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PENYELIDIKAN ESTRAKAN PROTEIN DARIPADA DAUN PIPER 

SARMENTOSUM 

 

ABSTRAK 

 

 Suatu kajian proteomik berdasarkan penggunaan gel telah berjaya diusahakan ke 

atas tisu daun P. sarmensotum. Suatu kaedah pengekstrakan protein yang dikenali 

sebagai pengesktrakan kesemua protein diikuti dengan pengendapan trikloroacetik asid 

(TCA)/ aseton telah digunakan dan telah dibuktikan menghasilkan ekstrak tisu daun 

yang berkualiti tinggi dan serasi dengan pemisahan dua-dimensi elektroforesis gel. Profil 

protein tisu daun P. sarmenstosum telah menghasilkan sejumlah 242 tompok protein dan 

seterusnya 283 protein telah dikenalpasti dengan menggunakan analisa LCMS/MS. 

Kebanyakan protein ini adalah terlibat dalam metabolisme dan protein-protein yang 

berkaitan dengan destinasi dan simpanan protein, tenaga dan pengangkutan, pertahanan 

dan tekanan. Dalam analisis komparatif (perbandingan) proteomic ke atas daun muda 

dan dewasa yang diperolehi dari tujuh tempat yang berbeza, 84 tompok protein telah 

dikesan dalam semua duan ekstrak samada daripada daun muda, daun dewasa mahupun 

kawasan geografi. Daripada 84 tompok protein, 21 tompok protein masing-masing 

daripada daun muda dan dewasa telah dikenalpasti sebagai protein ekspresi berbeza di 

mana perbezaan antara keamatan tompok tertinggi dan tompok terendah dari tujuh 

tempat yang berlainan adalah sebanyak 2 kali ganda. Tambahan lagi, 4 tompok protein 

telah dikesan sebagai tompok unik dan 21 tompok protein dikesan sebagai tompok tak 

teratur. Secara keseluruhannya, pemetaan proteome tisu daun P. sarmentosum telah 
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berjaya mendedahkan komposisi protein dalam tisu daun P. sarmentosum, suatu 

tanaman herbal yang nilai ubatannya terkandung dalam daun. 
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ANALYSIS OF PROTEINS EXTRACTED FROM THE LEAVES OF PIPER 

SARMENTOSUM 

 

ABSTRACT 

 

 A gel based proteomic method has been developed for the leaf tissues of P. 

sarmentosum. A suitable protein extraction method termed as total protein extraction 

followed by trichloroacetic acid (TCA)/acetone precipitation was applied and has been 

shown to produce good leaf tissue extract that was compatible with 2-DE separation. 

The protein profiling of leaf tissues of P. sarmentosum showed a total of 242 protein 

spots and from which 283 proteins were identified by LCMS/MS analysis. Most of these 

identified proteins were involved in metabolism (including photosynthesis), protein 

destination and storage, energy and transport, and defense and stress related protein. In 

the comparative proteomic analysis on young and mature leaf tissues of P. sarmentosum 

obtained from seven geographical areas, 84 protein spots were found common in all the 

leaf extracts of P. sarmentosum regardless of young or mature leaf or geographical areas. 

Among these 84 common protein spots, 21 protein spots respectively in the young and 

mature leaves of P. sarmentosum were detected as differentially expressed proteins with 

a 2-fold change in intensity between the highest intense spot and the least intense spot 

when comparing between the seven geographical areas. In addition, 4 protein spots were 

detected as unique spots and 21 protein spots were detected as irregular protein spots. 

The proteome of leaf tissues of P. sarmentosum has been successfully mapped which 

revealed the protein composition of the leaf tissue of P. sarmentosum, a traditionally 

known leaf-based medicinal plant. 
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CHAPTER 1 

INTRODUCTION 

 

 

1.1 Traditional Medicinal Plants 

A medicinal plant or herb is defined as a plant or plant part valued for its 

medicinal, savory, or aromatic qualities (Kowalchik et al., 1998). Medicinal plants are 

widely used in prevention and treatment of disease. They are also used as an ingredient 

in health care supplements. The usage of the medicinal plants is normally based on 

traditional knowledge, where most of them have not been scientifically proven. There 

are a few drawbacks in the usage of medicinal plants; failure of the treatment includes 

mis-usage, and its potential side effects resulted in the therapeutic usage being pressured 

by World Health Organization (Caniato and Puricelli, 2003). However, 70-80% of world 

population still rely on traditional herbal medicine as a primary source of disease 

treatment (Caniato and Puricelli, 2003; Hamilton, 2004).  

The demand of herbal medicine is still growing continually due to the 

exponential increase in human population, less side effects and the low cost of 

traditional medicine (Hamilton, 2004; Patwardhan et al., 2005). This phenomenon is 

noted in the significant increase of the market for Ayuvedic and Chinese medicines 

(Patwardhan et al., 2005). Today, more than 35, 000 herbal plant species in the world 

are utilized appropriately in various parts of the world (Philip et al., 2009).  

The systematic studies on medicinal plant are significantly increased recently, 

where medicines derived from plants for the treatment of different diseases such as 

cancer, microbial, fungal and viral infection has been developed (Hamilton, 2004; Philip 
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et al., 2009). Moreover, the need of traditional medicines as an alternative therapy for 

drug resistance strain of microbial and fungal has been documented (Najib Nik A. 

Rahman et al., 1999; Patwardhan et al., 2005). Many pharmaceutical companies have 

started to focus on natural product chemistry for discovery and development of natural 

product drug. As a result, more than 1500 medicine plants were developed and 

processed into various forms of botanical products such as dietary supplements and 

herbal teas (Patwardhan et al., 2005). 

