PHOTOCATALYTIC DEGRADATION OF PHENOL IN A FLUIDIZED BED REACTOR USING TiO₂ PREPARED BY A HYDROTHERMAL METHOD IMMOBILIZED ON GRANULAR ACTIVATED CARBON

by

SIN JIN CHUNG

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

MAY 2010

ACKNOWLEDGEMENTS

First of all, I would like to express sincere gratitude to my supervisor, Prof. Abdul Rahman Mohamed for his valuable ideas, advices, suggestions and guidance throughout my postgraduate studies.

Secondly, I would like to grab this opportunity to thank all lecturers, staffs and technicians in School of Chemical Engineering especially Prof. Abdul Latif Ahmad, Assoc. Prof. Bassim H. Hameed, Dr. Zainal Ahmad, Pn. Aniza, En. Roqib and En. Faiza for their help and support. I would also like to thank the technicians of School of Material and Mineral Resources Engineering and School of Biology for the help with sample analyses.

I wish to thank Universiti Sains Malaysia for providing me the USM fellowship and Ministry of Science, Technology and Innovation Malaysia under the Science Fund (No. 6013338) for funding my project.

Special thanks to all my beloved friends especially Lam Sze Mun and not forgetting Fauziah, Liu Wei Wen and Siva Kumar for their help, kindness and moral support towards me. Thank you my friends.

Finally, I thank my parents Sin Boon Hwa and Ang Cheong Sim, brother Sin Jin Ming and sisters Sin Min Chyi and Sin Yuh Miin for their encouragement, moral and financial supports in all the good and hard times.

TABLE OF CONTENTS

	ii
ACKNOWLEDGEMENTS	
TABLE OF CONTENTS	iii
LIST OF TABLES	vii
LIST OF FIGURES	ix
LIST OF PLATES	xii
LIST OF SYMBOLS	xiii
LIST OF ABBREVIATIONS	XV
ABSTRAK	xvii
ABSTRACT	xix

CHAPTER ONE : INTRODUCTION

1.1	Treatment of industrial effluents	1
1.2	Photocatalysis in wastewater treatment	2
1.3	Problem statement	4
1.4	Research objectives	6
1.5	Scope of study	7
1.6	Organization of the thesis	7

CHAPTER TWO : LITERATURE REVIEW

2.1	Advanced oxidation processes	
2.2	Heterogeneous photocatalysis	12
	2.2.1 Titanium dioxide as photocatalyst	15
	2.2.2 Titanium dioxide assisted photocatalysis	17
2.3	Nanosized titanium dioxide	20
2.4	Synthesis of immobilized photocatalyst	22
2.5	Hydrothermal method	23
2.6	Supports for immobilization	25

2.7	Photocatalytic reactor	29
2.8	Phenol	32
2.9	Photodegradation of phenol	34
2.10	Effects of operating parameters	35
	2.10.1 Effect of photocatalyst loading	35
	2.10.2 Effect of pH	37
	2.10.3 Effect of electron acceptors	39
	2.10.4 Effect of initial pollutant concentration	40
2.11	Design of experiment (DOE)	
	2.9.1 Response surface methodology (RSM)	42
	2.9.2 Central composite design (CCD)	45
2.12	Reaction kinetics	47

CHAPTER THREE : EXPERIMENTAL

3.1	Materi	als and chemicals	
3.2	Equip	ments	51
	3.2.1	Stainless steel Teflon-lined autoclave	51
	3.2.2	Fluidized bed reactor	53
3.3	Photocatalyst preparation		56
	3.3.1	Synthesis of TiO ₂ sol	56
	3.3.2.	Immobilization of TiO2 onto GAC	57
3.4	Charao	cterization studies	58
	3.4.1	X-ray Diffraction (XRD)	58
	3.4.2	Transmission electron microscopy (TEM)	58
	3.4.3	Scanning electron microscopy (SEM)	58
	3.4.4	Energy dispersive x-ray spectroscopy (EDX)	59
	3.4.5	Surface area and porosity measurement	59
3.5	Photocatalytic performance evaluation		60
	3.5.1	Control experiments	61
	3.5.2	Effect of hydrothermal temperature	61
	3.5.3	Immobilized versus suspended photocatalyst	61
	3.5.4	Catalytic activity of recycled TiO ₂ /GAC	62

	3.5.5	Migration studies	62
3.6	Effect	s of operating parameters	62
	3.6.1	Effect of TiO ₂ loading	62
	3.6.2	Effect of inorganic anions	63
	3.6.3	Effect of pH	63
	3.6.4	Effect of air flow rate	63
	3.6.5	Effect of H ₂ O ₂	63
	3.6.6	Effect of initial phenol concentration	64
3.7	Sample analyses		64
	3.7.1	High Performance liquid chromatograph (HPLC)	64
	3.7.2	Total organic carbon (TOC)	64
3.8	Exper	imental design and optimization	65

CHAPTER FOUR : RESULTS AND DISCUSSION

4.1	Characterization of TiO ₂ /GAC	69
	4.1.1 X- ray Diffraction (XRD)	69
	4.1.2 Transmission electron microscopy (TEM)	72
	4.1.3 Scanning electron microscopy (SEM)	76
	4.1.4 Energy dispersive X-ray (EDX)	77
	4.1.5 Surface area and porosity	79
4.2	Identification of influencing factors on the photocatalytic	81
	activity	
4.3	Effect of hydrothermal temperature on the photocatalytic	84
	performance	
4.4	Comparison between immobilized TiO_2 and suspended	88
	TiO_2	
	4.4.1 Phenol degradation	88
	4.4.2 Mineralization of phenol	91
4.5	Catalytic activity of recycled TiO ₂ /GAC	93
4.6	Migration of phenol from GAC to TiO ₂ under UV	96
	irradiation	
4.7	Effect of operating parameters	98

	4.7.1	Effect of TiO ₂ loading	98
	4.7.2	Effect of inorganic anions	101
	4.7.3	Effect of pH	104
	4.7.4	Effect of air flow rate	108
	4.7.5	Effect of H ₂ O ₂	111
	4.7.6	Effect of initial phenol concentration	115
4.8	Optim	ization studies of phenol degradation	119
	4.8.1	Analysis of response surface	123
	4.8.2	Optimization study and verification	127
4.9	Kineti	c study of phenol degradation	128
	4.9.1	Determination of kinetic order and apparent rate	130
		constant	
	4.9.2	Initial reaction rates	133

CHAPTER FIVE : CONCLUSIONS AND RECOMMENDATIONS

5.1	Conclusions	136
5.2	Recommendations	138

140

REFERENCES

APPENDIX

Appendix A	Calibration curve	16	5
Appendix A	Calibration curve	16	5

LIST OF PUBLICATIONS 166

LIST OF TABLES

Table 2.1	Oxidation Potential of Different Oxidants (Molinari et al., 2004)	10
Table 2.2	Band gap energy and corresponding radiation wavelength required for the excitation of several semiconductors (Robert, 2007)	13
Table 2.3	List of aqueous organic pollutants degraded by heterogeneous photocatalysis	14
Table 2.4	Chemical and physical properties of phenol (Busca et al., 2008)	33
Table 2.5	Concentration of phenol from different industrial wastewaters (Priya et al., 2008)	33
Table 2.6	List of optimal photocatalyst concentration of different types of organic pollutants and reactor designs	36
Table 3.1	List of chemical and materials	50
Table 3.2	Specification of UV lamps	54
Table 3.3	Experimental range and levels of independent variables	66
Table 3.4	Experimental conditions for photocatalytic degradation of phenol based on 3 level factorial designs in RSM analysis	66
Table 4.1	Crystalline phase, average crystallite size and relative anatase crystallinity of TiO ₂ /GAC prepared at different hydrothermal temperatures	71
Table 4.2	EDX analysis	79
Table 4.3	BET surface area and porosity parameters of GAC and TiO_2/GAC prepared at different hydrothermal temperatures	80
Table 4.4	TOC removal for TiO ₂ /GAC and suspended Degussa P-25 during phenol degradation	91
Table 4.5	Experimental matrix and results	120
Table 4.6	Model fitting analysis	121

