SINGLE NUCLEOTIDE POLYMORPHISMS (SNPs) OF ADIPONECTIN GENE AND ITS ASSOCIATION WITH SERUM ADIPONECTIN CONCENTRATION AND METABOLIC SYNDROME RISK FACTORS AMONG MALAY ADULTS

by

NUR FIRDAUS ISA

Thesis submitted in fulfillment of the requirements

for the degree of

Master of Science

August 2011

ACKNOWLEDGEMENT

Alhamdulillah. Praise to ALLAH the Almighty.

First and foremost I offer my sincerest gratitude to my supervisor Dr Hamid Jan Jan Mohamed and my co-supervisor Associate Professor Zafarina Zainuddin for giving me an opportunity to be their postgraduate student, for the countless guidance and encouragement throughout my laboratory works, and for the patience and knowledge they have shared in completing this thesis. Special thanks to Professor Wan Abdul Manan Wan Muda, the head of the research project for his invaluable helps.

I would like to express gratitude to Ministry of Science, Technology and Innovation, Malaysia (MOSTI) for my sponsorship through the National Science Fellowship (NSF), and Research University Postgraduate Research Grant Scheme (USM-RU-PRGS) for partially funded the study. Also thank you to the Bachok population, staff and postgraduate students of Central Research Lab (CRL), School of Medical Sciences and Nutrition and Forensic Sciences Programmes, School of Health Sciences, Universiti Sains Malaysia for providing me with the help throughout data collection and facilities for biochemical and SNP analysis. Also, I have been grateful and blessed with a cheerful group of fellow postgraduate students.

Last but not least, very special thanks to my parents Haji Isa and Hajjah Siti Halimah and lovely siblings; Fattah, Faizal, Fathihah, Farhan, Firzanah, Fathurrahman, and Farwizah; of whom without fail, have provided me something much greater in all these years, the love.

TABLE OF CONTENT

ACKNOWLEDGEMENTii			
TABLE OF CONTENT			iii
LIST O	LIST OF TABLES		
LIST O	F FIG	URES	. xi
LIST O	F ABI	BREVIATIONS	xv
ABSTR	RAK		vii
ABSTR	RACT.		kix
CHAPT	TER O	NE: INTRODUCTION	1
1.1	Gene	ral Introduction	. 1
1.2	Liter	ature Reviews	4
1.	.2.1	Metabolic Syndrome	4
1.	.2.2	Adipocytokines	7
1.	.2.3	Adiponectin	9
1.	.2.4	Adiponectin Gene	13
1.	.2.5	Association of Adiponectin, Adiponectin Gene and Metabolic Syndrome	16
1.3	Datio	-	
1.5 1.4		onale of the Study	
	.4.1		
		General Objectives	
	.4.2	Specific Objectives WO: MATERIALS AND METHODS	
		arch Methodology	
2.1			
	.1.1	Study Design	
	.1.2	Sample Size	
	.1.3	Inclusion and Exclusion Criteria	
2.2		etured Questionnaire	
2.3		bolic Syndrome Definition Tool	
2.4		icware	
	2.5 Instruments		
2.	.5.1	Pipettes	32

4	2.5.2	Centrifuge	32
	2.5.3	Vitalab Selectra E Chemistry Analyzer	33
	2.5.4	Tecan GENios [™] Microplate Reader	33
	2.5.5	GeneAmp [®] PCR System 9700 Thermal Cycler	33
	2.5.6	ABI PRISM 3130xl Genetic Analyzer	33
2.6	Field	1 Examination	34
	2.6.1	Blood Collection	34
4	2.6.2	Waist Circumference Measurement	34
	2.6.3	Blood Pressure Measurement	35
2.7	Prin	ciples and Materials for Biochemical Tests	35
	2.7.1	Principle of GOD-PAP Assay for Glucose	35
	2.7.2	Glucose Reagent Test Kit	36
	2.7.3	Principle of CHOL-PAP Assay for HDL Cholesterol	36
	2.7.4	HDL Cholesterol Reagent Test Kit	38
	2.7.5	Principle of GPO-PAP Assay for Triglycerides	38
	2.7.6	Triglycerides Reagent Test Kit	39
4	2.7.7	Principle of Enzyme-linked Immunosorbent Assay (ELISA) for Human Adiponectin	40
4	2.7.8	Human Adiponectin ELISA kit	41
2.8	Mate	erials for SNP Analysis	41
4	2.8.1	QIAamp DNA Blood Mini Kit	41
4	2.8.2	Polymerase Chain Reaction (PCR) Master Mix	42
4	2.8.3	Exonuclease I (Exo I)	42
4	2.8.4	Shrimp Alkaline Phosphatase (SAP)	42
4	2.8.5	ABI PRISM [®] SNaPshot TM Multiplex kit	43
2.9	Metl	hods for SNP Analysis	43
4	2.9.1	DNA Extraction	44
	2.9.2	Primer Design for Polymerase Chain Reaction (PCR)	45
	2.9.3	Polymerase Chain Reaction (PCR)	47
4	2.9.4	Agarose Gel Electrophoresis	47
4	2.9.5	Post Polymerase Chain Reaction (PCR) Treatment	49
4	2.9.6	Minisequencing Reaction	49

2.9.7	Thermal Cycling	51
2.9.8	Post-Extension Treatment	51
2.9.9	Principle of Capillary Electrophoresis	56
2.9.10	Capillary Electrophoresis of Minisequencing Product	57
2.10 Statis	stical Analyses	57
CHAPTER T	HREE: RESULTS	59
3.1 Labo	ratory Assays	59
3.1.1	Optimizations for Glucose, HDL Cholesterol and Triglycerides	59
3.1.2	Optimizations for Adiponectin Concentration	59
3.2 Socie	odemographic Characteristics	60
3.2.1	General Characteristics	60
3.2.2	Status of Metabolic Syndrome among the Subjects	60
3.2.3	Distribution of SNPs	61
3.3 SNP	Analyses	70
3.3.1	DNA Extraction	70
3.3.2	Amplification and Post-PCR of the DNA Templates	70
3.3.3	Capillary Electrophoresis of Size Standard and Controls	71
3.3.4	Singleplex Reaction of Minisequencing Product	80
3.3.5	Multiplex Reaction of Minisequencing Product	80
	ciation of Metabolic Syndrome, Adiponectin Concentration and e Nucleotide Polymorphisms	90
3.4.1	Association of Adiponectin Concentration with Metabolic Syndrome	90
3.4.2	Association of SNPs and Haplotypes with Adiponectin Concentration	
3.4.3	Association of SNPs and Haplotypes with Metabolic Syndrome	90
3.4.4	Mean Difference of Adiponectin Concentration Based on SNPs and Metabolic Syndrome	91
3.4.5	Association of Adiponectin Concentration with Metabolic Syndrome Risk Factors	91
3.4.6	Association of SNPs and Haplotypes with Metabolic Syndrome Risk Factors	100
3.4.7	Mean Difference of Adiponectin Concentration Based on SNPs and Metabolic Syndrome Risk Factors	105