 

1.2 Piper 

Genus Piper, under the family Piperaceae consists of more than 700 species 

habitually distributed in tropical and subtropical regions of the world (Rukachaisirikul et 

al., 2004). The Piper species include Piper nigrum, Piper longum L., Piper ribesoides, 

Piper amalago, Piper brachystachyum, Piper sarmentosum and more (Parmar et al., 

1996; Scott et al., 2007). The genus Piper shares similar characteristics. They are erect, 

creeping and small terrestrial tree chiefly possessing flower and fruit. The leaves, fruits, 

stems and roots of the Piper species are commercially, economically and medicinally 

valuable in the worldwide market (Scott et al., 2007).  

The value of the fruit of P. nigrum is economically high, where products of white 

and black pepper are used as spices in many tropical countries (Parmar et al., 1996). In 

the regions of Latin America, West Indies and India, the genus Piper plant is well 

known for their medicinal properties. Piper hispidum and Piper aduncum were used by 

Jamaican to alleviate stomach aches. In the Ayuvedic medicine, Piper sylvaticum is an 

excellent antidote for snakebite. Extensive phytochemical studies have revealed the 

presence of various class of physiologically active compound such as lignans, steroids, 
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alkaloids, amides, pyrones, flavones, flavanones, in Piper species (Rukachaisirikul et al., 

2004; Scott et al., 2008). These physiologically active compounds were proven to be 

important in plant chemical defense (de Morais et al., 2007). A number of species of 

Piper contain piperamides, potential botanical insecticides that is used as pest controls to 

prevent the damage of stored crops (Scott et al., 2008). 

 

1.3 Piper sarmentosum 

Piper sarmentosum, locally known as kadok, is mainly found in Northeast India, 

South China, Indonesia, Thailand, and Malaysia (Rukachaisirikul et al., 2004). It is a 

very popular and widely used herb in Malaysia as food flavouring agent and traditional 

medicines (Nirwana et al., 2009). P. sarmentosum is used traditionally for treatment of 

fever, coughs, flu, diabetes, hypertension rheumatism and joint aches. The plant appears 

as glabrous, creeping, terrestrial herbs with about 20 cm to 50 cm tall (Rukachaisirikul et 

al., 2004). Its flowers are either bisexual or unisexual. Its fruits are small and dry with 

several rounded bulges. P. sarmentosum has a characteristic of pungent odour.  

Studies have shown that P. sarmentosum contains antioxidant property 

(Subramaniam et al., 2003). A naturally occurring antioxidant, superoxide scavenger, 

Naringenin was isolated from the methanolic leave extracts of P. sarmentosum. It is 

believed that frequently consuming the fruits or leaves of P. sarmentosum could 

scavenge access free-radicals and superoxide anion (O2
-
) to prevent certain conditions 

such as DNA damage, cardiovascular disease, stroke, hypertension and cancer 

(Subramaniam et al., 2003). The positive effect of P. sarmentosum in treating caecal 

amoebiasis in mice has also been reported (Sawangjaroen et al., 2004). Two amides 

isolated from P. sarmentosum, namely sarmentine and 1-piperettyl pyrrolidine possess 
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antituberculosis and antiplasmodial activities (Rukachaisirikul et al., 2004). Pellitorine, 

guineensine, brachyamide, sarmentosine and 1-(3, 4-methylenedioxyphenyl)-1E-

tetradecene extracted from the fruits of P. sarmentosum were reported to contain 

antituberculosis activities (Rukachaisirikul et al., 2004). According to Peungvicha et al. 

(1998), the water extract of P. sarmentosum has been tested to display hypoglycemic 

effect on the streptozaotocin-diabetic rats.  

 

1.4 Protein, polypeptide, peptide and amino acid 

Protein is a polymeric compound composed of a set of monomers called amino 

acid (Matthew et al., 2000). An amino acid contains a central carbon atom attached to an 

amino group, a carboxylate group, a hydrogen atom and a side chain R. There are 20 

amino acids found in human biological system, namely alanine (A), arginine(R), 

asparagine(N), aspartic acid(D), cysteine(C), glutamic acid(E), glutamine(Q), glycine(G), 

histidine(H), leucine(L), isoleucine(I), lysine(K), methionine(M), proline(P), 

phenylalanine(F), serine(S), threonine(T), tryptophan(W), tyrosine(Y), and valine(V) 

(Matthew et al., 2000; McKee, 2008).  

The structure of amino acid enables it to behave as acid and base simultaneously 

by donating a proton from its carboxylate group and accepting a proton to its amino 

group at pH of 7. This phenomenon is called amphoteric. A condition with the presence 

of both positive and negative charges on an amino acid is termed zwitterionic form. The 

classes of amino acid are determined according to the solubility of the amino acid 

(McKee and McKee, 2008). 

Based on the amino acid solubility, the groups of amino acids were classified 

into four groups: nonpolar, polar, acidic and basic. The side chain of nonpolar amino 
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acid mainly constitute of either aliphatic or aromatic hydrocarbon R group. The weakly 

interaction of nonpolar amino acid with water is required to maintain three dimensional 

structure of protein. Glycine, alanine, valine, leucine, isoleucine, proline, phenyalanine, 

tryptophan, cystein and methionine are categorized as nonpolar amino acids. Polar 

amino acid is referred as water loving amino acid. The hydroxyl group within the amino 

acid enables the interaction between amino acid and water to take place through the 

linkage of hydrogen bond. Serine, threonine, tyrosine, asparagine, and glutamine are 

grouped as polar amino acids. Acidic amino acids carry negative charge on its side chain 

at pH7 (Matthew et al., 2000). There are only two amino acids in acidic form: aspartic 

acid and glutamic acid. In contrary, basic amino acids carry positive charge on its side 

chain at pH 7. The group of basic amino acid includes histidine, lysine and arginine.  