Table 4.7	ANOVA results of the quadratic model for the response of phenol degradation	122
Table 4.8	Factors and their desired goal for optimizing phenol degradation	127
Table 4.9	Experimental solution given by the software	127
Table 4.10	Values of k_{app} and R^2 under different initial phenol concentrations	132

LIST OF FIGURES

Figure 2.1	Crystal structure of anatase, rutile and brookite of TiO_2 (Coronado <i>et al.</i> , 2008)	15
Figure 2.2	Energy diagram for TiO_2 and relevant redox potentials (Mills and Hunte, 1997)	17
Figure 2.3	Schematic representation of the processes occurring in photocatalysis upon irradiation of TiO_2 (Koči <i>et al.</i> , 2008)	18
Figure 2.4	A possible mechanism of phenol degradation (Guo et al., 2006)	35
Figure 2.5	Response surface plot as presented by the Design-Expert software (Version 6.0.6, Stat-Ease, Inc., USA)	44
Figure 2.6	The three types of central composite design (NIST, 2006)	46
Figure 3.1	Schematic diagram of stainless steel Teflon-lined autoclave. (1) Magnetic stirrer, (2) Teflon, (3) TiO2 colloidal solution, (4) Stainless steel plate, (5) Magnetic bar, (6) Heater, (7) Insulator, (8) Stainless steel cap, (9) Nut, (10) Pressure gauge, (11) Thermocouple, (12) Pressure release valve and (13) Nut	52
Figure 3.2	Schematic diagram of fluidized bed reactor. (1) Air compressor, (2) Air filter, (3) Pressure gauge, (4) Rotameter, (5) UV lamp, (6) Quartz glass column and (7) Thermocouple	55
Figure 3.3	Flow chart of the preparation of the TiO_2 sol	56
Figure 3.4	Flow chart of TiO ₂ immobilization	57
Figure 4.1	XRD patterns of GAC and TiO ₂ /GAC prepared at different hydrothermal temperatures: (a) GAC, (b) TiO ₂ /GAC (120°C), (c) TiO ₂ /GAC (150°C), (d) TiO ₂ /GAC (180°C) and (e) TiO ₂ /GAC (200°C)	70
Figure 4.2	TEM images of TiO ₂ /GAC prepared at different hydrothermal temperatures: (a) TiO ₂ /GAC (120°C), (b) TiO ₂ /GAC (150°C), (c) TiO ₂ /GAC (180°C) and (d) TiO ₂ /GAC (200°C)	73

Figure 4.3 Schematic diagram of the mechanism for the formation 75

of TiO_2 in the hydrothermal treatment (Lee *et al.*, 2001; Lu and Wen, 2008)

- Figure 4.4 SEM images of TiO₂/GAC prepared at different 77 hydrothermal temperatures: (a) TiO₂/GAC (120°C), (b) TiO₂/GAC (150°C), (c) TiO₂/GAC (180°C) and (d) TiO₂/GAC (200°C)
- Figure 4.5 EDX spectrum of GAC 78
- Figure 4.6 EDX spectrum of TiO_2/GAC (180°C) 78
- Figure 4.7 Photocatalytic degradation of phenol under different 82 conditions. Conditions: TiO_2 loading = 322.2 mg/L, air flow rate = 2 L/min and $C_p = 50$ mg/L
- Figure 4.8 Effect of hydrothermal temperature on the 85 photocatalytic degradation of phenol. Conditions: TiO_2 loading = 322.2 mg/L, air flow rate = 2 L/min and $C_p = 50 \text{ mg/L}$
- Figure 4.9 Photocatalytic degradation of phenol using prepared 89 TiO₂/GAC and suspended Degussa P-25. Conditions: TiO₂ loading = 322.2 mg/L, air flow rate = 2 L/min and $C_p = 50$ mg/L
- Figure 4.10 Schematic illustration of mineralization of phenol over 92 (a) TiO₂/GAC and (b) Degussa P-25 powder (Zhang *et al.*, 2005)
- Figure 4.11 Effect of recycling use of TiO₂/GAC. Conditions: TiO₂ 94 loading = 322.2 mg/L, air flow rate = 2 L/min, $C_p = 50$ mg/L and t = 150 min
- Figure 4.12 Concentration of phenol extracted from TiO₂/GAC after 96 being exposed to phenol solution for different times in the absence and presence of UV light. Conditions: TiO₂ loading = 322.2 mg/L, air flow rate = 2 L/min and $C_p =$ 50 mg/L
- Figure 4.13 Effect of TiO₂ loading on the photocatalytic degradation 99 of phenol. Conditions: pH = 5.2, air flow rate = 2 L/min and $C_p = 50 \text{ mg/L}$
- Figure 4.14 Effect of inorganic anions on the photocatalytic 101 degradation of phenol. Conditions: TiO₂ loading = 322.2 mg/L, pH = 5.2, air flow rate = 2 L/min and $C_p = 50$ mg/L

- Figure 4.15 Effect of pH on the photocatalytic degradation of 105 phenol. Conditions: TiO₂ loading = 322.2 mg/L, air flow rate = 2 L/min and $C_p = 50$ mg/L
- Figure 4.16 Effect of air flow rate on the photocatalytic degradation 108 of phenol. Conditions: TiO₂ loading = 322.2 mg/L, pH = $5.2 \text{ and } C_p = 50 \text{ mg/L}$
- Figure 4.17 Effect of H_2O_2 on the photocatalytic degradation of 112 phenol. Conditions: TiO₂ loading = 322.2 mg/L, pH = 5.2, air flow rate = 2 L/min and $C_p = 50$ mg/L
- Figure 4.18 Effect of initial phenol concentration on the 116 photocatalytic degradation of phenol. Conditions: TiO_2 loading = 322.2 mg/L, pH = 5.2 and air flow rate = 2 L/min
- Figure 4.19 Predicted versus experimental values for phenol 123 degradation percentage
- Figure 4.20 Response surface plot for the effect of initial phenol 124 concentration and TiO_2 loading on phenol degradation
- Figure 4.21 Response surface plot for the effect of initial phenol 125 concentration and H_2O_2 concentration on phenol degradation
- Figure 4.22 Response surface plot for the effect of TiO_2 loading and 126 H_2O_2 concentration on phenol degradation
- Figure 4.23 Plot of $\ln C_{po}/C_p$ versus time for phenol degradation 131 under different initial phenol concentrations. Conditions: TiO₂ loading = 322.2 mg/L, pH = 5.2 and air flow rate = 2 L/min
- Figure 4.24Linearization of the Langmuir-Hinshelwood model134Figure A-1Calibration curve of phenol obtained from HPLC165analysis165

LIST OF PLATES

Page

Plate 3.1	Stainless steel Teflon-lined autoclave	52
Plate 3.2	Fluidized bed reactor	54
Plate 3.3	UV lamp enclosure with the quartz glass column	55

