It has 

been found that despite similarities in properties of the metals, the electroless process 

behaviour was different. The favoured deposition of the Co–P/SiC composites was 

associated probably with less adsorption of the OH
−
 ions on the carbide surface in 

the cobalt bath in comparison with the nickel solution. It has also been reported that 

Cu-SiC composites have been used as a heat sink material for fusion applications 

owing to the high-thermal conductivity of Cu and the low swelling of SiC ceramic 

under neutron irradiation (Gan et al., 2008a). Furthermore, copper and copper-based 

alloys are widely used in the electrical industry. The addition of ceramic 

reinforcements such as alumina, silicon carbide and cerium oxide to form metal 

matrix composites (MMCs) enhances the properties such as elastic modulus, higher 

strength, better wear resistance, higher coefficient of friction and high-temperature 

durability. These attractive properties are expected to widen the applications of 



21 

 

copper composite materials compared to copper (Cros et al., 1990; Ramesh et al., 

2009; Shu & Tu, 2001). However, the coating hardness is correspondingly decreased 

with the volume fraction of lubricating particles in the coating and the friction 

coefficient become worse because of the hard particles. 

 

To solve the above problem, complex composite coatings containing both 

hard and lubricating particles like Cg (Guo & Tsao, 2000; Wu et al., 2006b; Wu et 

al., 2006c) and PTFE (Huang et al., 2003; Losiewicz et al., 1999; Straffelini et al., 

1999; Zhao & Liu, 2005b; Zhao et al., 2004)  are receiving more and more attention. 

 

1.5.2 Reinforcement of coatings by graphite (Cg) 

It is known that graphite is one of the frequently used solid lubricant materials 

just like PTFE and has some advantages over PTFE in the aspects of electrical 

conductivity and anti high temperature. Additionally, graphite can keep friction 

coefficient constant under high temperature and high sliding velocity because of its 

insensitiveness to temperature (Zhang & Zhou, 1993). 

 

Straffelini et al. (1999) studied the tribological behaviour of Ni–P–PTFE–SiC 

composite coating, while Huang et al. (2003) discussed the microstructure and 

properties of Ni–P–PTFE–SiC. Additionally, Losiewicz et al. (1999) reported the 

phase composition and surface morphology of an electrolytic Ni–P–TiO2–PTFE 

composites for an electrochemical reaction electrode. Ted Guo and Tsao (2000) 

introduced the tribological behaviour of aluminium/SiC/nickel-coated graphite 

hybrid composite synthesised by the semi-solid powder densification method. Wu et 

al. (2006) investigated the tribological behaviour of electroless Ni–P–Cg–SiC. 
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According to these authors, it is well known that the electroless Ni–P composite 

coating has good hardness and antiwear with the incorporation of hard particles (like 

SiC and TiO2)
 
and friction coefficient of coatings improves with the incorporation of 

solid lubricant materials (like Cg and PTFE). 

 

1.6 Corrosion
 

1.6.1 Fundamentals  

Corrosion can be defined as the degradation of a material due to a reaction 

with its environment. Degradation implies deterioration of physical properties of the 

material. This can be a weakening of the material due to a loss of cross-sectional 

area, it can be the shattering of a metal due to hydrogen embrittlement, or it can be 

the cracking of a polymer due to sunlight exposure. Materials can be metals, 

polymers (plastics, rubbers, etc.), ceramics (concrete, brick, etc.) or composites-

mechanical mixtures of two or more materials with different properties. Most 

corrosion of metals is electrochemical in nature (Baboian, 1986; Uhlig & Winston 

Revie, 1985). 

 

1.6.2 Why metals corrode 

Metals undergo corrosion because they are chemically unstable in the 

environment. Only precious metals (gold, silver, platinum, etc.) are found in nature 

in their metallic state. All other metals, including iron-the metal most commonly 

used are processed from minerals or ores into metals which are inherently unstable in 

their environments. All other metals are unstable and have a tendency to revert to 

their more stable mineral forms. Some metals form protective oxides films (passive 
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films) on their surfaces and these prevent, or slow down, their corrosion process 

(Bayliss & Deacon, 2002; Landolt, 2007; Uhlig & Winston Revie, 1985). 