Amino acids linked together covalently to form peptide by removing a water 

molecule between carboxyl group from one amino acid and amino group from other 

amino acid (Matthew et al., 2000). The bond formed is termed as peptide bond.  Amino 

acid residues combined into a long chain is called polypeptide. Protein has one or more 

polypeptide fold into three-dimensional structure to perform biological function. Post-

translation modifications, such as phosphorylation, glycosylation are common in protein. 

These modifications play an important role in explicating the biological functions of 

proteins (Seo and Lee, 2003). Proteins that are involved in a variety of biological 

functions in living organisms, including catalyst, provide structural support, help in 

transportation and movement, regulate stress response and cellular mechanism pathway, 

storage of essential nutrient, and have protective function against mechanical and 

chemical injury. 
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Proteins have four levels of structures: primary, secondary, tertiary and 

quaternary structure (Branden and Tooze, 1999). Protein primary structure is described 

as a polypeptide chain with defined amino acid sequence. Protein secondary structure is 

the local arrangement of the backbone of a linear polypeptide to form a repeating 

structure such as α-helix and -sheet structure. Extensive folding structure in a linear 

polypeptide to form three-dimensional shape is referred as protein tertiary structure. A 

protein quaternary structure is formed by two or more folded polypeptide chain to 

achieve highest complexity. Depending on the types of amino acid that made up the 

protein, protein will carry certain chemical property resulted from the synergistic 

interaction of its amino acids component. 

 

1.5 Proteomics  

Proteome is depicted as entire protein complement of a particular biological 

system (Cagney et al., 2003). Consequently, proteomics is related with systematic 

analysis of protein population synthesized in cells (Boguski and Mclntosh, 2003; 

Cagney et al., 2003). The completion of genome sequencing projects had urged the rapid 

progress of proteomics to evaluate the genome expression after mRNA editing, 

alternative splicing and post-translational modification. The emergence of proteomics is 

greatly boosted by the emerging of new technologies such as the sensitive and high 

throughput of mass spectrometry and high resolution of two-dimensional gel 

electrophoresis (2-DE), which are the standard procedure for quantitative proteome 

analysis (Boguski and Mclntosh, 2003).  
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The proteome is a challenging, complex and dynamic system influenced by 

diverse physiological and pathological factor (Gromov and Celis, 2000). The 

transcripted and translated genome varies in different type of cells. Usually only low 

quantity of genome is transcripted and translated within a cell. Therefore, after 

undergoing mRNA editing, alternative splicing, and post-translational modification, the 

proteome variability is greatly different from cell to cell, and eventually species to 

species (Gromov and Celis, 2000). The proteomics reveal the expression of gene 

products, characterize protein composition, functions, activities, interactions and 

distribution at different cellular stage (Gromov and Celis, 2000; Ong and Mann, 2005). 

However, about 80-90% of total protein is monopolized by housekeeping protein with 

the different expression patterns in majority of cells (Gromov and Celis, 2000).  

 

1.6 Plant Proteomics 

Plant proteomics which started in early 1980s, has progressed rapidly over the 

few years with the completion of first plant genome sequence of Arabidopsis thaliana 

(thale cress) in year 2000 (Canovas et al., 2004). Arabidopsis is a premier dicot model 

species composed of five chromosomes with a total size of approximately 135 Megabase 

(MB) (Rossignol et al., 2006). Small genome of Arabidopsis with a relative short life 

cycle has made the species a popular tool in molecular biology studies such as flower 

development. Plant proteomics is still in the beginning stage. Proteomic study is mainly 

depending on availability of database. The slow growth in plant proteomics is due to the 

scarcity of plant protein database (Nam et al., 2003; Katam et al., 2009). 

Most proteomic studies are focus on Arabidopsis and Oryza sativa (rice). This is 

mainly due to the completion of the genome sequence of these plant species, which 
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resulted in the availability of the protein databases in the public domain that facilitate the 

process of protein identification using MS data. In the past few years, the complete 

genome sequence of the grape, Populus trichocarpa (black cottonwood) and 

Physcomitrella patens have been published (Quirino et al., 2010), which enhance the 

progress of the plant proteomic research. Recently, the plant proteomics were further 

extended to plants in which the genome sequence is available in significant number in 

the forms of genomic DNA and Expressed Sequence Tag (EST) sequences. These 

include Medicago truncatula (legume barrel medic) along with Solanum lycopersicum 

(tomato), Zea mays (maize), Solanum tubersum (potato), sorghum and soybean, Quercus 

ilex (holm oak), Spartium junceum (Spanish broom), Panax ginseng (ginseng), Pisum 

sativum (pea), Pinus radiate (Radiate pine), Pinus halepensis (Aleppo pine), Ananas 

comosus (pineapple) Phoenix dactylifera (Date palm) and, Embothrium coccineum 

(Notro) (Jorrin et al., 2007; Jorrin-Novo et al., 2009). The scarcity database entries of 

other plants group is compensated for by protein identification through de novo MS 

sequencing and BLAST searches.  

