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Abstract: The university examination timetabling is known to be a highly constrained optimization problem.
Metaheuristic approaches, such as simulated annealing, tabu search, and genetic algorithm, have successfully been
applied to sotve the problem. The negative selection algorithm, an algorithm inspired by the immune system, has
successfully been applied to detect computer viruses, tool breakage detection, anomaly detection, and network
intrusion detection. This paper presents a negative selection algorithm for the university examination timetabling
problems with the main objective to show that the algorithm may be tailored for educational timetabling. Another
objective is to show that the algorithm may produce good quality exam timetables, as good as other optimization
.algorithms (metabeurictics). The experimental results, using the benchmark datasets, have shown the effectiveness of
the algorithm by producing good quality exam timetables, as good as metaheuristic approaches. For future work, the
negative selection algorithm will be compared with other artificial immune algorithms using the same datasets.
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1. Introduction

The construction of an examination timetable is a common problem for all institutions of higher
education. Usually it involves taking the previous semester’s timetable and modifying it so it will work
for the new semester. The examination timetabling is known to be a highly constrained combinatorial
optimization problem. The common approaches to this problem may be classified as global algorithms
such as integer programming and goal programming, comstructive heuristics such as sequential
heuristics and constraint logic programming, and metaheuristics such as simulated annealing (SA),
tabu search (TS), and evolutionary algorithms (EA) (Carter and Laporte, 1998).

Artificial immune system (AIS), a new branch of Artificial Intelligence, is a new intelligent problem-
solving technique that being used in optimization and scheduling problems (Hart and Ross, 1999). In
the literature, the authors have shown that the AIS algorithms are more efficient than the classical
heuristic scheduling algorithms such as SA, TS, and genetic algorithm (GA) (Malim et al., 2004).
Artificial immune systems have been more successful than GA and other methods in applications of
pattern recognition, computer and network security, and dynamic tasks scheduling due to the
applicability features of natural immune systems. Furthermore, the solutions produced by the AIS are
observed to be robust than solutions produced by a GA (Hart ez al., 1998).

This paper presents an artificial immune algorithm called negative selection algorithm (NSAET) for

- the university examination timetabling problems. The main objective is to show that the algorithm may
be tailored for educational timetabling. Another objective is to show that the algorithm may produce
good quality examination timetables, as good as other optimization algorithms such as SA, TS, and
GA. Twelve benchmark examination datasets have been used to implement and test the algorithm. The
experimental results have significantly shown that the NSAET is an effective optimization algorithm. A
comparison with other solution methods (metaheuristics) have shown the effectiveness of the algorithm
by producing good quality examination timetables, as good as metaheuristic approaches.
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2. Examination Timetabling Problem

Examination timetabling problem (ETP) is a specific case of the more general timetabling problem.

The examination timetabling regards the scheduling for the exams of a set of university courses,

avoiding overlap of exams of courses having common students, and spreading the exams for the

students as much as possible (Di Gaspero and Schaerf, 2001). Given a set of exams, a set of

(contiguous) timeslots, a set of students, and a set of student enrollments to exams, the problem is to

assign exams to timeslots subject to a variety of hard and soft constraints.

Hard constraints must be satisfied in order to produce a feasible timetable. The main hard constraints

in examination timetabling are usually represented by the following: -

i) Every exam in the set must be assigned to exactly one timeslot of the timetable.

ii) No individual should be timetabled to be in two different places at once. i.e. any two exams which
have students in common must not both be scheduled in the same timeslot.

iii) There must be sufficient resources available in each timeslot for all the exams timetabled, e.g.
room capacities must not be violated.

Individual institutions may have their own specialized hard constraints based on their needs and

requirements. Any timetable which fails to satisfy these constraints is deemed to be infeasible.