CHAPTER FOUR: DISCUSSION1	10	
4.1 Adiponectin Concentration 1	10	
4.2 Status of Metabolic Syndrome Among the Subjects 1	10	
4.3 Analyses and Genotype Frequencies of SNPs 1	11	
4.4 Association Studies 1	16	
4.4.1 Association of Adiponectin Concentration with Metabolic Syndrome1	16	
4.4.2 Association of SNPs and Haplotypes with Adiponectin Concentration	16	
4.4.3 Association of SNPs and Haplotypes with Metabolic Syndrome 1	17	
4.4.4 Mean Difference of Adiponectin Concentration Based on SNPs and Metabolic Syndrome	18	
4.4.5 Association of Adiponectin Concentration with Metabolic Syndrome Risk Factors	19	
4.4.5 (a) Association of Adiponectin Concentration with Central Obesity	19	
4.4.5 (b) Association of Adiponectin Concentration with Hypertension	20	
4.4.5 (c) Association of Adiponectin Concentration with Hyperglycemia	22	
4.4.5 (d) Association of Adiponectin Concentration with Hypertriglyceridemia and Reduced HDL Cholesterol	23	
4.4.6 Association of SNPs and Haplotypes with Metabolic Syndrome Risk Factors	24	
4.4.6 (a) Association of SNPs and Haplotypes with Central Obesity 1	24	
4.4.6 (b) Association of SNPs and Haplotypes with Hypertriglyceridemia and Hyperglycemia		
4.4.6 (c) Association of SNPs and Haplotypes with Hypertension and Reduced HDL Cholesterol	27	
4.4.7 Mean Difference of Adiponectin Concentration Based on SNPs and Metabolic Syndrome Risk Factors	27	
4.5 Limitation of the Study	29	
4.6 Recommendation for Future Research	30	
CHAPTER FIVE: SUMMARY AND CONCLUSION		
REFERENCES1	33	
APPENDIX I	43	

APPENDIX II	
APPENDIX III	
APPENDIX IV	
APPENDIX V	
APPENDIX VI	
APPENDIX VII	
APPENDIX VIII	

LIST OF TABLES

Table 1	International Diabetes Federation definition of the metabolic
	syndrome (Zimmet <i>et al.</i> , 2005)
Table 2	Multimeric forms of adiponectin (Wiecek et al., 2007)11
Table 3	Amino acid changes introduced by respective SNPs in adiponectin
	gene
Table 4	The genetic variants and adiponectin or MS risk factors with the
	respective ethnic group that has been studied (Gu, 2009)23
Table 5	Primers used for the PCR reaction
Table 6	Reaction mixtures for PCR
Table 7	Reaction mixture for control reactions
Table 8	Primers used in minisequencing reaction53
Table 9	Reaction mixtures for singleplex reactions54
Table 10	Optimized reaction mixtures for multiplex reaction55
Table 11	Validation of biochemical assays against manufacturer's
	recommended calibrators and controls
Table 12	General characteristics of the study subjects (n=298)65
Table 13	Prevalence of risk factors and metabolic syndrome
Table 14	Genotype distribution of the selected SNPs of adiponectin gene in
	Malay adults (n=298)67
Table 15	Hardy-Weinberg Equilibrium (HWE) of the selected SNPs of
	adiponectin gene

Table 16	The recommended and observed mobility shift for positive control reactions
Table 17	The recommended and observed mobility shift for the minisequencing primers
Table 18	Association between SNPs and haplotypes with adiponectin concentration
Table 19	Association between SNPs and haplotypes with status of MS96
Table 20	Association between SNPs and haplotypes with the adjusted adiponectin concentration
Table 21	Association between the MS risk factors with the adiponectin concentration
Table 22	Association between SNP+276 with hypertriglyceridemia (n=298)
Table 23	Association between haplotype -11426/-11377 and status of hyperglycemia (n=298)104
Table 24	Association of adjusted adiponectin concentration on status of reduced HDL cholesterol and SNP-11426 107
Table 25	Association of adjusted adiponectin concentration on status of hpertriglyceridemia and haplotype -11426/+45 109
Table 26	Adiponectin concentration of Malay population and other populations
Table 27	Distribution of the genotype frequencies for SNP+45 and SNP+276 of the Malay population and other reported populations

Table 28	Distribution of the genotype frequencies for SNPs -11426, -11391 and -11377 of Malay population and other reported populations 115
Table 29	Association between SNPs and haplotypes with central obesity 154
Table 30	Association between SNPs and haplotypes with hypertension 155
Table 31	Association between SNPs and haplotypes with hyperglycemia156
Table 32	Association between SNPs and haplotypes with hypertriglyceridemia
Table 33	Association between SNPs and haplotypes with reduced HDL cholesterol
Table 34	Association of adiponectin concentration on status of central obesity (CO) and SNP or haplotypes
Table 35	Association of adiponectin concentration on status of hypertension (HT) and SNP or haplotypes160
Table 36	Association of adiponectin concentration on status of hyperglycemia (GL) and SNP or haplotypes161
Table 37	Association of adiponectin concentration on status of hypertriglyceridemia (TG) and SNP or haplotypes
Table 38	Association of adiponectin concentration on status of reduced HDL cholesterol (rHDL) and SNP or haplotypes

LIST OF FIGURES

Figure 1	Major adipokines secreted from white adipose tissue (Trayhurn <i>et al.</i> , 2006)
Figure 2	Anti-atherogenic and of insulin-sensitizing actions of adiponectin (Wiecek <i>et al.</i> , 2007)
Figure 3	Ideogram of chromosome 3 where adiponectin spanned on 3q27 (National Center for Biotechnology Information, 2008)
Figure 4	Organization of the adiponectin gene on chromosome 3 (Vasseur <i>et al.</i> , 2006)15
Figure 5	Flowchart showing an overview of the research methodology 27
Figure 6	Illustration map showing the study locations with no scale provided (Majlis Daerah Bachok, 2008)
Figure 7	Standard curve showing the optical density measured at 450 nm against the adiponectin concentration (ng/ml)
Figure 8	Histogram showing frequency distribution of adiponectin concentration
Figure 9	Linkage Disequilibrium (LD) plot for the selected SNPs of adiponectin gene
Figure 10	Agarose gel electrophoresis of the extracted genomic DNA. Electrophoresis was performed on 1.2 % agarose gel for 45 minutes at 80 V
Figure 11	Agarose gel electrophoresis of the amplified PCR products from two randomly selected subjects A and B. Electrophoresis was performed on 1.2 % agarose gel for 45 minutes at 80 V

Figure 12	Electropherogram showing the sequencing result of the amplified product using primer set F-34/R+404 (forward strand)74
Figure 13	Sequence alignment using BLAST showing that the amplified product of primer set F-34/R+404 is part of the human adiponectin precursor
Figure 14	Electropherogram of the GeneScan-120 LIZ size standard76
Figure 15	Electropherogram of the positive control reaction products along with GeneScan-120 LIZ size standard
Figure 16	Electropherogram of the negative control reaction showing negative amplification
Figure 17 (a)	Electropherogram showing minisequencing product of primer -11391. Blue peak indicates an addition of ddGTP to the minisequencing primer
Figure 17 (b)	Electropherogram showing minisequencing product of primer +276. Blue peak indicates an addition of ddGTP to the minisequencing primer
Figure 17 (c)	Electropherogram showing minisequencing product of primer -11426. Green peak indicates an addition of ddATP to the minisequencing primer
Figure 17 (d)	Electropherogram showing minisequencing product of primer +45. Red peak indicates an addition of ddTTP to the minisequencing primer
Figure 17 (e)	Electropherogram showing minisequencing product of primer R-11377 (a reverse primer). Blue peak indicates an addition of ddGTP to the minisequencing primer