LIST OF SYMBOLS

Symbol	Description	Unit
C_p	Phenol concentration	mg/L
C_{po}	Initial phenol concentration	mg/L
$\mathrm{d}C_p/\mathrm{d}t$	Differential of C_p polynomial with respect to t	mg/L.min
e	Electron	-
h^+	Hole	-
k	Reaction rate constant	mg/L.min
Κ	Adsorption equilibrium constant	L/mg
k_{app}	apparent rate constant	1/min
O ₂ • ⁻	Superoxide radical anion	-
OH-	Hydroxyl ion	-
•OH	Hydroxyl radical	-
HO_2 •	Hydroperoxyl radical	-
pzc	Point of zero charge	-
R^2	Correlation coefficient	-
r	reaction rate of phenol degradation	mg/L.min
Т	Temperature	С
t	Time	min
V	Volume of treated phenol solution	L

Greek Symbols

σ	Standard deviation	-
λ	Wavelength of the UV lamp	nm

9 Surface coverage

-

LIST OF ABBREVIATIONS

ANOVA	Analysis of variances
AOPs	Advanced oxidation processes
BET	Brunauer-Emmett-Teller
cb	Conduction band
CCD	Center composite design
CO_2	Carbon dioxide
CV	Coefficient of variation
CVD	Chemical vapor deposition
3D	Three dimensional
DF	Degree of freedom
DOE	Department of Environment
EDX	Energy Dispersive X-ray spectroscopy
<i>F</i> value	Fisher value
FBR	Fluidized bed reactor
GAC	Granular activated carbon
HCl	Hydrochloric acid
H ₂ O	water
H_2O_2	Hydrogen peroxide
HPLC	High pressure liquid chromatograph
<i>i</i> -PrOH	Isopropanol
NaCl	Sodium chloride
Na ₂ CO ₃	Sodium carbonate
NaHCO ₃	Sodium bicarbonate
NaOH	Sodium hydroxide

Na_2SO_4	Sodium sulfate
O ₂	Oxygen
Prob>F	Probability value greater than Fisher value
RSM	Response surface methodology
SEM	Scanning electron microscopy
TEM	Transmission electron microscopy
TiO ₂	Titanium dioxide
TiO ₂ /GAC	Titanium dioxide immobilized on granular activated carbon
TTIP	Titanium (IV) isopropoxide
TOC	Total organic carbon
UV	Ultra-violet
vb	Valence band
XRD	X-Ray diffraction

DEGRADASI PEMFOTOMANGKINAN FENOL DI DALAM REAKTOR LAPISAN TERBENDALIR MENGGUNAKAN TIO₂ DARIPADA KAEDAH HIDROTERMA TERSEKAT GERAK PADA KARBON TERAKTIF

ABSTRAK

TiO₂ tersekat gerak pada karbon teraktif (TiO₂/GAC) telah berjaya dihasilkan daripada kaedah hidroterma. Fotomangkin tersekat gerak yang disediakan dikaji dengan menggunakan XRD, TEM, SEM, EDX dan N₂ penyerapan. Aktiviti pemfotomangkinan bagi TiO2/GAC diselidik melalui degradasi fenol di dalam reaktor lapisan terbendalir. Keputusan menunjukkan bahawa fotomangkin tersekat gerak yang disediakan mempunyai hanya sejenis fasa kristal, iaitu anatis. Kekristalan dan saiz kristal bagi TiO₂/GAC meningkat sepanjang suhu hidroterma dari 120° C ke 200°C. Morfologi permukaan fotomangkin tersekat gerak diselaputi oleh gumpalan TiO₂. Keputusan EDX telah membuktikan kehadiran TiO₂ pada permukaan GAC. Luas permukaan dan jumlah kandungan lubang bagi TiO₂/GAC didapati dipengaruhi oleh suhu hidroterma. Akan tetapi, purata kelebaran lubang ditunjukkan tidak banyak diubah. Efisiensi pemfotomangkinan bagi TiO₂/GAC didapati dipengaruhi oleh suhu hidroterma dan optimum suhu hidroterma adalah 180°C. Kajian perbandingan keaktifan di antara TiO₂ tersekat gerak dan kormersial serbuk TiO₂ dijalankan pada keadaan eksperimen yang sama. TiO₂/GAC didapati memberi keputusan yang lebih baik dalam degradasi fenol dan penghapusan jumlah karbon organik (TOC), iaitu 96.9% dan 85% masing-masing lebih tinggi daripada kormersial serbuk TiO₂. Luas permukaan dan daya jerapan yang tinggi membolehkan GAC sebagai penyokong memainkan peranan yang baik dalam menjerap fenol, dan fenol yang terjerap dipindah dengan terus-menerus pada permukaan TiO₂, di mana ia akan degradasi pemfotomangkinan. Selain itu, kecekapan pemfotomangkinan bagi TiO₂/GAC adalah menurun dengan sedikit selepas degradasi fenol selama empat kali. Keputusan untuk pembolehubah proses yang dikaji adalah: Bebanan TiO₂ yang optimum adalah 322.2 mg/L; anion inorganik menunjukkan kesan negatif pada degradasi fenol dalam turutan $HCO_3^- > CO_3^{2-} > SO_4^{2-} > CI^-$; nilai pH yang optimum adalah 5.2; kadar aliran udara yang optimum adalah 2 L/min; degradasi fenol yang tinggi dapat dicapai dengan kepekatan H₂O₂ pada 400 mg/L; degradasi fenol merosot bagi meningkatkan kepekatan awal fenol. Rekabentuk eksperimen berdasarkan metodologi permukaan sambutan (RSM) telah digunakan untuk menghasilkan degradasi fenol yang optimum. Maksima degrasi fenol pada 98.8 % dapat dicapai dengan kepekatan H₂O₂ pada 200 mg/L, bebanan TiO₂ pada 2 lapisan (322.2 mg/L) dan kepekatan H₂O₂ pada 200 mg/L. Akhirnya, kinetik degradasi fenol mematuhi model Langmuir-Hinshelwood. Nilai pemalar kadar dan nilai pemalar jerapan yang telah diperolehi adalah k = 8.18 mg/L.min and K = 0.00086 L/mg masing-masing.

PHOTOCATALYTIC DEGRADATION OF PHENOL IN A FLUIDIZED BED REACTOR USING TiO₂ PREPARED BY A HYDROTHERMAL METHOD IMMOBILIZED ON GRANULAR ACTIVATED CARBON