Since plant proteomics have generated a huge number of data, some of the 

researchers have made an effort on the database organization. The examples of current 

available database are Plant Proteome DataBase (PPDB), http://ppdb.tc.cornell.edu/ 

mainly for Arabidopsis and Z. mays; Soybean proteome Database, 

http://proteome.dc.affrc.go.jp/Soybean/; The Plant Organelles Database 2 (PODB2), 

http://podb.nibb.ac.jp./Organellome/; Protein Mass Spectra Extraction (ProMex), 

http://promex.mpimp-golm.mpg.de/home.shtml; Rice Proteome Database, 

http://gene64.dna.affrc.go.jp/RPD/, etc. The ProMex, is a MS/MS spectral database 

http://ppdb.tc.cornell.edu/
http://proteome.dc.affrc.go.jp/Soybean/
http://podb.nibb.ac.jp./Organellome/
http://promex.mpimp-golm.mpg.de/home.shtml
http://gene64.dna.affrc.go.jp/RPD/
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derived from Arabidopsis, Chlamydomonas reinhardtii, Medicago truncatula, Solanum 

lycopersicum, Solanum tubersum and other plants.  

In proteomic, the plant tissue parts that had been analyzed include seeds, roots, 

stems, leaves, pistils, xylem or phloem saps, pollens and whole seedlings (Jorrin et al., 

2007). Generally, the plant proteomic studies focus on protein profile of plant tissue 

parts in order to examine the developmental changes of plant and influence of 

environmental factors. The main focus of plant proteomic is on Arabidopsis, O. sativa 

and Z. mays. Studies on the seed germination of Arabidopsis by 2-DE technique have 

shown 1300 proteins in seeds, 74 of the presence of the proteins showed expression 

changes during the germination process. A protein named gibberellins (GAs) was 

reported to involve in the initial stage of germination (Gallardo et al. 2001; 2002). A 

study on proteome of root, leaf, and seed tissues of O. sativa was carried out by using 2-

DE and LC-based separation methods (Koller et al., 2002). The authors reported that 

only 7.5% of a total of 2528 proteins were expressed in all three plant tissues, showing 

the differential expression of specific proteins in different parts of the plant. In 2001, 

Porubleva et al. studied the maize leaf proteome where a total of 1100 proteins were 

detected on 2-DE gels. The protein spots were then subjected to the MS analysis and 

subsequently EST databases search. The outcome summarized that over 50% of proteins 

cannot be identified from the database.  

 Studies on P. sativum and M. truncatula (Schiltz et al., 2004) for identification of 

the nitrogen mobilization from leaves to seed filling in P. sativum resulted in 

establishment of proteome reference maps of mature leaves and stems. The result 

showed the importance of Rubisco in nitrogen mobilization and 14-3-3 like protein as a 

potential regulator during the massive remobilization of nitrogen. Study of proteome 
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patterns was performed in leaves, stem, roots, flowers, seed pods and cell suspension 

cultures of model plant M. truncatula (Watson et al., 2003). Three hundred and four 

proteins out of 551 proteins were identified using peptide mass fingerprinting through 

matrix-assisted laser desorption ionization time-of-flight mass spectrometry. When the 

expression levels of the identified proteins were compared to the mRNA levels through 

EST counting, approximately 50% of the proteins can be associated with their 

corresponding mRNA levels. A similar study on Cannabis sativa to compare the 

proteome of leaves, flower and glands was carried out (Raharjo et al., 2004). In this 

study, the authors found that less than half of proteins expressed in flowers and glands as 

compared to the leaves.  

Recently, the proteomic of specific protein function in plant subcellular 

compartments of chloroplast and mitochondria was investigated (Thiellement et al., 

2002; Jorrin et al., 2007). By sub-fractionating into hydrophilic and hydrophobic 

condition for the better understanding of proteins functional roles, 81 proteins were 

identified from the mitochondria of Arabidopsis (Millar et al., 2001). A series of study 

on the chloroplast proteins of Arabidopsis and spinach was carried out on the envelope 

and thylakoids (Rossignol et al., 2006), lumenal (Schubert et al., 2002), ribosomal 

(Yamaguchi and Subramanian, 2000) and stromal proteins (Ytterberg et al., 2006). In 

addition, Peltier et al. (2001) have identified a chloroplastic protease complex from 

Arabidopsis. Recently, the development of proteome on the cell walls, membranes, 

nucleus and vacuoles of plant cells were sequentially introduced to reveal the knowledge 

of protein location and function in order to understand the plant biological processes 

including plant development and growth, seed germination, signal transduction and the 

responses of plants to symbionts, biotic and abiotic stresses (Rossignol et al., 2006; 
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Jorrin et al., 2007). Since the last decade, many reports have shown the potential of plant 

proteins in inhibition of fungal growth. In 2000, Giudici et al. had successfully isolated a 

16 kDa protein named SAP 16 from Helianthus annus. SAP 16 functions as trypsin 

inhibitor that restricts the ascospore germination of Sclerotinia sclerotiorum and the 

growth of mycelia. Other antifungal proteins (AFPs) reported were glucanases (Ng and 

Ye, 2003), chitinases (Kitajima et al., 2010), thaumatin-like proteins (Wang and Ng, 

2002) and several types of basic cysteine rich proteins and proteinase inhibitors (Joshi et 

al., 1998) that were found in various plant species. Recently, the studies on the 

proteomic of subcellular plant has been shifted from the technique 2-DE to a non-gel 

based approaches which have been used in Arabidopsis species. In another study, Morel 

et al. (2006) used multidimensional protein identification technology (MudPIT) to study 

the proteome of detergent resistant membrane from plant tobacco. MudPIT is a 

technique introduced by Yates laboratory for protein separation and identification using 

two-dimensional liquid chromatography (2-D LC) coupled with a mass spectrometer 

(Link et al., 1999; Lohrig and Wolters, 2009).  