Figure 18	Electropherogram showing the multiplex minisequencing products of
	five minisequencing primers for a randomly selected sample
Figure 19	Electropherogram showing the multiplex minisequencing products of
	five minisequencing primers for a randomly selected sample
Figure 20	Electropherogram showing the multiplex minisequencing products of
	five minisequencing primers for a randomly selected sample
Figure 21	The median (IqR) of adiponectin concentration among those with
	and without MS (Mann-Whitney U test)
Figure 22	The median (IqR) of adiponectin concentration by respective SNPs
	and haplotypes (Mann-Whitney U test)
Figure 23	Proportion of subjects having SNP-11426 based on status of MS
	(Chi-square test)
Figure 24	The median (IqR) of adiponectin concentration based on MS risk
	factors
Figure 25	Proportion of subjects having SNP+276 based on status of
	hypertriglyceridemia101
Figure 26	Proportion of subjects having haplotype -11426/-11377 based on
	status of hyperglycemia
Figure 27	Adjusted adiponectin concentration based on status of reduced HDL
	cholesterol and SNP-11426 106
Figure 28	Adiponectin concentration based on status of hypertriglyceridemia
	and haplotype -11426/+45 108
Figure 29	Histogram showing normal frequency distribution of (a) waist
	circumference, (b) systolic blood pressure, (c) diastolic blood

- Figure 32 Illustration on the association of SNPs and haplotypes with hypertension and adiponectin concentration in Malay adults 166
- Figure 33 Illustration on the association of SNPs and haplotypes with hyperglycemia and adiponectin concentration in Malay adults 167
- Figure 35 Illustration on the association of SNPs and haplotypes with reduced HDL cholesterol and adiponectin concentration in Malay adults .. 169

LIST OF ABBREVIATIONS

ATP III	National Cholesterol Education Program's Adult Treatment Program III
BAT	Brown adipose tissue
BLAST	Basic Local Alignment Search Tool
BMI	Body mass index
CI	Confidence interval
CV	Coefficient of variability
ddNTPs	Dideoxy nucleoside triphosphates
DNA	Deoxyribonucleic acid
EDTA	Ethylenediaminetetraacetic acid
EGIR	European Group for the Study of Insulin Resistance
ELISA	Enzyme-linked Immunosorbent Assay
Exo I	Exonuclease I
GOD	Glucose oxidase
H_2O_2	Hydrogen peroxide
HDL cholesterol	High-density lipoprotein cholesterol
HMW	High molecular weight
HPLC	High-performance liquid chromatography
HWE	Hardy-Weinberg equilibrium
IDF	International Diabetes Federation
IqR	Interquartile range

LD	Linkage disequilibrium
LDL	Low density lipoprotein
LMW	Low molecular weight
MAF	Minor allele frequency
MMW	Medium molecular weight
MS	Metabolic syndrome
NCBI	National Center for Biotechnology Information
OR	Odds ratios
PCR	Polymerase chain reaction
SAP	Shrimp Alkaline Phosphatase
SAT	Subcutaneous adipose tissue
QTL	Quantitative trait locus
SD	Standard deviation
SNPs	Single nucleotide polymorphisms
T2D	Type 2 diabetes
TBE	Tris-Borate-EDTA
VAT	Visceral adipose tissue
VSR	Visceral subcutaneous ratio
WAT	White adipose tissue
WHO	World Health Organization
WHR	Waist hip ratio

POLIMORFISME NUKLEOTIDA TUNGGAL PADA GEN ADIPONEKTIN DAN PERKAITANNYA DENGAN KEPEKATAN SERUM ADIPONEKTIN DAN FAKTOR-FAKTOR RISIKO SINDROM METABOLIK DALAM KALANGAN ORANG MELAYU DEWASA

ABSTRAK

Sindrom metabolik ialah kelompok faktor risiko yang termasuk keobesan di bahagian pinggang dan perut, hipertrigliseridemia, kolestrol HDL rendah, hipertensi, hiperglisemia. Bukti-bukti terkumpul menyokong hipotesis and bahawa hipoadiponektinemia meningkatkan lagi risiko terhadap penyakit metabolik. Antara yang menarik, sesetengah daripada polimorfisme biasa dalam bahagian promoter, exon dan intron 2 pada gen adiponektin manusia mempunyai kaitan dengan faktorfaktor risiko sindrom metabolik. Kajian ini bertujuan untuk menyiasat perkaitan antara beberapa polimorfisme nukleotida tunggal (SNPs) pada gen adiponektin dengan kepekatan adiponektin dan faktor-faktor risiko sindrom metabolik dalam kalangan orang Melayu dewasa. Seramai 298 orang Melayu dewasa yang terlibat di dalam kajian ini. Lilitan pinggang dan tekanan darah telah diukur sebelum darah diambil daripada subjek yang telah berpuasa semalaman. Ujian-ujian biokimia untuk paras trigliserida, kolestrol HDL dan glukosa dalam darah dijalankan dengan menggunakan alatan-alatan komersil. Kepekatan adiponektin plasma diukur menggunakan alatan Human Adiponectin ELISA. Sebanyak lima lokasi polimorfisme nukleotida tunggal pada gen adiponektin (SNPs -11426, -11391 dan -11377 pada bahagian proximal promoter dan SNPs +276 dan +45 pada bahagian

exon 2) telah disaring menggunakan kaedah minipenjujukan. Dapatan kajian ini menunjukkan bahawa kepekatan adiponektin pada subjek yang mempunyai sindrom metabolik lebih rendah berbanding dengan subjek yang tidak mempunyai sindrom metabolik (p < 0.05). Kepekatan adiponektin juga berkait rapat dengan hipertrigliseridemia (p < 0.001) dan paras rendah kolestrol HDL (p < 0.001). Tidak ada polimorfisme nukleotida tunggal atau haplotip yang menunjukkan perkaitan dengan kepekatan adiponektin. Hanya SNP-11426 yang mempunyai kaitan yang signifikan dengan sindrom metabolik (p < 0.05), manakala SNP+276 berkait rapat dengan hipertrigliseridemia (p < 0.05) dan haplotip -11426/-11377 mempunyai perkaitan dengan hiperglisemia (p < 0.05). Secara keseluruhannya, tidak ada interaksi yang signifikan dari segi statistic di antara status sindrom metabolik dan polimorfisme nukleotida tunggal atau haplotip dengan kepekatan adiponektin. Walau bagaimanapun, terdapat perkaitan yang signifikan antara kepekatan adiponektin dan status paras rendah kolestrol HDL dengan SNP-11426 (p < 0.05). Di samping itu, terdapat juga perkaitan yang signifikan antara kepekatan adiponektin dan haplotip -11426/+45 dengan hipertrigliseridemia (p < 0.05). Kesimpulannya, hipoadiponektin dan polimorfisme nukleotida tunggal dan haplotip pada gen adiponektin boleh menyumbang kepada perkembangan sindrom metabolik dan faktor-faktor risiko melalui mekanisma yang masih lagi tidak diketahui di dalam populasi Melayu.