Soft constraints are generally more numerous and varied and are far more dependent on the needs of
the individual problem than the more obvious hard constraints. The violation of soft constraints should
be minimized. It is the soft constraints which effectively define how good a given feasible solution is
so that different solutions can be compared and improved via an objective (fitness) function. The
common soft constraints in examination timetabling are:

i) Spreading exams - students should not have exams in consecutive (adjacent) timeslots.

ii) Time assignment - an exam may need to be scheduled in a specific timeslot.

ili) Time constraints - an exam may need to be scheduled before, after or at the same time as another,
iv) Resource assignment - an exam must be scheduled into a specific room.

The examination timetabling problem can be seen as consisting of two subproblems (Aﬁh and Hoa,
2004): (1) assigning exams to timeslots, and (2) assigning exams (with timeslots) to rooms. For real-
life situations, these two subproblems can be solved separately. .

3. Artificial Immune System and Negative Selection Algorithms

The ‘artificial immune system’ is an approach which used the natural immune system as a metaphor for
solving computational problems, rnot modeling the immune system (Timmis, 2001). The main
application domains of AIS are anomaly detection, pattern recognition, computer and network security,
fault tolerance, dynamic environments, robotics, data mining, optimization, and scheduling,

The ‘immune system’ (IS) can be considered to be a remarkably efficient and powerful information
processing system which operates in a highly parallel and distributed manner (Hart, 2002). It contains a
number of features which potentially can be adapted in computer systems; recognition, feature
extraction, diversity, learning, memory, distributed detection, self-regulation, threshold mechanism, co-
stimulation, dynamic protection, and probabilistic -detection. From the perspective of information
processing, it is unnecessary to replicate all of these aspects of the IS in a computer model, rather they
should be used as general guidelines in designing a system,

There are a number of different algorithms that can be applied to many domains (de Castro, 2002). For
examples, the Artificial Immune Networks by Farmer et al. (1986), the Clonal Selection Algorithm by
de Castro and Von Zuben (2000), and the Negative Selection Algorithm by Forrest et al. (1994).
Immune network models are suitable to deal with dynamic environments and optimization problems,
algorithms based upon the clonal selection principle are adequate to solve optimization and scheduling
problems, and the negative selection strategies are successfully applied to anomaly detection.
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3.1 The negative selection of T-cells and B-cells

The negative selection of T-cells can occur within or outside the thymus. Negative thymic selection
stems ' from interactions of immature T-cells with the self-peptides presented by the self-MHC
molecules. This process results in the death of an activation-dependent cell, thereby purging potentially
autoreactive T-cells from the repertoire. T-cells bearing useless TCRs (T-cells Receptors) that do not
exhibit significant interactions with any self-MHC ligands are lost from the repertoire through positive
selection. The time and extension of this process of deletion depends upon the affinity of the binding
between the TCR and the self-antigen. T-cells that bind with higher affinities to the self-antigen are
purged more effectively from the repertoire than those with lower affinities. Although the negative
selection nearly eliminates the entirety of developing thymocytes, self-reactive T-cells can still escape
from the thymus and circulate in the periphery as fully immuno-competent T-cells. These self-reactive
T-cells can pose a threat of an autoimmune disease taking hold of the host.

T-cell tolerance alone would be insufficient protection against autoimmunity. Immature B-cells within
the bone marrow are especially sensitive to tolerance induction. Mature B-cells can also be rendered
tolerant if they encounter an antigen in the absence of both T-cell help and co-stimulatory influences.
As with the T-cells, self-reactive B-cells can also escapé the central B-cell negative selection. In this
case, B-cell activation or tolerance will be the result of the number, the strength, and the time when the
costimulatory signals arise. A fast and sudden ligation of the receptor to the antigen will generally
induce a clonal response. At the same time, a constant and relatively weak stimulation will lead to
tolerance, characterized by the inhibition of the clonal response and further cellular apoptosis.