Malaysia is a country gifted with valuable types of plants that had been used 

traditionally for their medicinal values. Although many research have been carried out 

on these plants, most of them concentrated on the small molecule compounds instead of 

the valuable macromolecule compounds of these plants. 

 

1.7 Sample preparation 

Sample preparation is the key step to determine the success of the experiment. In 

plant proteomics, protein extraction is a great challenge because plant tissues normally 

contain low amount of protein and high quantity of protease, phenolic compounds, 
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secondary metabolite, lipids and other non-protein compounds (Cristina-Maria and Katja, 

2006; Isaacson et al., 2006; Weiss and Gorg, 2007). Thus, choosing an appropriate 

method is critical in producing a high quality and reproducible result. Several protein 

extraction methods have been developed due to the varied nature of plant tissue. Three 

critical aspects that need to be considered in plant protein extraction namely (1) tissue 

disruption, (2) removal of interfering compounds and (3) protein solubilization (Wang et 

al., 2008): 

 (1) Plant cells are surrounded by a thick complex cell walls polysaccharide, cellulose 

containing hemicellulose and pectin which are difficult to disrupt (Shewry and Fido, 

1996; Jimenez et al., 2001; Isaacson et al., 2006). Plant cell wall provides rigidity 

strength and protective structure against mechanical stress to the plant cells. As a 

consequence, a proper tissue disruption step is required to completely destroy the cell 

wall. The most widely used technique to break down the plant cell walls is by freezing 

the plant tissues with liquid nitrogen and then grinding the plant sample using mortal 

and pestle (Wittmann-Liebold, 2006; Wang et al., 2006; 2008). Liquid nitrogen, a 

cryogenic liquid, possesses boiling point as low as -196 C which can cause rapid 

freezing on the plant tissue (Chawla, 2002). The employment of liquid nitrogen with 

cryogenic property gives the extra advantage in prevention of protein degradation and 

proteolysis. Quartz sand can be added to assist the grinding process (Wang et al., 2008).  

 (2) Plant tissues have comparatively low protein content while high contaminants of 

secondary metabolites accumulate inside the vacuoles of plant cells (Cristina-Maria and 

Katja, 2006; Isaacson et al., 2006; Weiss and Gorg, 2007). A vacuole contains tonoplast 

that enclosed the inorganic and organic molecules such as polysaccharides, proteases, 
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toxic compounds, phenolic compounds, alkaloids, flavonoid pigments, tannins, lignins, 

etc (Taiz, 1992; Weiss and Gorg, 2007). The presence of all these interfering compounds 

in the vacuoles varies with the development stage of a plant and varies from species to 

species. Generally, these compounds were found rich in adult plant tissues than in young 

tissues (Wang et al., 2008). The removal of secondary metabolites in extraction step is 

absolutely important to obtain a high quality 2-DE result. The existence of secondary 

metabolites such as pigments, lipid and polysaccharides will interfere the performance 

of 2-DE, especially the phenolics. Phenolics contain aromatic ring with one or more 

hydroxyl groups, they are mainly derived from the pentose phosphate, shikimate and 

phenylpropanoid pathways (Balasundram et al., 2005). Phenolics which form a complex 

with the protein irreversibly can cause the 2-DE gels streaking and artifactual spots (Xu 

et al., 2008). The application of the 10% (w/v) trichloroacetic acid (TCA)/acetone 

precipitation on plant extract is an effective way to remove the secondary metabolites, 

either before or after the protein extraction. The resulting pellet from the TCA/acetone 

precipitation should be white or light yellowish in color. The addition of polypyrrolidone 

(PVPP) in extraction buffer can precipitate the phenolic compounds through the 

formation of PVPP-phenolic complex and the elimination of the complex can easily be 

done through centrifugation (Wang et al., 2008).  

 (3) Solubility of protein in plants varied from species to species, depending on the 

nature of the plant tissue. The protein solubilization normally includes the breaking 

down of the macromolecular interactions in order to produce individual polypeptide 

chains via disruption of disulfide bonds and non-covalent interactions, for example ionic 

bonds, hydrogen bonds and hydrophobic interactions inside the proteins and non-

covalent interactions between proteins and non-proteinaceous compounds such as lipids, 
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carbohydrate and nucleic acids (Rabilloud, 2002). The ideal protein extraction condition 

is to maintain all the extracted polypeptides in the structure similar to their exact living 

state. Thus, artifact modifications of the polypeptides have to be prevented by the 

appliance of low temperature condition and protease inhibitor cocktail to the plant 

tissues. This step is important to inactivate all the proteases that are involved in protein 

modification (Lopez, 2007). Protease inhibitor and reducing agent can also be used to 

improve protein solubilization (Wang et al., 2008).  

 

1.8 Protein Extraction buffer 

In plant proteomics, a strong extraction buffer is required to extract total protein 

from the tissues. The most common extraction buffer used in the plant proteomics, 

especially for extraction of leave proteins always contains chaotrope, denaturant, 

detergent and reductant (Cristina-Maria and Katja, 2006; Lopez, 2007).  