ABSTRACT

TiO₂ immobilized on granular activated carbon (TiO₂/GAC) was successfully prepared using a hydrothermal method. The prepared photocatalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and N₂ physisorption. Their photocatalytic activities were evaluated through phenol degradation in a fluidized bed reactor. The characterization results revealed that the prepared photocatalysts had a single crystal phase, which was anatase. The crystallinity and crystal size of TiO₂/GAC increased as the hydrothermal temperature increased from 120°C to 200°C. The surface morphology of prepared photocatalysts was agglomerated. EDX analysis confirmed the presence of TiO₂ on the surface of the GAC supports. The surface area and total pore volume of prepared photocatalysts were significantly affected by hydrothermal temperature. However, no much change was found on the average pore diameter. The photocatalytic efficiency of TiO_2/GAC was strongly influenced by hydrothermal temperature and the optimum hydrothermal temperature was 180°C. For the comparison, the same photocatalysis experiment was performed using commercial Degussa P25. TiO₂/GAC had shown better phenol degradation and total organic carbon removal (TOC), which was 96.9 % and 85 %, respectively higher than that of commercial Degussa P-25. The GAC support with high surface area and adsorption capacity had worked well for the phenol adsorption, and the adsorbed phenol migrated continuously onto the surface of TiO₂, where it is photocatalytically degraded. Moreover, the photocatalytic ability of TiO₂/GAC was decreased slightly after four cycles for phenol degradation. The results for the studied operating parameters were: optimum TiO₂ loading was 322.2 mg/L; the inorganic anions had a negative effect on the phenol degradation in the order of HCO₃⁻ > CO₃²⁻ > SO₄²⁻ > Cl; the optimum pH was found to be 5.2; the air flow rate gave an optimum value of 2 L/min; high phenol degradation can be achieved at H₂O₂ concentration of 400 mg/L; the increase of initial phenol concentration gave a lower phenol degradation. An experimental design based on response surface methodology (RSM) was employed to optimize the phenol degradation. A maximum phenol degradation of 98.8 % was obtained at 30 mg/L of initial phenol concentration, 2 layers of TiO₂ loading (322.2 mg/L) and 200 mg/L of H₂O₂ concentration. Finally, the kinetics of phenol degradation was fitted well with the Langmuir-Hinshelwood model. The reaction rate constant and the adsorption constant were calculated to be k = 8.18 mg/L.min and K = 0.00086 L/mg, respectively.

CHAPTER ONE

INTRODUCTION

1.1 TREATMENT OF INDUSTRIAL EFFLUENTS

Contamination of water by industrial effluents is a serious problem experienced by nations throughout the developed and developing world. Recently, rapid industrial expansion especially petrochemical, pharmaceutical, textile, agricultural, food and chemical industries all produce waste effluent contaminated with organic compounds such as aromatics, haloaromatics and dyes has contributed to the contamination of fresh water in the ecosystem (Robertson et al., 2005). The released of untreated organic pollutants are of high priority concern since they are harmful to the environment and even their contamination in water at a few mg/L levels are highly carcinogenic to human and animals. In Malaysia, the number of water pollution sources was reported increase by 26 % from 13992 sources in 2000 to 18956 sources in 2006 (WHO, 2005; DOE, 2006). In this regard, a stricter water quality control standard and regulation such as Environmental Quality Act has been implemented in Malaysia in an effort to achieve a goal in environmental protection management policy. Therefore, the enforcement of the existing environmental laws is essential to ensure the capability of the industrial sector in destructing the potentially harmful compounds from the effluent before safe disposal into the natural waters.

A variety of conventional biological, chemical and physical methods are presently available to treat the harmful compounds in the effluents. However, these conventional wastewater treatments have limitations of their own in order to reach the degree of purity required for final use. Biological treatment (aerobic or anaerobic digestion) usually is not effective in wastewater treatment due to some of the toxic compounds present in the industrial effluent are found not readily biodegradable and may kill the active microbes (Sanrom án *et al.*, 2004). Chemical treatment (chlorination and ozonation) gave particular problems where chlorinated organic compounds as by-product after the chlorination treatment can be generated (Moonsiri *et al.*, 2004). Due to its instability and hazardous nature, the use of ozone may be more harmful to the environment (Bizani *et al.*, 2006). Finally, physical treatment (charcoal adsorption, reverse osmosis and ultrafiltration) is non-destructive and usually comprises a simple transfer of organic pollutants from a dispersed phase to a concentrated phase (Kabir *et al.*, 2006), thus causing secondary pollution.

In this way, new and more efficient treatment technologies to degrade the complex refractory molecules into simpler molecules must be considered to reduce the deteriorating water quality.

1.2 PHOTOCATALYSIS IN WASTEWATER TREATMENT

In recent years, heterogeneous photocatalysis is one of the advanced oxidation processes (AOP) that has been accepted as a promising new alternative method in the area of wastewater treatment (Chen and Ray, 1999; Bekkouche *et al.*, 2004; Cao *et al.*, 2005; Liu *et al.*, 2007; Merabet *et al.*, 2009a). Compared with conventional wastewater treatments, heterogeneous photocatalysis has such advantages as: (1) pollutants are not merely transferred from one phase to another, but they are chemically transformed and completely mineralized to environmentally harmless compounds (2) this process is immune to organic toxicity to make it attractive for the degradation of toxic organic compounds and (3) this process has the

potential to utilize sunlight or visible light for irradiation, thereby advantageous to economic saving especially for large-scale operations (Chang *et al.*, 2005; Yu *et al.*, 2007a).

Generally, three basic components must be present in heterogeneous photocatalysis in order for the reaction to take place: an emitted photon (in the appropriate wavelength), a catalyst surface (usually TiO₂) and oxygen (Lasa *et al.*, 2006). Photocatalytic process occurs when the catalyst is activated by UV light and followed by the excitation of an electron from the valence band to conduction band, leaving a positive hole behind in the valence band. These positively charged holes will react with water molecules leading to the formation of the hydroxyl radicals (•OH), which acts as strong oxidants to degrade the organic molecules (Zhang *et al.*, 2005a).

Two modes of TiO₂ as photocatalyst: (1) suspended TiO₂ powder and (2) immobilized TiO₂ are typically used in the photocatalytic degradation processes. Both types of TiO₂ offered various advantages and disadvantages. Suspended TiO₂ powder has been the most commonly used because of its simplicity and offers high surface area for reaction with almost no mass transfer limitation. Nevertheless, additional separation processes are required to recover the TiO₂ powder at the end of the treatment, either by filtration or centrifugation which is expensive in term of time and cost. Another concern is suspended TiO₂ powder tends to agglomerate into larger particles at high concentration, which reduces the catalytic activity. Thus, in terms of large scale application, immobilized TiO₂ is preferable. However, there is another problem that activity of immobilized TiO₂ system may be lower than the slurry

system due to reduction in surface area and mass transfer limitation (Li *et al.*, 2005; Damodar and Swaminathan, 2008; Song *et al.*, 2008).

1.3 PROBLEM STATEMENT

In recent years, increasing use of immobilized photocatalyst in the heterogeneous photocatalysis has witnessed its significant application in the wastewater treatment (Kang, 2002; Zhang *et al.*, 2006; Zhu and Zou, 2009). Even though immobilized TiO₂ allows the ease in continuous use of the photocatalyst by eliminating the need of additional separation processes in a slurry system, there are still technical challenges that must be further investigated and overcome. It is well established that the photocatalytic performance of TiO₂ are strongly influenced by the physiochemical properties such as crystallinity, crystal size and surface area, which are governed by the preparation method (Jang *et al.*, 2001; Senthilkumaar *et al.*, 2006; Tian *et al.*, 2009). Synthesis of immobilized nanosized TiO₂ is important to compensate the reduced performances associated with the immobilization process due to its large surface area and consistent with a high volume fraction of active sites available on the surface for substrate adsorption. Hence, knowledge especially in the synthesis of immobilized TiO₂ still requires better understanding.

As most commonly known, sol-gel, chemical vapour deposition (CVD) and hydrothermal are prominent methods for the synthesis of TiO₂. Sol-gel and CVD usually generate a relatively homogeneous TiO₂ coating but require high calcination temperature above 450°C to induce crystallization. This is not economical and can cause crystal growth (Shang *et al.*, 2003; Sayilkan *et al.*, 2007). To avoid these defects, hydrothermal has been considered as an alternative method for the preparation of immobilized TiO_2 in a nanocrystalline state, where low reaction temperature is employed, and physiochemical properties such as crystal size, morphology and crystalline phase of the prepared photocatalyst can be controlled (Kolen'ko *et al.*, 2003; Yu *et al.*, 2005; Zhao *et al.*, 2007).