3.2 Negative Selection Algorithms

The negative selection algorithm (NSA) is one of the most widely used techniques in AIS (Gonzalez ez
al., 2003). It is primarily used to detect changes in data/behavior patterns by generating detectors in the
complementary space. The NSA is based on the principles of self-nonself discrimination (Forrest ez al.,
1994). The algorithm was inspired by the thymic negative selection process that intrinsic to natural IS,
consisting of screening and “deleting self-reactive T-cells. The NSA takes considerable time
(exponential to the size of the self data) and produce redundant detectors (Gonzalez, 2005). This
time/size limitation motivated the development of different approaches to generate the set of candidate
detectors. The NSA also termed the exhaustive detector generating algorithm.

The standard NSA proposed by de Castro (2002) can be summarized as follows:

1. Initialization: Randomly generate strings and place them in a set P of immature T-cells. Assume
all molecules (receptors and self-peptides) are represented as binary strings of the same length L.

2. Affinity evaluation: Determine the affinity of all T-cells in P with all elements of the self set S.

3. Generation of the available repertoire: If the affinity of an immature T-cell with at least one self-
peptide is greater than or equal to a given cross-reactive threshold 7, then the T-cell recognizes this
self-peptide and has to be eliminated; otherwise T-cell is introduced into the available repertoire 4.

The basic algorithmic steps of the NSA by Dasgupta ef al. (2004) can be presented as follows:

‘1. Define self as a collection S of elements in a feature space U, a collection that needs to be
monitored. '

2. Generate a set F of detectors, each of which fails to match any string in S. An approach that
mimics the IS generates random detectors and discards those that match any element in the self set.

3. Monitor S for changes by continually matching the detectors in F against S. If any detector ever
matches, then a change is known to have occurred, as the detectors are designed not to match any
representative samples of S.

Gonzalez and Dasgupta (2003) presented a real-valued NSA (RNS) for anomaly detection. The
algorithm applies a heuristic process that changes iteratively the position of the detectors driven by two
goals: to maximize the coverage of the nonself subspace and to minimize the coverage of the self
samples. The RNS detector generation starts with a population of candidate detectors, which are then
matured through an iterative process. In particular, the center of each detector is chosen at random and
the radius is a variable parameter which determines the size of the detector. At each iteration, the radius
of candidate detector is calculated, and the ones that fall inside self region are moved (i.e. its center is
successively adjusted by moving it away from training data and existing detectors). The set of nonself
detectors are then stored and ranked according to their size (radius). The detectors with larger radii (and

3
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smaller overlap with other detectors) are considered as better-fit and selected to go to the next
generation. Detectors with very small radii, however, are replaced by the clones of better-fit detectors.
The clones of a selected detector are moved at a fixed distance in order to produce new detectors in its
close proximity. Moreover, new areas of the nonself space are explored by introducing some random
detectors. The whole detector generation process terminates when a set of mature (minimum
overlapping) detectors are evolved which can provide significant coverage of the nonself space.

4. Negative Selection Algorithm for Examination Timetabling (NSAET)

Figure 1 shows the negative selection algorithm developed for the examination timetabling problems.
This algorithm, called NS4ET (Negative Selection Algorithm for Examination Timetabling), was
developed based on the natural negative selection process (T-cell and B-cell), the standard NSA

1. Initialization: initialize a population of candidate detectors (initial feasible timetables):
randomly generate an initial population of detectors (feasible timetables)
while number of detectors (timetables) is less than population size

for each detector (timetable)
randomly select exam one by one
assign each exam to the first available timeslot and room satisfying hard constraints
check for an identical detector (duplicate timetable) ’
if the detector (timetable) is identical with another detector
remove the detector (timetable)
end while (an initial population is generated)
2.  Population loop:
Jfor each population of detectors (feasible timetables)
2.1 Censoring: Determine the Fitness of each timetable and Average fitness of current population, and
eliminate detectors with fitness greater than or equal to average:

Jor each detector (timetable) in the current population

determine the fitness value via a fitness function (soft constraints)
determine the average fitness for the current population
Jor each detector -

if the fitness >= average

eliminate the detector (timetable)

if all fimess values are equal .

eliminate only the second half of the detectors (timetables)