Urea is a neutral chaotrope which acts as a denaturant to solubilize and unfold 

proteins via breaking their hydrogen bonds into a random conformation in which all 

ionizable amino acid side chains are exposed to buffer solution (Monribot and Boucherie, 

2000; Rabilloud, 2002). Urea normally functions at concentration as high as 7 M in the 

presence of thiourea for further solubilization improvement, this is especially true for the 

hydrophobic proteins (Rabilloud, 2002). At high concentration, urea in the structure of 

organized channels can directly bind to linear alkyl chains molecules to form a complex 

called inclusion compound. These inclusion compounds are less soluble and the 

precipitation is often induced in the presence of nonionic or zwitterionic detergents with 

basic linear alkyl chains structure. Therefore, the choice of the detergents is limited to 

non-linear alkyl tails, for example: Tritons, Nonidet P40, 3-[(3-cholamidopropyl) 
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dimethylammonio]-1 propanesulfonate (CHAPS) and octyl glucoside. Urea can easily 

break down to form isocyanate through a process called protein carbamylation. For this 

reason, the use of protein extraction buffer containing urea should be completely 

avoided at temperature above 37C in order to reduce the formation of artifactual spots 

in 2-DE gels (Rabilloud, 2002). Other precautions are to avoid using of low purity urea 

or adding of cyanate scavenger into a urea solution.  

Nonionic or zwitterionic detergents are required to solubilize protein completely 

while preventing protein aggregation through hydrophobic interactions (Lopez, 2007). In 

several studies, ionic detergent such as sodium dodecyl sulfate (SDS) was added in 

protein extraction. The presence of SDS as an anionic surfactant assists the protein 

solubilization by disrupting non-covalent interactions and subsequently produces 

electrostatic repulsion in order to separate polypeptides (Monribot and Boucherie, 2000; 

Rabilloud, 2002). However, the utilization of SDS is incompatible with IEF due to its 

ionic nature (Mechin et al., 2007). Therefore, SDS is always used in a diluted form in 

extraction solution with high concentrations of urea and nonionic or zwitterionic 

detergents (Rabilloud, 2002). Only low amount of SDS at a concentration lower than 

0.25% or at a ratio at least 8:1 (detergent to SDS) is tolerated with the use of IEF 

(Righetti et al., 2001).  

Reducing agents are used to reduce protein by breaking its disulfide bonds 

during the protein extraction process (McGettrick and Worrall, 2003). Dithiothreitol 

(DTT) and 2-mercaptoethanol are universal reductants being used (Rabilloud, 2002). 

However, the usage of DTT is preferable due to formation of artifacts by 2-
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mercaptoethanol. Moreover, high concentration of 2-mercaptoethanol is needed 

compared to DTT, which DTT only used at concentration ranging from 20 to 100 mM. 

 

1.9 Protein Precipitation and Purification 

The application of the 10% (w/v) trichloroacetic acid (TCA)/acetone 

precipitation can be performed either before the protein extraction or after the protein 

extraction (Wang et al., 2008). In the former usage, plant tissue powder is directly 

subjected to TCA/acetone precipitation before the protein extraction. In contrary in the 

latter usage, the tissue powder is extracted with aqueous buffer and the extract is 

subjected to TCA/acetone precipitation. The main purpose for TCA/acetone 

precipitation is to purify and concentrate the protein before running the 2-DE. This 

protein purification and precipitation technique, primarily described by Damerval et al. 

(1986) is more effective than the purification using trichloroacetic acid or acetone alone. 

10% TCA can effectively remove majority of secondary metabolites such as lipid, 

pigments and phenolic compounds under acidic and hydrophobic conditions (Wang et 

al., 2008). Moreover, the use of TCA in acetone can inhibit the activities of proteases, 

phenoloxidases and peroxidases by preventing proteolytic degradation and thus, loss of 

high molecular weight proteins (Mechin et al., 2007). The lyophilized pellet from 

TCA/acetone precipitation cannot be over-dried to ensure the efficiency of 

resolubilization.  

 

1.10 Protein Assay 

The protein assay used in this study is a colorimetric assay for protein 

quantitation based on the Lowry method (Lowry et al., 1951). The assay employs two 
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different reactions. First, the protein reacts with copper ion to form a reduced copper in 

alkaline solutions. Second, the copper-amide bond complex from first reaction reduces 

Folin-Ciocalteu reagent (phosphomolybdate and phosphotungstate) (Olson and 

Markwell, 2007). The protein amount is spectrophotometrically detected via the 

formation of reduced Folin-Ciocalteu reagent, which is blue in color with the absorption 

in the range of 500 to 750 nm wavelength. The Lowry assay is sensitive, however, the 

sensitivity of Lowry assay is reduced by some interferent such as chlorophyll, detergents, 

carbohydrates, glycerol, Tricine, EDTA, Tris, potassium compounds, sulfhydryl 

compounds and disulfide compounds (Berges et al., 1993; Olson and Markwell, 2007). 

Several modified Lowry assay as well as commercialized ones have been developed to 

eliminate the interferents. The commercialized protein assay has been modified to be 

reducing agent and detergent-compatible. 

 

1.11 Two-Dimensional Gel Electrophoresis  

Two-dimensional gel electrophoresis is a powerful technique used to separate 

and analyze proteins according to isoelectric point (pI) in the first dimension and 

molecular weight in the second dimension (Stochaj et al., 2002; Xu et al., 2008). The 

use of two-dimensional gel electrophoresis in proteome studies is first described by O’ 

Farrell and J. Klose in 1975 (Stochaj et al., 2002). However, the original technique is not 

commonly used due to handling problem and the complexity of result. 