Besides, the selection of a proper substrate as support for immobilized TiO₂ is essential to increase the photocatalytic degradation activities. Early works mainly focused on coating TiO₂ on non-adsorbent supports such as glass, quartz sand and stainless steel substrate (Shang *et al.*, 2003; Sonawane *et al.*, 2004; Pozzo *et al.*, 2006). The photocatalyst separation problem can somewhat be solved, but no improvement in the photoefficiency is observed due to the diffusion limitation of pollutants to the surface of TiO₂. To avoid this problem, much attention is given to support TiO₂ on adsorptive materials such as zeolite, activated carbon (AC) and silica gel (Zhang *et al.*, 2006; Mahalakshmi *et al.*, 2009; Sun *et al.*, 2009). Among these supports, AC is used in this study owing to its superiority of adsorption capacity, high surface area and lower cost (Sun *et al.*, 2009)

In addition, an effective reactor design is considered important in the photocatalytic degradation reaction where intimate contact can be achieved between UV light, photocatalyst and reactants. In this sense, fluidized bed reactor is believed can increase the photocatalytic efficiency owing to its excellent reactant contact, high photocatalyst loading and efficient UV light exposure (Nam *et al.*, 2002; Nelson *et al.*, 2007). However, technical development of fluidized bed reactor is still not widely studied in heterogeneous photocatalysis technology for wastewater treatment. Thus, it is imperative to conduct a thorough study on the effect of operating

parameters to investigate the photocatalytic performance of the prepared photocatalyst in a fluidized bed reactor. The importance of the present work is to exploit the wide and ever-growing application of TiO_2 photocatalysis to be more practical in the wastewater treatment by studying the criteria in synthesis of immobilized TiO_2 with its photocatalytic performance in a fluidized bed reactor.

1.4 RESEARCH OBJECTIVES

The aim of this research is to develop an immobilized photocatalyst with high photoactivity, which is capable of degrading and mineralizing phenol under UV irradiation. The objectives of this research include:

- To synthesize nanosized TiO₂ immobilized on granular activated carbon (TiO₂/GAC) using a hydrothermal method.
- To characterize the prepared TiO₂/GAC based on its chemical and physical properties.
- To study the performance of TiO₂/GAC and effects of operating parameters such as TiO₂ loading, inorganic anions, pH, air flow rate, H₂O₂ concentration and initial phenol concentration on photocatalytic degradation of phenol in a fluidized bed reactor.
- To obtain optimum operating parameters by using response surface methodology.
- 5. To study the kinetic of photocatalytic degradation of phenol over TiO_2/GAC .

1.5 SCOPE OF STUDY

This research is focused on the development of highly effective immobilized TiO_2 prepared using hydrothermal method. The development of the photocatalyst includes studying the effect of hydrothermal temperature ($120^{\circ}C - 200^{\circ}C$) and GAC as support, on the TiO_2 photocatalytic activity. The freshly prepared immobilized photocatalyst are characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX) and N₂ physisorption. Their photocatalytic activities are evaluated through phenol degradation in a fluidized bed reactor.

Various operating parameters such as TiO_2 loading (1 layer – 4 layers), pH (3.0 – 11.0), inorganic anions (Cl⁻, HCO₃⁻, CO₃²⁻ and SO₄²⁻), air flow rate (1.0 L/min – 3.0 L/min), H₂O₂ concentration (50 mg/L – 400 mg/L) and initial phenol concentration (20 mg/L – 110 mg/L) are studied to evaluate the photocatalytic performance of TiO₂/GAC in a fluidized bed reactor. Data analysis is further studied using 2³ factorial experimental design of response surface methodology (RSM) to optimize and analyze the possible interaction between the process variables on phenol degradation. Finally, kinetic study based on Langmuir-Hinshelwood kinetics model is studied to determine the rate of reaction in the phenol degradation.

1.6 ORGANIZATION OF THESIS

There are five chapters in this thesis. Chapter 1 (Introduction) provides a brief description of treatment of industrial effluent and photocatalysis in wastewater treatment. This chapter also includes the problem statement that describes the problem faced and the needs of the current research. The objectives and scopes of this study are then explained in this chapter. This is followed by the organization of the thesis.

Chapter 2 (Literature Review) provides the past research works in the photocatalysis field. A brief explanation about advanced oxidation process is in the first part and followed by the overview of photocatalysis. Subsequently, information regarding with the TiO_2 as a photocatalyst, the immobilization onto the support and photocatalytic reactor are discussed in the second part. Next, the characteristic of phenol and details of phenol degradation are described. The effects of various operating parameters that affect the photocatalytic activity are included. Finally, the design of experiment (DOE) is discussed.

Chapter 3 (Materials and Methods) covers the experimental part. Details of the materials and chemical reagents with a general description about the photocatalytic reactor that are used in the present study are described in the first part. This is followed by the discussion on the detailed photocatalyst preparation and characterization techniques throughout this research. Lastly, process studies and experimental design are described in this chapter.

Chapter 4 (Results and Discussion) presents the experimental findings together with discussion. It is divided into eight parts: (a) characterization of TiO_2/GAC , (b) Effect of hydrothermal temperature on the photocatalytic performance, (c) determination of factors affecting the photocatalytic activity, (d) performance comparison between immobilized TiO_2 and suspended TiO_2 , (e)

extraction studies, (f) effect of operating parameters, (g) optimization studies and (h) kinetics studies.

Chapter 5 (Conclusions and Recommendations) summarizes the results reported in chapter 4 and recommends the possible ways to improve the present studies for future research in this field.

CHAPTER TWO

LITERATURE REVIEW

2.1 ADVANCED OXIDATION PROCESSES

Since the early 1990s, a lot of research works have been carried out on special class of oxidation technique that is defined as advanced oxidation processes (AOPs) in wastewater treatment (Mills and Hoffmann, 1993; Minero *et al.*, 1995; Andreozzi *et al.*, 1999; Fernando *et al.*, 2003; Popiel *et al.*, 2009). It had shown that AOPs are a promising wastewater treatment technology could successfully work best for the near ambient degradation or mineralization of soluble organic pollutants from water and volatile organic compounds (VOCs) from air as well.

All AOPs are mainly based on hydroxyl radical (•OH) chemistry. •OH radicals are powerful oxidizing agent responsible to oxidize the organic pollutants and have the second highest oxidizing potential. In Table 2.1, the oxidation potentials of some important oxidizing agents are listed.

Oxidant	Oxidation Potential (eV)
Fluorine	3.03
Hydroxyl radical	2.80
Atomic oxygen	2.42
Ozone	2.07
Hydrogen peroxide	1.78
Perhydroxyl radical	1.70
Permanganate	1.68
Chlorine dioxide	1.57
Chlorine	1.36

 Table 2.1:
 Oxidation Potential of Different Oxidants (Molinari et al., 2004).