2.2 Monitoring: Generate new detectors (feasible timetables) to replace the eliminated detectors by cloning
and mutating the remaining detectors. Only new detectors with fitness less than or equal to average will be
accepted for the new population:

while the number of detectors (timetables) < population size
randomly select a detector (timetable) according to fitness using roulette wheel
clone the detector (timetable)
while mutation = failure
mutate the clone to produce a new detector (feasible timetable)
randomly select two exams and exchange the timeslots and rooms
if all hard constraints are satisfied -
if the new detector is not identical with other detectors (no duplicate timetables)
mutation = success, and determine the finess
end while
if the fitness of the new detector <= average
add the new detector 1o the new population
else eliminate the new detector
end while
3. Cycle:
repeat population loop until a given convergence criterion is met.

proposed by de Castro (2002), and the RNS algorithm presented by Gonzalez and Dasgupta (2003).
Fig. 1. Negative Selection Algorithm for Examination Timetabling (NSAET)
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5. Benchmark Datasets

The rwelve examination timetabling datasets used in the implementation of the NSAET are available on
Internet from fip://ftp.mie.utoronto.ca/pub/carter/testprob/, called Carter datasets. These datasets
provide a reasonable benchmark problems for comparison of different methods or algorithms. The
datasets and characteristics are shown in Table 1. Each of the datasets come in two files, one file
(course data file) contains the list of courses, and the other (student data file) contains a list of student-
course selections. The courses and student-course selections are sorted in ascending order.

Table 1. Examination Datasets and Characteristics

car-f-92 Carleton University 1992 543 18419 55522 2000
car-s-91 Carleton University 1991 682 16925 56877 1550
ear-f-83 Earl Haig Collegiate 1983 190 1125 8109 - 350
hec-5-92 Ecole des Hautes Etudes Com. 1992 81 2823 10632 : 650
kfu-s-93 King Fahd University 1993 461 5349 25113 1955
Ise-f-91 London Sch. of Econ. 1991 381 2726 10918 635
rye-s-93 Ryerson University 1993 486 11483 45051 2055
sta-f-83 St. Andrews High Sch. 1983 139 611 5751 465
tre-s-92 Trent University 1992 261 4360 14901 655
uta-s-92 Uni. of Toronto, Arts & Science 1992 622 21266 58979 2800
ute-s-92 Uni. of Toronto, Engineering 1992 184 2750 11793 1240
yor-f-83 York Mills Collegiate 1983 181 941 6034 300

6. Implementation

First of all, before implementing the algorithm (NSAET), each of the examination timetabling
problems will be formulated as a 0-1 integer programming model. The model would assist in encoding
the algorithm into C++ programming codes.

6.1 Mathematical model

Using the general model by Malim e? al. (2005), the formulation may be carried out as follows:

e Since there are three sets of variables (exam, student, timeslot), only the matrices exam-student
(E), student-conflict (C), and exam-timeslot (Q) need to be constructed; the first two are input
matrices and the other is the output matrix. The room assignment is not considered.

o . Three hard constraints are considered for each of the datasets:

i) No students must be assigned to two different exams at the same timeslot (first-order conflict);
ii) Timeslot capacity must not be exceeded;
iii) Each exam must be assigned to exactly one timeslot (all exams are scheduled).

e Only one soft constraint is considered for all datasets. This constraints will be used to evaluate the
fitness function of each feasible timetable:

‘No students should be assigned to two exams in adjacent timeslots (second-order conflict)’.
The penalty value (fitness function) for each student that violated this constraint is ‘1°.

e The 0-1 integer programming model (exam-timeslot assignment) for each of the datasets may be

formulated as follows:

minimize YL 10y Proxlfieyley) 6]
subjectto 2, 20 DM c g g =0 ()
2% (e;nt;)=0 | 3)

2ty x(et;)=0 )

all variables are integers 0-1;

where c; is the number of students taking ‘both exams e; and ¢ prax(t(ei),t(ej))=l if
|t(e,.)"t(ej) I=1, O otherwise; ¢, ) specifies the assigned timeslot for exam ey; gy are the matrix
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entries Q taking values 0 or 1; x.(g;,2;)=0 if ;’;lns(e,-)-q,-j <n.(t), 1 otherwise; ny(e;) is the
number students in exam e; n(f) is the maximum-capacity of students for each timeslot;
x(e,,t )=0if 32 219y =1, 1 otherwise; »; = number of exams; and n, = number of timeslots.