Recently, the two-dimensional gel electrophoresis has been successfully 

improved in the aspects of reproducibility, resolution, and separation of highly acidic 

and basic proteins (Weiss and Gorg, 2007). The new immobilized pH gradients were 

introduced by Gorg and colleagues to replace the old carrier ampholyte-generate pH 
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gradients. Moreover, the availability of second generation software and powerful 

computer assisted software facilitate the complicated protein analysis process (Gygi et 

al., 2000; Wittmann-Liebold, 2006). Two-dimensional gel electrophoresis is able to 

separate amount of protein as low as 1 ng of protein content per spot, with detection of 

more than 5000 proteins per gel by the combination use of highly sensitive protein 

detection method (Weiss and Gorg, 2007). The deliverable result is presented as a map 

that characterizes the protein profile of a biological system, which reveals the protein 

expression level, isoforms or post-translation modification for a target protein (Barnouin, 

2004).  

 

1.11.1 Isoelectric focusing 

Isoelectric focusing is the first dimension of two-dimensional gel electrophoresis. 

It is carried out by using an immobilized pH gradients (IPG) strip (Stochaj et al., 2002). 

The separation method of protein is based on their isoelectric point under an electric 

field (Garfin, 2003). Isoelectric point of a protein is the pH of the local environment 

when protein charge is zero (Rabilloud, 2002). The net charge of a protein is a total of its 

positive and negative charges. It is a very environment dependent value. A protein 

carries a negative charge when the environment pH is above its pI value, and conversely, 

it carries a positive net charge when the surrounding pH is below its pI value (Lopez, 

2007). Under a pH gradient, a positively charged protein migrates to the cathode with 

decreasing charge density until its gain a zero net charge (Garfin, 2003; Barnouin, 2004). 

The pI value is determined by the characteristic of side chains and prosthetic groups of 

the protein; an acidic protein has a low pI value, while the basic protein has a high pI 

value. The resolution of isoelectric focusing depends on the strength of electric field and 
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the range of pH gradient. High voltage and narrow pH gradient will give high resolution 

isoelectric focusing (Stochaj et al., 2002).  

In 1982, Bjellqvist developed a new immobilized pH gradient for isoelectric 

focusing instead of carrier ampholyte-generated pH gradient. The covalent fixed pH 

gradient has resolved the problem of cathodic drift generated by carrier ampholyte-

generated pH gradient. In the method of immobilized pH gradient, Bjellqvist had 

introduced the use of acrylamide buffer into polyacrylamide gel by copolymerize 

acrylamide with bisacrylamide monomers. This is the present standard approach in 

proteomics, which effectively improved the reproducibility, increase loading capacity 

and broader pH range separation for protein. After isoelectric focusing, disulfide bridges 

in protein are reduced and the sulfhydryl group is alkylated using dithiothreitol and 

iodoacetamide respectively, before being subjected to the second dimension, which is 

gel electrophoresis separation (Weiss and Gorg, 2007). 

 

1.11.2 Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

Electrophoresis is a technique of separating charged particle such as proteins, 

peptides and nucleic acids in an electric field (Eswara-Reddy and Jacobs, 1997). The 

gels used in an electrophoresis usually can be made of a variety of sources including 

starch, agarose, polyacrylamide and cellulose acetate.  

Polyacrylamide gel is composed of nonionic polymerization of acrylamide and 

crosslinking agent, N, N’-methylene-bis-acrylamide, the polymer is chemically stable 

over a wide range of pH, temperature and ionic strength (Walker et al., 2000). The 

concentration of acrylamide and cross-linker can be altered easily to produce different 
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pore size of the gel, allowing proteins to separate in a particular range of molecular 

weights (Stochaj et al., 2002).  

Sodium dodecyl sulfate polyacrylamide gel electrophoresis is a general technique 

used to separate a mixture of protein based on their molecular weight. The presence of 

sodium dodecyl sulfate in polyacrylamide gel acts as an anionic surfactant by 

surrounding denatured protein in an approximate ratio 1.4:1 (sodium dodecyl sulfate: 

protein) to form a net negative charged complex (Dunn and Bradd, 1993; Stochaj et al., 

2002; Lopez, 2007). In an applied electric field, the negative chargedly sodium dodecyl 

sulfate-protein complex migrated towards the anode based on their molecular weights; a 

low molecular weight protein moved faster than a high molecular weight protein 

(Walker et al., 2000). In 2-D gel electrophoresis, a sodium dodecyl sulfate 

polyacrylamide gel electrophoresis is based on Laemmli discontinuous Tris-chloride/ 

Tris-glycine system (Stochaj et al., 2002). However, no stacking gel is necessary due to 

the presence of pre-separated step by isoelectric focusing. Protein resolution of two-

dimensional gel can be influenced by gel size. A larger gel is capable of detecting higher 

number of protein resulting in a complex profile analysis. The appropriate acrylamide 

concentration for two-dimensional gel electrophoresis ranges from 10-12.5% for 

separation of protein size range of 10-200 kDa (Dunn and Bradd, 1993). Lower 

percentages of acrylamide decrease the resolution of two-dimensional maps, while the 

higher percentages complicate the later analysis.  

 

1.12 Staining 

There are diverse staining methods with different sensitivities available for 

protein spots detection in two-dimensional gels, these staining methods include 
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Coomassie Brilliant Blue, silver and fluorescence staining (Wirth and Romano, 1995; 

Stochaj et al., 2002). A selected staining method in an analysis has to fulfill several 

criteria including sensitive enough for low abundant protein detection, allow further 

proteomic analysis and compatible with mass spectrometry. However, neither one of the 

staining techniques is perfect. None of the techniques is able to stain all the present 

proteins in a gel. Thus, different protein staining patterns may be obtained from different 

staining techniques. Coomassie Brilliant Blue is the widely use, economical and simple 

organic-based stain for post-electrophoretic protein detection (Weiss et al., 2009). The 

narrow dynamic range of Coomassie Brilliant Blue dye only enables it to detect 

approximately 0.5-2.0 μg of protein concentrations range (Stochaj et al., 2002). 