From Table 2.1, •OH radicals is the best choice for use in oxidation processes since it can be generated *in situ*, and compared to fluorine, oxidation products of •OH

radicals are less toxic with the possibility of complete mineralization of the organic pollutants (Ray *et al.*, 2006). Once the •OH radicals generated, they can strongly react with most organic pollutants (RH) by hydrogen abstraction to produce organic radical (•R). Subsequently, the produced organic radicals can further react with molecular oxygen to give peroxyl radicals, initiating a sequence of oxidative degradation reactions which may lead to complete mineralization of the organic pollutants (Chiron *et al.*, 2000):

$$RH + \bullet OH \longrightarrow H_2O + \bullet R \tag{2.1}$$

$$\bullet \mathbf{R} + \mathbf{O}_2 \longrightarrow \mathbf{ROO} \bullet \tag{2.2}$$

In addition, •OH radicals may also attack the aromatic organic pollutants by ring hydroxylation. However, a further •OH radicals attack would lead to the opening of the ring and the formation of open conjugated structure (Litter *et al.*, 2005):

Common AOPs that have been studied in the wastewater treatment include (a) chemical oxidation using hydrogen peroxide, ozone, hydrogen peroxide/ozone and Fenton's agents, (b) radiation methods such as UV irradiation, (c) combination of any one of (a) with any of (b), (d) heterogeneous photocatalysis using UV with semiconductor photocatalysis (Ray *et al.*, 2006). However, in this study, only heterogeneous photocatalysis will be focussed.

2.2 HETEROGENEOUS PHOTOCATALYSIS

Among AOPs, heterogeneous photocatalysis has recently gained importance in the area of wastewater treatment (Daneshvar *et al.*, 2003; Singh *et al.*, 2007; Wu *et al.*, 2009). The process is recognized as a promising new destructive technology that can lead to the total mineralization of most of the organic pollutants. Compared to other competing processes, heterogeneous photocatalysis has several advantages: (1) complete mineralization, (2) no waste disposal problem, (3) the reaction is inexpensive and (4) only mild temperature and pressure conditions are necessary (Chang *et al.*, 2000; Chang *et al.*, 2005).

In the heterogeneous photocatalysis, three components must be present in order for the reaction to take place: (1) an emitted photon (in the appropriate wavelength), (2) a semiconductor photocatalyst and (3) oxygen (Lasa *et al.*, 2006). The overall process can be divided into five independent steps: (1) diffusion of reactants to the surface of catalyst, (2) adsorption of reactants onto the surface, (3) reaction on the adsorbed phase, (4) desorption of products off the surface, and (5) removal of the product from the interfacial region (Pirkanniemi and Sillanp ää 2002).

During the photocatalytic process, it is usually starts with an illumination of a semiconductor photocatalyst with light of an appropriate wavelength. When a photon with an energy equal to or greater than the band gap energy (E_{bg}) of the photocatalyst reaches to the photocatalyst surface, a conduction band electron (e_{cb}) and valence band hole (h_{vb}^+) are generated (Hu *et al.*, 2003; Silva *et al.*, 2006). E_{bg} is defined as the difference between the filled valence band and the empty conduction band of the photocatalyst, in the order of a few electron volts (Lasa *et al.*, 2006). The band gap

energy and the corresponding radiation wavelength required for the excitation of various semiconductors are shown in Table 2.2.

Semiconductor	Band gap energy (eV)	Wavelength (nm)
SnO ₂	3.9	318
TiO ₂ (rutile)	3.0	413
TiO ₂ (anatase)	3.2	388
ZnO	3.2	388
WO ₃	2.8	443
Cds	2.5	516
Fe ₂ O ₃	2.3	539
GaAs	1.7	886
GaP	1.4	539

Table 2.2:Band gap energy and corresponding radiation wavelength required for
the excitation of several semiconductors (Robert, 2007).

If charge separation is maintained, both charge carriers are migrated to the photocatalyst surface where they participate in redox reactions. Generally, h_{vb}^+ is reacted with surface-bound H₂O or OH⁻, which is electron donor to produce •OH radicals while e_{cb}^- is picked up by electron acceptor such as oxygen to generate superoxide radical anions (O₂•⁻) (Tariq *et al.*, 2005). Both radicals are very reactive and strongly oxidizing, which capable of mineralizing most of the organic pollutants. The mechanism for the generation of the radicals is shown in Equation 2.4 to 2.6 (Shon *et al.*, 2005; Tariq *et al.*, 2005):

Photocatalyst + UV
$$\longrightarrow h_{vb}^{+} + e_{cb}^{-}$$
 (2.4)

$$h_{vb}^{+} + OH^{-} \longrightarrow OH$$
 (2.5)

$$e_{cb} + O_2 \longrightarrow O_2 \bullet^{-}$$
(2.6)

As the result, the carbon-containing pollutants are oxidized to carbon dioxide while the other elements bonded to the organic compounds are converted to anions such as nitrate, sulphate or chloride (Mukherjee and Ray, 1999). The list of organic pollutants that can be degraded by heterogeneous photocatalysis is shown in Table 2.3.

photocatal ysis.			
Class of organics	Examples	References	
Haloalkanes/haloalkenes	Chloroform,	Choi and Hoffman	
	trichloroethylene,	(1997); Cheung <i>et al.</i>	
	trichloromethane,	(1998); Lee et al. (2001);	
	tribromomethane, CCl ₄	Keshmiri et al. (2004)	
Aliphatic alcohols	Methanol, ethanol	Piera <i>et al.</i> (2002);	
		Nelson <i>et al.</i> (2007)	
Aliphatic carboxylic	Formic, citric	Kim and Anderson	
acids		(1996); Quici <i>et al.</i>	
		(2007)	
Aromatics	Toulene	Martra <i>et al.</i> (1999)	
Haloaromatics	2-chlorobiphenyl	Wang and Hong (2000)	
Phenolic compounds	Phenol, catechol	Matos et al. (1998); Li et	
		al. (2003); Tryba et al.	
		(2008)	
Halophenols	2,3-dichlorophenol, 4-	Alhakimi et al. (2003)	
	chlorophenol, 4-	Selvam <i>et al.</i> (2007);	
	flurophenol	Liang <i>et al</i> . (2008)	
Aromatic carboxylic	Malic, chlorobenzoic	Han et al. (2004); Danion	
acids	acids,	<i>et al.</i> (2007)	
Surfactants	Sodium lauryl sulfate,	Nam <i>et al.</i> (2009)	
Herbicides	Atrazine, alachlor	Wong and Chu (2003);	
		Parra et al. (2004); Jain et	
		al. (2009)	
Pesticides/fungicides	monocrotophos,	Topalov <i>et al.</i> (1999);	
	metalaxyl	Shankar et al., 2004	
Dyes	Congo red, methyl	Nam et al. (2002); Sun et	
	orange, C.I. Reactive Red	al. (2006); Wu (2008);	
	198, indole, orange G	Merabet et al. (2009b);	
		Sun <i>et al</i> . (2009)	

Table 2.3:List of aqueous organic pollutants degraded by heterogeneous
photocatalysis.

2.2.1 Titanium dioxide as photocatalyst

Although many semiconductors such as CdS, ZnO, Fe₂O₃ and WO₃ have been employed as the photocatalyst for environmental remediation, titanium dioxide (TiO₂) seems to be the most widely used photocatalyst because of its: (1) chemical stability, (2) robustness against photocorrosion, (3) low toxicity and (4) availability at low cost (Li *et al.*, 2005; Wang *et al.*, 2006).

TiO₂ is also known as titanium (IV) oxide or titania. The structure formula of the TiO₂ is O=Ti=O and its molecular mass is 79.87 g/mol. Melting point of the TiO₂ is 1870 $^{\circ}$ while its boiling point is 2972 $^{\circ}$ (Wikipedia). Besides, TiO₂ has three crystalline forms which are the anatase, rutile and brookite. Anatase and rutile are widely used in industrial applications, while the used of brookite is still rare due to its limited application (Thiruvenkatachari *et al.*, 2008). Crystal structures of anatase, rutile and brookite of TiO₂ are shown in Figure 2.1.