SINGLE NUCLEOTIDE POLYMORPHISMS (SNPs) OF ADIPONECTIN GENE AND ITS ASSOCIATION WITH SERUM ADIPONECTIN CONCENTRATION AND METABOLIC SYNDROME RISK FACTORS AMONG MALAY ADULTS

ABSTRACT

Metabolic syndrome is a cluster of risk factors that include central obesity, hypertriglyceridaemia, reduced HDL cholesterol, hypertension, and hyperglycemia. Accumulating evidences support the hypothesis that hypoadiponectinemia, a type of adipokine, confer increased risk for metabolic diseases. Of interest, some of the common polymorphisms in the promoter region, exon and intron 2 of the human adiponectin gene are associated with risk factors of metabolic syndrome. The present study aims to investigate the association of several single nucleotide polymorphisms in the adiponectin gene with serum adiponectin concentration and metabolic syndrome risk factors among Malay adults. A total of 298 Malay adults were recruited in this study. Measurements for waist circumference and blood pressure were taken before drawing an overnight fasting blood. Biochemical tests for triglycerides, HDL cholesterol and glucose were carried out by using commercially available kits. Plasma adiponectin concentration was measured using Human Adiponectin ELISA kit. A total of five sites of single nucleotide polymorphisms in adiponectin gene (SNPs -11426, -11391 and -11377 at proximal promoter and SNPs +276 and +45 at exon 2 regions) were screened using minisequencing method. Findings from this study showed that the adiponectin concentration in the subjects

with MS was significantly lower than those without MS (p < 0.05). The adiponectin concentration was also significantly associated with only hypertriglyceridemia (p < 0.001) and reduced HDL cholesterol (p < 0.001). None of the studied SNPs or haplotypes showed any significant association with the adiponectin concentration. Moreover, only SNP-11426 was significantly associated with MS (p < 0.05), while SNP+276 was associated with hypertriglyceridemia (p < 0.05), and haplotype -11426/-11377 was associated with hyperglycemia (p < 0.05). Overall, there was no statistically significant interaction between the status of MS and SNPs or haplotypes with respect to the adiponectin concentration. However, there was a significant association between the adiponectin concentration and status of reduced HDL cholesterol with SNP-11426 (p < 0.05). Besides, a significant association was also observed in the adiponectin concentration and hypertriglyceridemia with haplotype -11426/+45 (p < 0.05). In conclusion, hypoadiponectinemia and SNPs and haplotypes of adiponectin gene may contribute to the development of metabolic syndrome and its risk factors, via unknown mechanisms in Malay population.

CHAPTER ONE: INTRODUCTION

1.1 General Introduction

Metabolic syndrome (MS) is an emerging public health problem throughout the world due to increase in the prevalence of the individual metabolic abnormalities *i.e* central obesity, hypertriglyceridaemia (the elevated serum triglyceride), reduced high-density lipoprotein cholesterol (HDL cholesterol), hypertension, and hyperglycemia (the elevated blood glucose levels) (Alberti et al., 2005). The rise of MS cases was shown to be in parallel with the prevalence of obesity (Grundy, 2008). A comprehensive overview on MS pandemic in the America, Europe and India indicates more than 20 % of the adult populations as having MS (Grundy, 2008). The prevalence of MS recorded was 22.2 % in Italy, 23.9 % in Portugal, 46 % in the Netherlands, 41.8 % in Greece, 37 % in Finland and Asians especially India was 41.1 %, Thailand was 12.8 %, China was 13.2 % and Japan was 14.9 % (Grundy, 2008). Across the Southeast Asia, there are several countries such as Singapore and Thailand that are actively involved in evaluating the MS. Tan et al. (2004) reported that in Singapore, the Asian Indian had the highest prevalence of MS followed by the Malays and Chinese (Tan et al., 2004). In contrast, a different study in Singapore suggested that Malay women were more likely to develop hypertension in association with insulin resistance, as compared to Chinese and Asian Indian (Ang et al., 2005). Moreover, hyperuricemia and elevated levels of liver enzymes, which were claimed to have association with MS, have been reported among Thai adults (Lohsoonthorn et al., 2006; Perera et al., 2008). Although Malaysia is still lacking of the representative data on MS, but the neighboring countries somehow reflect the condition of the syndrome herein as we govern the same major ethnics groups *i.e* Malays, Asian Indians and Chinese.

The mechanisms underlying MS are still not fully understood; however, accumulating studies have proposed an association between adiponectin; a type of adipokines with MS risk factors. Several studies have demonstrated low adiponectin concentration (hypoadiponectinemia) as a common denominator for the MS risk factors. The negative correlation between visceral adiposity and adiponectin concentration suggests that hypoadiponectinemia is related to central obesity (Matsuzawa, 2010; Ryo et al., 2004). Clinical reports have pointed out earlier that there are positive associations between the circulating adiponectin concentration with the HDL cholesterol and inverse association with triglycerides (Kazumi et al., 2004; Matsubara et al., 2002). In addition, lower concentrations of adiponectin were observed in individuals with hypertension (Adamczak et al., 2003; Iwashima et al., 2004) and type 2 diabetes (T2D) (Hotta et al., 2000; Lindsay et al., 2002). From these evidences, it can be seen that adiponectin is a potential biomarker for the MS and its risk factors. Moreover, researchers have suggested that adiponectin can be a promising therapeutic agent for MS and its risk factors. It was proposed that by increasing circulating adiponectin concentration or enhancing adiponectin signaling through its receptors could promisingly tackle the root that cause the MS (Zhu et al., 2008). Although the claims excited many researchers, a lot of future investigations are required to support the matter.

Despite the regulation of adiponectin expression in targeting MS which remains ambiguous, there has been growing interest in adiponectin gene that is deemed as potential genetic contributor to MS. Several studies have recently reported the genetic polymorphisms and linkages between adiponectin gene and MS. For instance, a genotype screening that was performed on 811 Hispanic individuals has demonstrated an association between genetic variations or single nucleotide polymorphisms (SNPs) in the adiponectin gene particularly in the promoter region with obesity, especially the visceral obesity (Sutton et al., 2005). However, the genetic variants of adiponectin and hypertriglyceridaemia and reduced HDL cholesterol were less explored and scantly reported (Yang & Chuang, 2006). A study to determine the possible effects of variation in adiponectin gene has shown that the mutant allele T of SNP+276 was associated with the elevated diastolic blood pressure whereas the wild-type allele T of SNP+45 demonstrated its protective role as it was associated with high HDL cholesterol levels (Mousavinasab et al., 2006). On the other hand, Zacharova et al. (2005) which aimed to investigate the selected SNPs of the adiponectin gene and T2D reported that mutant allele G of SNP+45 was a predictor for T2D (Zacharova et al., 2005).

Taking together, hypoadiponectinemia and genetic variants of adiponectin gene play an important role in the pathogenesis of MS. Studies on the influence of the different ethnic groups is crucial to promote in-depth understanding on the regulation of MS, adiponectin and adiponectin gene. In this context, this present study was designed to investigate the association of several SNPs in adiponectin gene with serum adiponectin concentration and MS risk factors among Malay adults.