6.2 Implementation of the Negative Selection Algorithm (NSAET)
For each dataset, the NSAET, presented in Figure 1, may be implemented as follows:

1. Initial timetables:

Ten (10) different initial feasible timetables are generated using a simple random selection algorithm,
i.e. each exam is selected at random and assigned to a randomly selected timeslot satisfying all hard
constraints (no student conflicts, timeslot-capacity not exceeded, and all exams are scheduled). For
each initial timetable, if an identical timetable already generated in the initial population, the ’ametable
must be eliminated and the algorithm will generate a new feasible timetable.

2. Population loop:
Censoring process - the fitness value of each timetable and the average fitness of the current population

are determined, and the timetables with fitness values greater than or equal to average are eliminated.

During the censoring process, the fitness value of each timetable in the current population is evaluated
using the fitness function; this value represents the number of students having two exams in adjacent
timeslots. Total fitness represents the sum of fitness values of all timetables in the current population.
Then the average fitness for the current population is determined. The average fitness is equal to total
fitness divide by the number of timetables or population size. For each timetable, if the fitness is less
than average, the timetable will be accepted for the new population, otherwise it will be eliminated.

Monitoring (reproduction) process - new feasible timetables are generated to replace the eliminated
timetables by cloning and mutating the remaining timetables.

During the monitoring process, only new timetables with fitness less than or equal to average will be
accepted for the new population. A timetable is randomly selected from the current population for
cloning according to fitness using a Roulette Wheel selection method. Cloning copies good timetables
from current population to next generation population. It is expected that the timetables with low
fitness will be selected for cloning. Only one clone is produced for each selected timetable. This give
rise to a duplicates timetable. This duplicate timetable needs mutation to form a new feasible timetable.
The mutation operator works by taking two exams at random and exchange the timeslots of the two
exams, always maintaining a feasible timetable. The mutation process is repeated until the cloned
timetable has satisfied all hard constraints and no duplicates. If the fitness of the new timetable is less
than of equal to average, the new timetable will be added to the new population. Otherwise, if the
fitness is- larger than average, the new timetable will be eliminated. The monitoring process will be
repeated until the number of timetables for the new population is equal to population size.

3. Cycle:
The process (population loop) will be repeated until the maximum number of generations is exceeded,
or until the maximum number of none improvement generations is equal to 100.

7. Experimental Results

7.1 First results for Negative Selection Algorithm (NSAET)

The NSAET has been implemented on the twelve Carter datasets. The following (Table 2) are the first
experimental results on solving examination timetabling problems using NSA. The algorithm was run
on each dataset for five trials, and the maximum number of generations 500 was used. The best fimess
value and the average fitness value for each dataset, based on the five trials, have been recorded.
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Table 2. First Results on Solving UETP using NSAET

car-f-92 543 18419 55522 2000 31 357 411.6
car-s-91 682 16925 56877 1550 40 406 454.2
ear-f-83 190 1125 8109 350 24 65 85.6
hec-s-92 81 2823 10632 650 19 ) 7 13.2
kfu-s-93- 461 5349 25113 1955 20 1 2.6
Ise-f-91 381 2726 10918 635 18 162 188
rye-s-93 486 11483 45051 2055 24 161 221.6
sta-f-83 139 611 5751 465 14 0 (169) 1
tre-s-92 261 4360 14901 655 25 40 61.6
uta-s-92 622 21266 58979 2800 32 209 240.6
ute-s-92 184 2750 11793 1240 10 0 (269) 3.2
yor-f-83 - 181 941 6034 300 22 1 2.4

The number of timeslots used for all datasets were imposed according to those given in Carter’s
website. However, the number of timeslots for all datasets may be further reduced if necessary. The
fitness value (soft constraint violations) is the minimum number of students having two exams in
adjacent timeslots at generation 500 or less. The best fitness values of the datasets s7a-f~83 and ute-s-92
have converged to ‘0’ at generations 169 and 269, respectively. The fitness values for other datasets
may converge to ‘0’ if a number of generations much larger than 500 is used.