Figure 2.1: Crystal structure of anatase, rutile and brookite of TiO_2 (Coronado *et al.*, 2008).

From Table 2.2, rutile type of TiO_2 can absorb light of a wider range, which is slightly closer to visible light irradiation, it seem logical to assume rutile type is more suitable to be used as photocatalyst. Nevertheless, in reality, anatase type of TiO₂ is reported to exhibit a higher photocatalytic activity (Silva and Faria, 2009). One of the reasons is because the formation of anatase is favoured at lower temperature ($< 600^{\circ}$ C). The lower temperature led to a higher surface area and larger number of active sites for photocatalytic processes (Herrmann, 1999). Another reason is the difference in the energy structure between anatase and rutile as shown in Figure 2.2. In both types, the position of the valence band is similar, which are very low, meaning that, the resulting positive holes show sufficient oxidative power. On the other hand, the conduction band that positioned near the oxidation-reduction potential of the hydrogen shows that anatase is higher in the energy diagram, meaning that, the reducing power of the anatase type is stronger than rutile type. This is very important to drive the reaction for the reduction of molecular oxygen to O_2^{\bullet} radical anion, which is as important as the •OH radicals in degrading the organic pollutants (Sumita et al., 2002; Carp et al., 2004). Due to the difference in the position of conduction band and formation temperature, the anatase type exhibits higher overall photocatalytic activity than the rutile type.

Figure 2.2: Energy diagram for TiO_2 and relevant redox potentials (Mills and Hunte, 1997).

2.2.2 Titanium dioxide assisted photocatalysis

During the photocatalytic process, TiO₂ is activated under an irradiation of UV light and established a redox reaction in the aqueous solution. TiO₂ absorbs impinging photons with energies equal to or higher than its band gap, resulting an electron in the occupied valence band of the TiO₂ elevated to the unoccupied conduction band, leading to generation of conduction band electron (e_{cb}) and valence band hole (h_{vb}^+) (Alhakimi *et al.*, 2003; Fern ández *et al.*, 2004). The electron-hole generation in TiO₂ is very fast, usually in femtoseconds, is illustrated in Figure 2.3.

Figure 2.3: Schematic representation of the processes occurring in photocatalysis upon irradiation of TiO₂ (Koči *et al.*, 2008).

Subsequently, the separated electron and hole could follow several possible pathways. Migration of electrons and holes to the TiO₂ surface is followed by transfer of photogenerated electrons to adsorbed molecules or solvents. The electron transfer process is more efficient if the species are pre-adsorbed on the TiO₂ surface. While at the surface of TiO₂, electrons are donated to reduce an electron acceptor (pathway C). On the other hand, holes can migrate to the surface, where they can combine with electron from donor species to oxidize the donor species (pathway D) (Tariq *et al.*, 2005; Koči *et al.*, 2008). In competition with charge transfer to adsorbed species is electron and hole recombination. Recombination can occur in the volume and at the surface of TiO₂ (pathway B and pathway A) (Koči *et al.*, 2008).

Once the charge separation is maintained (pathways C and D), both charge carriers are migrated to the TiO_2 surface. Therefore, a series of reaction is generated in the TiO_2 assisted photocatalysis activity (Equations 2.7 to 2.16). Equation 2.7 represents the formation of the charge carriers upon the illumination of the TiO_2 . If

the generated charge carriers are not involved in any further reactions, they can quickly recombine (Robertson *et al.*, 2005).

$$\operatorname{TiO}_2 + hv \longrightarrow \operatorname{TiO}_2(e_{cb} + h_{vb}^+) \longrightarrow \operatorname{recombination}$$
(2.7)

Consequently, the photogenerated holes can react with water or OH⁻ group and oxidize them into •OH radicals. Relevant reactions for the hole trapping is expressed in Equation 2.8 and Equation 2.9 (Pirkanniemi and Sillanpää, 2002; Konstantinou and Albanis, 2004).

$$\operatorname{TiO}_{2}(h_{vb}^{+}) + \mathrm{H}_{2}\mathrm{O} \longrightarrow \operatorname{TiO}_{2} + \bullet\mathrm{OH} + \mathrm{H}^{+}$$

$$(2.8)$$

$$\operatorname{TiO}_2(h_{vb}^{+}) + \operatorname{OH}^{-} \longrightarrow \operatorname{TiO}_2 + \bullet \operatorname{OH}$$
 (2.9)

On the other hand, the photogenerated electrons can react with electron acceptor such as O_2 to form superoxide ions (Equation 2.10). Subsequently, a series of further reaction could occur to form •OH radicals (Equations 2.11 to Equation 2.15) (Litter, 1999; Pirkanniemi and Sillanp ää 2002).

$$\operatorname{TiO}_2(e_{cb}) + O_2 \longrightarrow \operatorname{TiO}_2 + O_2 \bullet^{-}$$

$$(2.10)$$

$$O_2 \bullet \cdot + H^+ \longrightarrow HO_2 \bullet$$
 (2.11)

$$2 \operatorname{HO}_{2^{\bullet}} \longrightarrow \operatorname{H}_{2}\operatorname{O}_{2} + \operatorname{O}_{2}$$

$$(2.12)$$

$$H_2O_2 + O_2 \bullet^{\bullet} \longrightarrow \bullet OH + O_2 + OH^{\bullet}$$
(2.13)

$$H_2O_2 + hv \longrightarrow 2 \bullet OH$$
 (2.14)

$$H_2O_2 + TiO_2 (e_{cb}) \longrightarrow TiO_2 + \bullet OH + OH^-$$
(2.15)

The resulting •OH radicals are very strong oxidizing agent which can oxidize the organic pollutants into less harmful compounds such as CO_2 and H_2O as expressed in Equation 2.16 (Gaya and Abdullah, 2008).

•OH + Pollutants +
$$O_2 \longrightarrow CO_2, H_2O$$
 (2.16)

2.3 NANOSIZED TITANIUM DIOXIDE

Since the photocatalytic processes is affected by adsorption of the substrate onto the surface of TiO₂, the size of the photocatalyst is important in photocatalytic process. Recent studies suggested that many of the issues involving wastewater treatment could be greatly improved using nanostructure catalyst (Jang *et al.*, 2001; Liu *et al.*, 2005; Wu *et al.*, 2005). In their review, Thiruvenkatachari *et al.* (2008) mentioned that the effect of particle size on the photocatalytic activity can be interpreted in term of surface area. Generally, the smaller the particle size of TiO₂, the larger the available surface area of TiO₂ and the higher the TiO₂ photocatalytic activity. They reported that the major advantage of nanosized TiO₂ was to provide a larger number of active sites located at the surface, leading to greater adsorbability of the pollutants on the TiO₂ surface.

Jang *et al.* (2001) had showed that greater photocatalytic activity can be achieved by nanosized TiO₂. In their study, they found that the photocatalytic degradation of methylene blue increased as the diameter of TiO₂ decreased from 30 nm to 15 nm. They explained that the surface area of TiO₂ highly correlated to the particle size. Higher photocatalytic activity can be obtained with higher surface area

for larger contact area between the photocatalyst and target material. While larger surface area can be obtained by decreasing the particle size of the photocatalyst.