1.2 Literature Reviews

1.2.1 Metabolic Syndrome

The MS has become one of the major public-health challenges worldwide. Grundy (2008) mentioned in his review that MS has a long history as early as 1923 when scientists began to notice the cluster of insulin resistance, hyperglycaemia, hypertension, low HDL cholesterol, and raised triglycerides as common risk factors for cardiovascular disease (Grundy, 2008). Since then, several names appeared to describe the cluster. Waine (2005) has reviewed previous studies on MS and summarized the names that have been used over the decades, such as the insulin resistance syndrome, plurimetabolic syndrome, dysmetabolic syndrome, and the deadly quartet (Waine, 2005). The term MS was first used by the World Health Organization (WHO) in 1998 which proposed a unifying definition for the syndrome by taking abnormal glucose tolerance as a core factor. A year later, European Group for the Study of Insulin Resistance (EGIR) came out with a modified version of the WHO recommendation (Zimmet et al., 2005). The National Cholesterol Education Program's Adult Treatment Program III (ATP III) in 2001 then clinically defined MS by proposing abdominal obesity, dyslipidemia, hypertension, insulin resistance and prothrombotic and inflammatory states as the key components (Gable et al., 2007). This was followed by the International Diabetes Federation (IDF) recommendations on 2005 (Zimmet et al., 2005) which prioritized ethnicity-specific waist circumference cut-off points as a measure for central obesity apart from other known risk factors. The IDF definition was constructed in such a way that it would rapidly identify individuals at risk without eliminating the ethnic factor. Due to its simplicity and appropriateness to our population, the IDF definition was used throughout the present study. Table 1 listed the criteria used for diagnosing MS by IDF definition. Note that throughout the thesis, hyperglycemia (excessive amount of glucose circulates in the blood plasma) and T2D (characterized by hyperglycemia and caused by insufficient insulin production to regulate the circulating glucose) (Sheng & Yang, 2008) were used interchangeably.

Moreover, Lahiry *et al*, (2008) has described that the concept of MS helped to emphasize on the risk of vascular disease related to central obesity and previously overlooked biomarkers such as serum triglycerides (Lahiry *et al.*, 2008). Intense studies devoted to understand the MS risk factors especially the central obesity, adipose tissue and adipokines have eventually lead the scientists to the discovery of the adiponectin; a type of adipose-specific serum protein.

No	Risk Factors	Measurement	Sex	Readings			
1		Waist circumference ¹	Men	\ge 90 cm			
1.	Central obesity	waist circumference	Women	\geq 80 cm			
		Plus any 2 of the followir	ng				
		Systolic blood pressure /					
		Diastolic blood pressure		> 120/05			
2.	Hypertension	(or received treatment of	Both	≥ 130/85			
			mmHg				
		hypertension)					
			\geq 5.6 mmol/L				
3.	Hyperglycemia	Both	\geq 5.0 mmol/L (100 mg/dL)				
		type 2 diabetes)		(100 mg/uL)			
			Men	<1.0 mmol/L			
4.	Reduced HDL	HDL cholesterol	Men	(40 mg/dL)			
	cholesterol ²	(or specific treatment for	Warnan	<1.3 mmol/L			
		this lipid abnormality)	Women	(50 mg/dL)			
		Triglycerides					
5.	Hypertriglyceridemia	(or specific treatment for	Both	\geq 1.7 mmol/L (150 mg/dL)			
		this lipid abnormality)		(150 mg/dL)			

Table 1International Diabetes Federation definition of the metabolic
syndrome (Zimmet *et al.*, 2005)

¹Following the ethnic-specific measurement of South Asian; ²HDL cholesterol: high-density lipoprotein cholesterol.

1.2.2 Adipocytokines

Adipose tissue has been considered as an active endocrine due to the production of vital hormones called adipocytokines (also known as adipokines) which significantly involved in the regulation of body's homeostasis (Koerner et al., 2005). There are two types of adipose tissue *i.e* the brown adipose tissue (BAT) and white adipose tissue (WAT) (Gu, 2009). BAT mainly involves in generating the heat by triggering the combustion of lipids and glucose in the tissue (Cannon & Nedergaard, 2004). On the other hand, WAT is of interest due to its role as the primary site in producing the most important adipocytokines such as adiponectin, leptin, zinc-a2-glycoprotein (ZAG), various interleukins, transforming growth factor- β (TGF- β), monocyte chemoattractant protein-1 (MCP-1), vascular endothelial growth factor (VEGF), nerve growth factor (NGF), tumor necrosis factor- α (TNF- α), and plasminogen activator inhibitor-1 (PAI-1) (Figure 1) (Trayhurn et al., 2006). Leptin, for instance, has been investigated for its role in energy homeostasis, glucose and lipid metabolism, and immune and neuroendocrine function (Ahima, 2006), while the interleukins have been emphasized as markers for inflammation (Trayhurn et al., 2006).

The WAT is mainly located in the subcutaneous region and viscera, hence closely associated with the pathogenesis of obesity-related disorders (Ahima, 2006). The adiponectin that is abundantly secreted by WAT has received much attention due to its protective role against the obesity-related diseases (Gu, 2009; Koerner *et al.*, 2005).

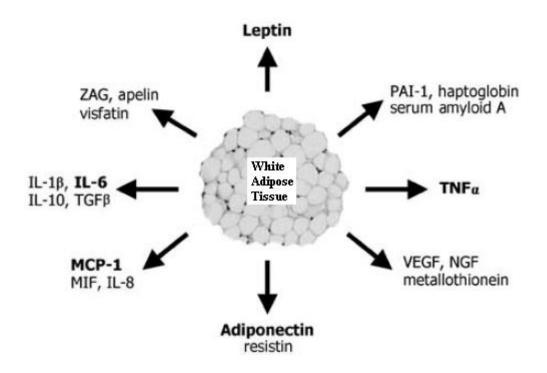


Figure 1 Major adipokines secreted from white adipose tissue (Trayhurn *et al.*, 2006)

Note:

IL-1β	Interleukins 1β
IL-6	Interleukins 6
IL-8	Interleukins 8
IL-10	Interleukins 10
MCP-1	Monocyte chemoattractant protein-1
MIF	Macrophage migration inhibitory factor
NGF	Nerve growth factor
PAI-1	Plasminogen activator inhibitor-1
TGF-β	Transforming growth factor-β
TNF-α	Tumor necrosis factor-a
VEGF	Vascular endothelial growth factor
ZAG	Zinc-α2-glycoprotein

1.2.3 Adiponectin

Various adipocyte-derived secretory proteins have been increasingly linked to MS. Adiponectin, another type of adipokines recently attracts much attention among scientists. It is a hormone extensively secreted by adipocytes, expressed inversely to total fat (Comuzzie *et al.*, 2001) and acted as anti-diabetic, anti-inflammatory and anti-atherogenic agents (Broedl *et al.*, 2006). Adiponectin belongs to the complement 1q family and comprises four domains; an amino-terminal collagen-like sequence, a variable region, a collagenous domain and a carboxy-terminal globular domain (Garaulet *et al.*, 2007; Kadowaki & Yamauchi, 2005). This protein is constructed by 244 amino acids with a molecular weight of 26,414 Da and typically exists in three forms; low molecular weight (LMW) hexamers, medium molecular weight (MMW) and high molecular weight (HMW) multimeric structures (Gu, 2009; Kadowaki & Yamauchi, 2005). Adiponectin can be found extensively in serum ranging from 5 to 30 µgml⁻¹ (Garaulet *et al.*, 2007). Table 2 represents the variety of multimeric forms of adiponectin.