The results from 12 different examination datasets have significantly shown that the NSAET is an
effective optimization algorithm; can successfully be applied to solve (and optimize) various kinds of
university examination timetabling problems.

7.2 Comparing NSAET with other solution methods

A comparison with other published results was also conducted. This is to access the effectiveness of the

NSAET against other optimization algorithms. Only five datasets were considered; car-f~92, car-s-91,

kfu-s-93, tre-s-92, and uta-s-92. The following are the authors and metaheuristic approaches used in the

published results:

(A) Burke et al. (1996) — Memetic Algorithm.

(B) Di Gaspero and Schaerf (2001) — Tabu Search.

(C) Caramia ef al. (2001) — A set of heuristics (Greedy Assignment, and Spreading Heuristic).

(D) Merlot et al. (2003) — Hybrid Algorithm (Constraint Programming, Simulated Annealing, and Hill-
climbing.

All authors have considered the same hard and soft constraints, hence a direct comparison based on the
fitness values (number of students having two exams in adjacent timeslots) may be carried out. The
main goal is nof to show that the NSAET is better than metaheuristic approaches, rather to show the
algorithm may produce good quality examination timetables as good as metaheuristics. Table 3
summarizes the results.

Table 3. Comparison with Other Solution Methods

car-f-92 543 18419 2000 40 331 424 268 | '158 11057 4.4
car-s-91 682 16925 1550 51 81 88 74 31 3 (935) 5.8
kfu-s-93 461 5349 1955 20 974 512 912 247 0 (530) 2
tre-s-92 261 4360 655 35 3 4 2 0 0 (420) 18
uta-s-92 622 21266 2800 38 772 554 680 334 2 (1058) 38

The number of timeslots used for all datasets were imposed according to the papers of the published
results. Hence, based on the results in Table 3, the NSAET obtained the best (average) fitness values in
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Jour datasets. The best fitness values of the datasets kfi-s-93 and tre-s-92 have converged to ‘0’ at
generations 530 and 420, respectively. However, the fitness value of the dataset tre-s-92, on average,
has converged to ‘1.8” compared to ‘0’ by Merlot’s multi-stage method.

It may be concluded that the NSAET (negative selection algorithm) is capable of producing good
quality examination timetables as good as metaheuristic approaches.

8. Conclusion and Future Work

This paper has successfully presented an artificial immune algorithm for the university examination
timetabling problems, called NSAET (negative selection algorithm for examination timetabling). The
algorithm shows great promise in the area of educational timetabling, particularly in its ability to
consider, solve, and optimize the wide variety of different examination timetabling problems. The
algorithm can handle the hard constraints and soft constraints very well. The experimental results on
twelve benchmark datasets (Carter datasets), available on the Internet, have significantly shown that the
NSAET is an effective optimization algorithm; can successfully be applied to solve various kinds of
university examination timetabling problems. »

A comparison with other optimization algorithms (published results) has significantly shown the
effectiveness of NSAET by producing good quality (low fitness) examination timetables, as good as
metaheuristic approaches. This algorittm may be accepted as a new member of optimization
algorithms for solving examination timetabling problems.

For future work, the negative selection algorithm (NSAET) will be compared with other artificial
immune algorithms, such as clonal selection algorithtm (CSAET) and immune network algorithm
(INAET), using the same examination timetabling datasets. These artificial immune algorithms may
also be applied to university course timetabling.
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