Wu *et al.* (2005) studied the photocatalytic degradation of Mordant Yellow (MY) using mesoporous nanocrystalline TiO₂. Their results revealed that the photocatalytic activity of TiO₂ was related to their surface area and particle size. They noted that smaller particle size not only provided larger surface area but also shorten the route on which an electron from the conduction band of the photocatalyst migrated to its surface. Their works also explained that high surface area of TiO₂ can provide more active sites and adsorb more pollutant molecules.

Liu *et al.* (2005) investigated the photocatalytic degradation of Rhodamine B using Zn^{2+} -doped TiO₂ nanoparticle (Zn/TiO₂). They stated in their work that the particle size of TiO₂ was important to enhance the photocatalytic efficiency. Their results showed that Zn/TiO₂ with smaller particle size, about 10 nm, enhanced the photocatalytic activity greatly, compared to TiO₂ that has crystal size about 20-30 nm. They attributed this result by the fact that the smaller particle size would lead to the photocatalyst having larger surface area, which increase the adsorption of reactant and light, and thus improve the photocatalytic activity.

However, fine TiO_2 in nanometer sized limit its practical applications because of the additional separation processes required to recover the ultrafine catalyst at the end of the treatment. Therefore, attempts have been made to synthesize the immobilized nanosized catalyst on a diverse selection of supports.

2.4 SYNTHESIS OF IMMOBILIZED PHOTOCATALYST

The physical and chemical properties of immobilized TiO_2 especially its particle size are strongly related to the preparation methods. Basically, there are two types of preparation methods for preparing the immobilized TiO_2 :

1) Gas-phase methods:

- Chemical vapour deposition (CVD) (Gianluca *et al.*, 2008)
- Spray pyrolysis deposition (SPD) (Carp *et al.*, 2004)

2) Liquid-phase methods:

- Sol-gel method (Chin *et al.*, 2004)
- Hydrothermal method (Kang, 2002)

Both methods are competitive in producing the immobilized TiO₂. However, liquid-phase method usually found more convenient and appealing. Sol-gel and hydrothermal methods have been reported to be the most common liquid-phase method to produce the immobilized TiO₂ (Kang, 2002; Chin *et al.*, 2004; Choi *et al.*, 2006). Kang (2002) prepared TiO₂ immobilized on pyrex plate using sol-gel and hydrothermal methods. In their study, they found that both films prepared from sol-gel and hydrothermal methods were stably attached on the supports, except that some cracks were formed on the film attained from the sol-gel method. Furthermore, by analyzing the particle size distribution in colloidal solution attained from both methods, they discovered that TiO₂ particle prepared by hydrothermal method was ranged from 25 nm to 45 nm, whereas the sol-gel method gave a larger TiO₂ particle that ranged from 30 nm to 100 nm. Both immobilized TiO₂ were then tested in a

batch reactor for the degradation of paraquat. The results showed that the activity of immobilized TiO_2 prepared by hydrothermal method gave much higher degradation efficiency than the sol-gel method. They reported that immobilized TiO_2 prepared by the hydrothermal method gave 100 % of degradation at an irradiation time of 15 hours, while for immobilized TiO_2 prepared by the sol-gel method; only 90 % degradation of paraquat can be achieved at an irradiation time of 25 hours. Their work explained that the TiO_2 samples derived by sol-gel method were amorphous in nature, requiring further heat treatment at a high temperature to induce crystallization. The high temperature can give rise to small surface area, crystal growth and undesirable phase transformation from anatase to rutile, and consequently decreased the efficiency of photocatalytic degradation.

Yu *et al.* (2005) prepared TiO₂ nanocrystal using sol-gel and hydrothermal methods. They found that photocatalyst prepared by the sol-gel method gave a larger particle size compared to those prepared by the hydrothermal method. TiO₂ with larger particle size of 40 nm was obtained via calcination (sol-gel), whereas the TiO₂ with 5 nm particle size was obtained by hydrothermal treatment. Thus, development of process without the calcination step for crystallization may be more favourable.

2.5 HYDROTHERMAL METHOD

Hydrothermal is a method that has been widely applied in industrial processes for preparing ceramic samples (Byrappa and Adschiri, 2007). Recently, hydrothermal method is also known as one of the excellent processes that can be employed as an alternative to calcination for the preparation of TiO_2 in a nanocrystalline state (Kang, 2002; Kolen'ko *et al.*, 2003; Yu *et al.*, 2005). Using hydrothermal method to synthesize TiO_2 is advantageous, as no special equipment other than an autoclave is needed. Additionally, this method is environmental friendly because the reactions are carried out in a closed system (Yu *et al.*, 2005). The physiochemical properties of the prepared TiO_2 can be determined by controlling sol preparation parameters such as concentration and nature of precursor, hydrothermal temperature, experimental duration, pressure and pH of the solutions (Kim *et al.*, 2006). However, in this study, all the parameters were kept constant except the hydrothermal temperature.

Lu and Wen (2008) studied the effect of pH on the photocatalyst preparation in the pH range of 4.0 to 7.0. In their study, they found that the particle size of TiO_2 significantly depended on the pH value of the solution. Their results showed that the particle size of TiO_2 increased as the pH value of the solution increased. They explained that the pH of the solution determined the concentration of OH⁻ groups in the solution. As the pH increased, the concentration of OH⁻ groups joined with the Ti^{4+} complex center also increased. Through the dehydroxylation in the hydrothermal treatment, linkage between Ti-OH increased leading to an increase in the particle size of TiO_2 .

Yu *et al.* (2007b) prepared mesoporous TiO_2 at different hydrothermal temperature and duration. Their results showed that physiochemical properties of TiO_2 significantly influenced by hydrothermal temperature and duration. They noted that with increasing hydrothermal temperature or duration, the crystallinity and particle size of TiO_2 increased. In contrast, the surface area of TiO_2 steadily decreased. Furthermore, by analyzing the photocatalytic activity of prepared photocatalyst, they discovered that increasing hydrothermal temperature or duration.

increased the degradation efficiency. The best hydrothermal condition (180°C for 10 hours) was determined on the acetone degradation. They explained that the desirable crystallinity, particle size and surface area of the prepared photocatalyst, leading to the best enhancement during the degradation of acetone.

Wang *et al.* (2009b) studied the effect of hydrothermal temperature on TiO_2 preparation. In their study, they found that increasing the hydrothermal temperature increased the particle size and crystallinity, and thereby decreased the surface area of TiO_2 . Their results also showed that the degradation efficiency increased when the hydrothermal temperature increased. Maximum degradation efficiency was achieved at hydrothermal temperature of $180^{\circ}C$. They concluded that adequate crystallinity, particle size and surface area were responsible for the observed result.

2.6 SUPPORTS FOR IMMOBILIZATION

Various supports have already been proposed as catalyst support for the photocatalytic degradation of organic pollutants. These supports included glass (Fern ández *et al.*, 1995), quartz (Fern ández *et al.*, 1995; Lu *et al.*, 1999), stainless steel (Fern ández *et al.*, 1995; Shang *et al.*, 2003; Zhao *et al.*, 2007), cotton (Tryba, 2008), perlite (Na *et al.*, 2005; Hosseini *et al.*, 2007); zeolite (Ökte and Yilmaz, 2008; Mahalakshmi *et al.*, 2009); silica gel (Zhang *et al.*, 2006) and activated carbon (Liu *et al.*, 2007; Ao *et al.*, 2008; Sun *et al.*, 2009).

Studies with TiO_2 immobilized on several rigid supports were carried out by Fern ández *et al.* (1995) on photocatalytic degradation of malic acid. The supports that used in their study were glass, quartz and stainless steel. They reported that the