This hormone was reported to function in two ways; 1) anti-atherosclerotic actions and 2) insulin-sensitizing actions, through a number of mechanisms. As shown in Figure 2, Wiecek *et al.* (2007) in a review paper on adiponectin has summarized the anti-atherogenic actions of adiponectin that suppresses the production of tumour necrosis factor- α (TNF- α), modulates biological actions of growth factors by binding with platelet-derived growth factor BB (PDGF-BB), basic fibroblast growth factor (FGF), and heparin-binding epidermal growth factor-like

growth factor (HB EGF), reduces accumulation of lipids in human monocyte-derived macrophages, inhibits transformation of macrophages into foam cells by down-regulating scavenger receptors, suppresses superoxide generation, decreases the expression of adhesion molecules (VCAM-1; ICAM-1, E-selectin), increases expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) in infiltrating macrophages, and last but not least increases activity of endothelial nitric oxide (NO) synthase (Wiecek *et al.*, 2007). Figure 2 summarizes the insulin-sensitizing action of adiponectin which stimulates glucose utilization and fatty acid oxidation in skeletal muscles and in the liver, enhances insulin signalling in skeletal muscle, facilitates glucose uptake and suppresses gluconeogenesis in the liver (Wiecek *et al.*, 2007). This mechanism of actions of adiponectin ultimately results in increasing insulin sensitivity and suppression of atherosclerosis (Kadowaki & Yamauchi, 2005). Since this type of protein characterizes a number of metabolic derangements, it is crucial to have insights into its molecular level.

Structures	Multimeric Forms	Molecular Weight
Ŷ	Globular C-terminal domain fragments	None
Quan	Monomer	
	Trimer	Low Molecular Weight (LMW)
S-Station	Hexamer	Medium Molecular Weight (MMW)
	12-mers	High Molecular Weight
ONWHAT SOUTHING	18-mers	(HMW)

Table 2Multimeric forms of adiponectin (Wiecek *et al.*, 2007)

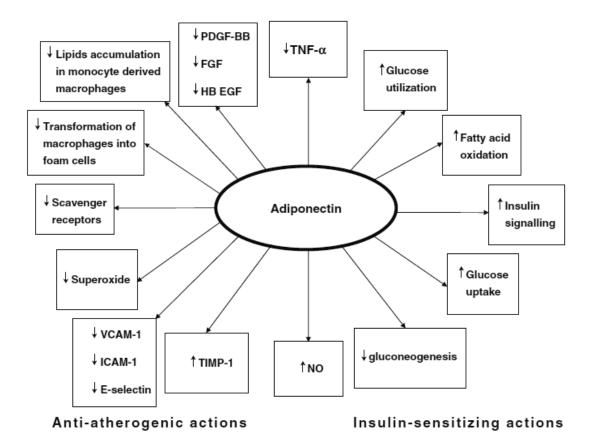


Figure 2 Anti-atherogenic and of insulin-sensitizing actions of adiponectin (Wiecek *et al.*, 2007)

Note:

FGF	Fibroblast growth factor
HB EGF	Heparin-binding epidermal growth factor
ICAM-1	Intercellular adhesion molecule-1
NO	Nitric oxide
PDGF-BB	Platelet-derived growth factor BB
TIMP-1	Tissue inhibitor of metalloproteinase-1
TNF- α	Tumour necrosis factor-a
VCAM-1	Vascular cell adhesion molecule-1

1.2.4 Adiponectin Gene

Despite of extensive studies correlating environmental factors such as high fat diet and physical inactivity with the pathogenesis of MS, there is also strong evidence showing that the syndrome is possibly inheritable (Lyssenko *et al.*, 2008). Groop (2000) listed possible genes which are associated with fat and glucose metabolism such as genes for leptin/leptin receptor, β_2 - and β_3 - adrenergic receptors, lipases, TNF- α , PPAR- γ , glycoprotein PC-1, IRS-1 and lycogen synthase (Groop, 2000). Apart from these genes, there is an increase of interest among scientists to focus more onto adiponectin gene recently.

The 16-kb structural gene, which has been mapped to chromosome 3 (3q27) in the human *APM1/ACDC/ADIPOQ* gene, encodes the protein product adiponectin (Comuzzie *et al.*, 2001). This particular region of chromosome 3 (Accession ID D45371) has also been found to contain a quantitative trait locus (QTL) with a strong influence on phenotypes of the MS (Kissebah *et al.*, 2000). The adiponectin gene contains three exons and two introns (Gable *et al.*, 2006; Gable *et al.*, 2007; Kadowaki & Yamauchi, 2005). Exon 1 and 2 are 76 and 222 bp, respectively, with 10.3 kb of intron 1 lies in between them while exon 3 is approximately 4.28 kb. The translation starts at exon 2 and ends at exon 3, leaving exon 1 and part of exon 3 untranslated (Takahashi *et al.*, 2000). Figure 3 and 4 show the ideogram and genomic organization of the adiponectin gene, respectively.

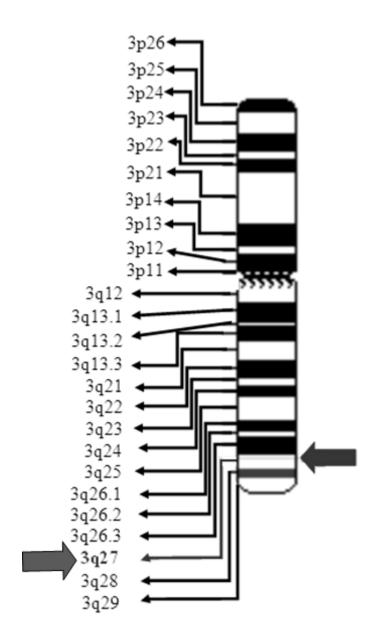


Figure 3 Ideogram of chromosome 3 where adiponectin spanned on 3q27 (National Center for Biotechnology Information, 2008)

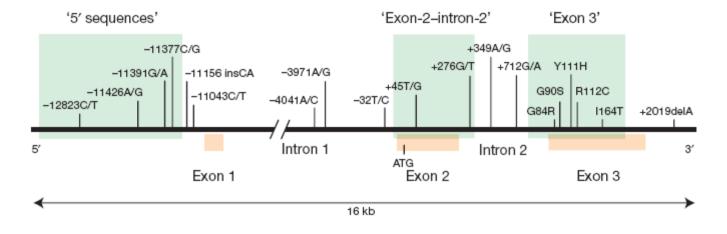


Figure 4 Organization of the adiponectin gene on chromosome 3 (Vasseur *et al.*, 2006)

1.2.5 Association of Adiponectin, Adiponectin Gene and Metabolic Syndrome

The discovery of adiponectin back in 1995 (Scherer *et al.*, 1995) did not receive major attention in the scientific community for the next few years until its markedly protective role in the pathogenesis of obesity-related disorders was acknowledged in the new millennium. Yang and Chuang (2006) in their review article on human genetics of adiponectin in the MS claimed that this adipose-derived serum protein is an important biomarker for MS.