 

1.6.3 Corrosion measurements 

Since corrosion is an electrochemical process, it follows that electrochemical 

techniques and electrochemical instrumentation can be used to study the corrosion 

process. Indeed, a number of electrochemical techniques have been developed over 

the years especially for the measurement of corrosion processes. Electrochemical 

techniques are very well accepted by the corrosion community. The reasons for the 

popularity of electrochemical techniques for corrosion measurement are based on 

practicality (Baboian, 1986; Uhlig & Winston Revie, 1985): 

1. They are fast. Corrosion, even rapid corrosion, is a slow process. Real-time weight 

loss measurements need days and sometimes weeks to make a reliable measurement 

of corrosion rate. Electrochemical instrumentation can make a corrosion rate 

measurement in minutes or hours. 

2. They are sensitive. Modern, well-designed electrochemical instrumentation can 

measure extremely low corrosion rates. 

3. They are accurate. Electrochemical techniques have been exhaustively tested 

before finding general acceptance. 

4. They are versatile. Electrochemical techniques can be used to study a wide range 

of corrosion-related phenomena. The rate of uniform corrosion can be measured. The 

tendency of a metal to exhibit localized (pitting or crevice) corrosion can be 

measured. The passivation behaviour of a corroding system can be studied. Galvanic 

corrosion can be quantitated. Sensitisation effects can be studied. Electrochemistry 
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can be used in the laboratory or outdoors. Measurements can be made on the lab 

bench or in a pipeline or in an autoclave or in a slow strain rate machine. 

 

Since electrochemistry was recognised many years ago as the basis for 

corrosion, a number of electrochemical techniques have been developed specifically 

for corrosion measurements. These are generally referred to as "DC (direct current) 

Techniques". Among these techniques are polarisation resistance, Tafel Plots, 

potentiodynamic plots and cyclic polarisation (Baboian, 1986; Jones, 1995). 

 

1.6.3.1 Potentiodynamic polarisation 

Nearly all metal corrosion occurs via electrochemical reactions at the 

interface between the metal and an electrolyte solution. A thin film of moisture on a 

metal surface forms the electrolyte for atmospheric corrosion. Wet concrete is the 

electrolyte for reinforcing rod corrosion in bridges. Although most corrosion takes 

place in water, corrosion in non-aqueous systems is not unknown. Corrosion 

normally occurs at a rate determined by an equilibrium between opposing 

electrochemical reactions. The first is the anodic reaction, in which a metal is 

oxidised, releasing electrons into the metal. The other is the cathodic reaction, in 

which a solution species (often O2 or H
+
) is reduced, removing electrons from the 

metal. When these two reactions are in equilibrium, the flow of electrons from each 

reaction is balanced, and no net electron flow (electronic current) occurs. The two 

reactions can take place on one metal or on two dissimilar metals (or metal sites) that 

are electrically connected. The equilibrium potential assumed by the metal in the 

absence of electrical connections to the metal is called the open circuit potential, Eoc. 
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The value of either the anodic or cathodic current at Eoc is called the corrosion 

current, Icorr. If we could measure Icorr, we could use it to calculate the corrosion rate 

of the metal. Unfortunately Icorr cannot be measured directly. However, it can be 

estimated using electrochemical techniques. In any real system Icorr and corrosion 

rates are a function of many system variables including type of metal, solution 

composition, temperature, solution movement, metal history, and many others. The 

above description of the corrosion process does not say anything about the state of 

the metal surface. In practice, many metals form an oxide layer on their surface as 

they corrode. If the oxide layer inhibits further corrosion, the metal is said to 

passivate. In some cases, local areas of the passive film break down allowing 

significant metal corrosion to occur in a small area. This phenomena is called pitting 

corrosion, or simply pitting. Because corrosion occurs via electrochemical reactions, 

electrochemical techniques are ideal for the study of the corrosion processes. In 

electrochemical studies a metal sample a few cm² in surface area is used to model the 

metal in a corroding system. The metal sample is immersed in a solution typical of 

the metal's environment in the system being studied. A conventional three electrode 

cell with carbon steel, saturated calomel electrode and Pt wire as the working, 

reference and counter electrode, respectively is used to carry out the potentiodynamic 

polarisation studies. A potentiostat allows you to change the potential of the metal 

sample in a controlled manner (Baboian, 1986). 

 

The Tafel calculation is an ideal tool to determine the corrosion rate at a 

metal sample surface. When the linearity range of the log (i) = f(E) curve covers 

more than one current decade of the cathodic branch and around one decade of the 
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