The human genetic studies not only allow scientists to have an insight into various SNPs and genetic make-up of adiponectin, but also provide information and strong evidence to support the fact that this gene is one of the contributing factors to MS (Yang *et al.*, 2007). Studies demonstrated that serum adiponectin concentration is significantly low in subjects with obesity, insulin resistance, MS, T2D, and coronary heart disease (Broedl *et al.*, 2006; Yang & Chuang, 2006; Yang *et al.*, 2007). Scientists also found a number of variants of SNPs and missense mutations in European, North American and Japanese populations that are closely linked to the MS risk factors (Broedl *et al.*, 2006; Gable *et al.*, 2006). However, the association of adiponectin genetic variations with dyslipidemia and blood pressure was poorly explored (Yang & Chuang, 2006).

Three regions that are closely linked to MS have been identified on the highly polymorphic adiponectin gene; 1) the 5' sequences; 2) the intron 2-exon 2 region, and 3) exon 3 (Vasseur *et al.*, 2006). This is supported by Gable *et al.* (2007) which claimed that the promoter variants -11391G>A and -11377C>G, +45T>G variant of

exon 2 and +276G>T variant of intron 2 are the most widely studied; all mentioned variants were selected in this present study. Yang and Chuang (2006) also agreed with the fact that promoter region, exon and intron 2, and the rare non-synonymous mutations in exon 3 harbor a number of common polymorphisms across different ethnic population (Yang & Chuang, 2006). When these polymorphisms were translated, all the mentioned SNPs excluding the -11391G>A introduced changes to the amino acid (Table 3).

Various studies demonstrated that SNP+276 is associated with increased risk of T2D, higher insulin resistance index, lower adiponectin concentration, cardiovascular disease risk, higher BMI, higher glucose level and obesity (Filippi *et al.*, 2004; Hara *et al.*, 2002; Jang *et al.*, 2006; Ukkola *et al.*, 2003; Xita *et al.*, 2005; Yang *et al.*, 2007). Kadowaki and Yamauchi (2005) addressed that SNP+276 as one of the factors in reducing adiponectin concentration and in turn promote the development of insulin resistance, MS and atherosclerosis (Kadowaki & Yamauchi, 2005).

Haplotype of a variant with other variants perhaps doubled the effect on MS susceptibility. The haplotype +276/+45 was the most common haplotype studied that linked with higher body weight, waist circumference, blood pressure, HDL cholesterol/total cholesterol ratio, lower serum adiponectin and higher risk of T2D (Gable *et al.*, 2006). SNP+45, located in exon 2 is a silent mutation which could possibly alter a putative enhancer or silencer of splicing (Vasseur *et al.*, 2003). On the other hand, SNP+276 is located in intronic region (intron 2) which is well

documented as non-coding region. However, studies have proposed that unknown mechanism(s) of these intronic SNPs perhaps involved in the expression level of the adiponectin gene that ultimately cause the development of MS (Hara *et al.*, 2002; Jang *et al.*, 2006).

Moreover, a study on French Caucasian population disclosed association between SNP-11391 and SNP-11377 with serum adiponectin concentration and diabetic status (Vasseur *et al.*, 2003). The SNP-11391 was also associated with hypoadiponectinemia in Amish (people devoted to Christian living in Canada or United States) and Swedish population while SNP-11377 was associated with T2D in Japanese population. SNP-11426 has been shown to be associated with variation in insulin sensitivity in French and Swedish population (Gable *et al.*, 2006). Gu (2009) has summarized SNPs of adiponectin gene that have been associated with MS risk factors in various ethnic populations as shown in Table 4 (Gu, 2009).

Although the genetic variation in 5' sequences has not yet been defined to cause the development of MS, but these variants were shown to be associated with adverse metabolic features. Furthermore, SNPs in adiponectin gene have been demonstrated to contribute to hypoadiponectinemia, decreased insulin sensitivity and T2D in several populations. Therefore, these SNPs are thought to either modulate the expression of the adiponectin gene or in linkage disequilibrium with functional variants to modulate the expression of the gene (Vimaleswaran *et al.*, 2008). There are several other variants contributing to the MS, with some probably still unknown. Thus, in depth investigations are crucial to precisely determine which variant(s) leads

a significant role to the risk of MS. Taken all the consideration from previous studies as a whole, therefore the presence of SNPs +45, +276, -11426, -11391 and -11377 were shown to be worthy predictors to indicate the characteristics of MS in Malay population.

SNP	Nucleotide							A	mino	Acid	Sequ	ence						
		91	TTG	CTG	GGA	GCT	GTT	CTA	CTG	СТА	TTA	GCT	CTG	CCC	$GG\mathbf{T}$	CAT	GAC	135
		31	Leu	Leu	Gly	Ala	Val	Leu	Leu	Leu	Leu	Ala	Leu	Pro	Gly	His	Asp	45
	Т																	
		136	CAG	GAA	ACC	ACG	ACT	CAA	GGG	CCC	GGA	GTC	CTG	CTT	CCC	CTG	CCC	180
		46	Gln	Glu	Thr	Thr	Thr	Gln	Gly	Pro	Gly	Val	Leu	Leu	Pro	Leu	Pro	60
+45T>G		91	TTG	CTG	GGA	GCT	GTT	СТА	CTG	СТА	TTA	GCT	CTG	CCC	$GG\mathbf{G}$	CAT	GAC	135
+431>0		31	Leu	Leu	Gly	Ala	Val	Leu	Leu	Leu	Leu	Ala	Leu	Pro	Gly	His	Asp	45
	G																	
		136	CAG	GAA	ACC	ACG	ACT	CAA	GGG	CCC	GGA	GTC	CTG	CTT	CCC	CTG	CCC	180
		46	Gln	Glu	Thr	Thr	Thr	Gln	Gly	Pro	Gly	Val	Leu	Leu	Pro	Leu	Pro	60
	Note: The sir	igle nucl	leotide	chan	ge fro	om T t	to G a	t SNI	P+45 d	does r	not alt	er the	amin	no acio	d in th	ne pro	tein ch	ain.
		586	ATG	AAG	GAT	GTG	AAG	\mathbf{G} TC	AGC	CTC	TTC	AAG	AAG	GAC	AAG	GCT	ATG	630
		196	Met	Lys	Asp	Val	Lys	Val	Ser	Leu	Phe	Lys	Lys	Asp	Lys	Ala	Met	210
	G																	
		631	CTC	TTC	ACC	TAT	GAT	CAG	TAC	CAG	GAA	AAT	AAT	GTG	GAC	CAG	GCC	675
		211	Leu	Phe	Thr	Tyr	Asp	Gln	Tyr	Gln	Glu	Asn	Asn	Val	Asp	Gln	Ala	225
		586	ATG	AAG	GAT	GTG	AAG	TC	AGC	CTC	TTC	AAG	AAG	GAC	AAG	GCT	ATG	630
		196	Met	Lys	Asp	Val	Lys	Phe	Ser	Leu	Phe	Lys	Lys	Asp	Lys	Ala	Met	210
+276G>T	Т																	
		631	CTC	TTC	ACC	TAT	GAT	CAG	TAC	CAG	GAA	AAT	AAT	GTG	GAC	CAG	GCC	675
		211	Leu	Phe	Thr	Tyr	Asp	Gln	Tyr	Gln	Glu	Asn	Asn	Val	Asp	Gln	Ala	225
	Note: The sir	igle nucl	leotide	chan	ge fro	om G	to T a	t SNF	P +276	alter	s the a	amino	acid	from	valin	e to p	henyla	lanine in
	the protein ch	nain.																

Table 3Amino acid changes introduced by respective SNPs in adiponectin gene

		2746	TAG	TAA	AGA	CAG	GGT	TTC	ACC	ATA	TTG	GCC	AGG	CTG	GTC	TCG	AAC	2790
		916	End	End	Arg	Gln	Gly	Phe	Thr	Ile	Leu	Ala	Arg	Leu	Val	Ser	Asn	930
	А																	
		2791	TCC	TGA	CCT	TGT	GAT	CTG	CCC	GCC	TCC	ATT	TTT	GTT	GTT	ATT	TTT	2835
		931	Ser	End	Pro	Cys	Asp	Leu	Pro	Ala	Ser	Ile	Phe	Val	Val	Ile	Phe	945
		2746	TAG	TAA	AGA	CAG	GGT	TTC	ACC	ATA	TTG	GCC	AGG	CTG	GTC	TCG	A G C	2790
		916	End	End	Arg	Gln	Gly	Phe	Thr	Ile	Leu	Ala	Arg	Leu	Val	Ser	Ser	930
+11426A>G	G																	
		2791	TCC	TGA	CCT	TGT	GAT	CTG	CCC	GCC	TCC	ATT	TTT	GTT	GTT	ATT	TTT	2835
		931	Ser	End	Pro	Cys	Asp	Leu	Pro	Ala	Ser	Ile	Phe	Val	Val	Ile	Phe	945
	Note: The sir	ngle nucl	eotide	chan	ge fro	m A	to G a	at SNI	P+114	426 al	ters tl	he am	ino ac	cid fro	om as	parag	ine to s	serine in
					C													
	the protein cl	nain.																
		3151	GTT	TCC	CTC	CCG	ATA	TCA	AAA	AGA	CTG	TGG	CCT	GCC	CAG	CTC	TC G	3195
		1051	Val	Ser	Leu	Pro	Ile	Ser	Lys	Arg	Leu	Trp	Pro	Ala	Gln	Leu	Ser	1065
	G																	
		3196	TAT	CCC	CAA	GCC	ACA	CCA	TCT	GGC	TAA	ATG	GAC	ATC	ATG	TTT	TCT	3240
		1066				Ala												1080
		3151	GTT	TCC	CTC	CCG	ATA	TCA	AAA	AGA	CTG	TGG	CCT	GCC	CAG	CTC	TC A	3195
-11391G>A		1051	Val	Ser	Leu	Pro	Ile	Ser	Lys	Arg	Leu	Trp	Pro	Ala	Gln	Leu	Ser	1065
	A																	
		3196	TAT	CCC	CAA	GCC	ACA	CCA	TCT	GGC	TAA	ATG	GAC	ATC	ATG	TTT	TCT	3240
		1066	Tyr	Pro	Gln	Ala	Thr	Pro	Ser	Gly	End	Met	Asp	Ile	Met	Phe	Ser	1080
	Note: The sir	nole nucl	eotide	chan	ge fro	m G	to A :	at SNI	2.113	91 do	es no	t alter	the a	mino	acid	in the	protei	n chain
		1510 Huel	conuc	, chull	50 m	un O			. 115	>1 u 0	05 110	i unoi	ine a		ueru		PIOLOI	i viiuiii.

		1396 466														<u>C</u> AC His		1440 480
	С				-		-	2					-				-	
		1441 481														CTC Leu		1485 495
ŀ		1396							-							GAC		1440
-11377C>G	C	466														Asp		480
-113//C>0	G					_ ~ _		~	_ ~ -	~ ~ ~				~		~ - ~	~	1 4 0 5
		1441 481	-	-		-	-	-	-		-	-		-		CTC	-	1485 495
		401	Ser	TIIT	Ser	Ser	туг	Leu	Cys	PIO	Pile	Ser	Cys	Leu	Ser	Leu	GIII	495
	Note: The sir	igle nucl	eotide	chan	ge fro	om C	to G a	t SNI	P-113	77 alt	ers th	e ami	no ac	id fro	m his	tidine	to aspa	rtic acid
	in the protein	chain.																
	_																	

\

SNP	Adiponectin or MS Risk Factors	Ethnic Group
	Adiponectin concentration	Japanese, Chinese
+45	Type 2 diabetes	Korean, Italian, Quebec family study
	Obesity	Swedish, Finnish
	Adiponectin concentration	European Caucasians
+276	Type 2 diabetes	Japanese, Italian, German
	Obesity	Chinese, Korean
	Adiponectin concentration	French Caucasians
-11377	Type 2 diabetes	Swedish, Danish
	Obesity	German, Italian
	Adiponectin concentration	French Caucasians
-11391	Type 2 diabetes	UK Caucasian women
	Obesity	German, Italian
-11426	Adiponectin concentration	French Caucasians, Swedish,
11720	Type 2 diabetes	European Caucasians

Table 4The genetic variants and adiponectin or MS risk factors with the
respective ethnic group that has been studied (Gu, 2009)

1.3 Rationale of the Study

In regards to the gradual increase in prevalence of MS risk factors, Song *et al.* (2006) have pointed out the needs to identify susceptibility genes of MS and its mechanism of actions, which may enable the investigators to design preventive strategies and targeted treatments (Song *et al.*, 2006). To date, there is still lack of nationally representative figures on occurrence and association of adiponectin and MS among Malay adults in Malaysia, let alone their association with the polymorphisms.

Human genetic epidemiological studies on adiponectin and parameters of MS would be helpful to understand the molecular mechanisms involved in regulating metabolism susceptibility hence protect against the development of metabolic diseases. Moreover, metabolic diseases appear to be varied across different population and ethnicity. As the ethnic differences strongly suggest a genetic component in the pathogenesis of metabolic syndrome (Song *et al.*, 2006), therefore, this study perhaps will provide an insight on the underlying causes to prevent or reduce the long-term risks for MS among Malay population.

1.4 Objectives

1.4.1 General Objectives

To investigate the association of the selected SNPs in adiponectin gene with serum adiponectin concentration and MS risk factors among Malay adults.

1.4.2 Specific Objectives

1. To determine the prevalence of SNPs +45, +276, -11426, -11391 and -11377 of the adiponectin gene among Malay adults.

2. To investigate the association between serum adiponectin concentration with the MS and MS risk factors.

3. To investigate the association between the selected SNPs and haplotypes with serum adiponectin concentration.

4. To investigate the association between the selected SNPs and haplotypes with the MS and MS risk factors.