Therefore, low abundance proteins below the sensitivity limit is precluded (Weiss et al., 

2009). Coomassive blue staining is an appropriate and reliable method for further 

quantitative analysis coupled with computer software programs. Moreover, the dye can 

be completely removed from the stained protein making it compatible with the 

subsequent mass spectrometry analysis (Shevchenko et al., 2007).  

 

1.12.1 Coomassie Brilliant Blue-R 

Coomassie Brilliant Blue-R (reddish hue) is a non-polar, sulfated aromatic dye 

that complexs with the basic amino acids, arginine, lysine, histidine as well as tyrosine 

in order to visualize the presence of protein in a gel, with a limit of protein detection 

about 30-100 ng (Wirth and Romano, 1995; Stochaj et al., 2002). Regressive staining 

approach is used to destain Coomassie Brilliant Blue-R stained gel using a similar 

solution as staining solution devoid of dye (Patton, 2002). The staining solution is a 

mixture of dye with an aqueous solution containing methanol and acetic acid. During the 
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destaining step, the stained gel background is gradually diminished, leaving the well 

labeled protein band due to the higher affinity of proteins to the dye molecules than the 

gel matrix.  

 

1.12.2 Coomassie Brilliant Blue-G 

 Coomassie Brilliant Blue-G binds to the basic amino acids of protein. Unlike the 

Coomassie Brilliant Blue-R, Coomassie Brilliant Blue-G contains colloidal dye particles, 

as well as free dispersed dye in solution (Patton, 2002). During a staining equilibrium, 

the low concentration of free dye preferentially penetrate and stain the protein, while the 

colloidal dye particle of Coomassie Brilliant Blue-G (greenish hue) is incapable of gel 

matrix penetration. Thus, a clear background can be obtained in a short period of 

destaining step (Wirth and Romano, 1995; Weiss et al., 2009). The amount of protein 

for detection range of Coomassie Brilliant Blue-G is approximately 8-50 ng, which is 

more sensitive compared to Coomassie Brilliant Blue-R (Choi and Yoo, 2002; Stochaj et 

al., 2002). 

 

1.13 In-gel Digestion 

In-gel digestion is a pre-step for mass spectrometric analysis. It is purposed to 

extract, digest and degrade proteins into peptide form through an enzymatic cleavage 

activity (Granvogl et al., 2007). The in-gel digestion method was initially established by 

Rosenfeld et al. (1992) and several alterations have sequentially been proposed to assure 

the high peptide yield and quality of mass spectrometric analysis (Granvogl et al., 2007). 

Enzymatic cleavage with a specific protease results in a set of characteristic peptides 
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with diverse molecular masses. The molecular masses of peptides can be used to give 

the identity of protein upon mass spectrometry.  

Ammonium bicarbonate and Tris/hydrochloric acid are commonly used as 

inorganic buffer salts in the process of in-gel digestion. Unlike the Tris/ hydrochloric 

acid, ammonium bicarbonate is basic and therefore no pH adjustment is needed. 

Moreover, ammonium bicarbonate can be completely removed and evaporated by 

vacuum concentrator into ammonia gas, carbon dioxide and water. The continually 

applied inorganic buffer salts and acetonitrile respectively in the washing and 

dehydration steps efficiently destained the gel pieces by swelling and shrinking of the 

gel pieces (Shevchenko et al., 2007). Finally, white dried gel pieces are obtained, which 

was then saturated with a specific protease for protein digestion purpose. After an 

incubation period, the peptide digestion product is extracted with solution for peptide 

recovery (Kumarathasan et al., 2005). 

 

1.13.1 Trypsin 

Among the commercially available enzymes, the serine endopeptidase trypsin is 

mostly used (Smith and Wheeler, 1996). Trypsin hydrolyse the polypeptide chain 

specifically at arginine and lysine on the side of carboxyl terminal (Granvogl et al., 

2007). The hydrolysis rate is reduced if acidic or prolyl residues occur next to the 

cleavage site. Typically, trypsin can function actively between pH 7 and 9 with an 

optimum pH approximately at 8. At extremely acidic or basic condition, the activity of 

trypsin can be reversible inactivated (Smith and Wheeler, 1996).  
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1.14 Liquid Chromatography- Mass Spectrometry 

The coupling of mass-spectrometry to liquid chromatography is a very sensitive 

and reliable technique that can be applied to a wide range of biological samples. This 

coupling technique progressed sluggishly in the early age. The employ of liquid 

chromatography-mass spectrometry is limited due to the incompatibility of the early 

mass spectrometric ion source with the liquid chromatographic system. In the 1980s, 

Fenn developed an interface termed as electrospray ionization source to remove the 

chromatographic mobile phase before further analysis by mass-spectrometry. This 

development had carried a great impact on proteomic studies (Pitt, 2009).  

Liquid chromatography is used to separate a complex protein mixture (Simpson, 

2002). However, identity of an unknown analyte cannot be determined based on its 

similarity to reference retention time alone (Ardrey, 2003).  

Mass spectrometry is powerful technique for compound identification and 

molecular structure study (Larsen and Roepstorff, 2002). The application of mass 

spectrometry is incapable to obtain single mass spectrum for an analyte of the mixture. 

The data for all compound ions is reported in a mass spectrum leads to complicated 

analysis. Thus, coupling of high performance liquid chromatography with mass 

spectrometry enables definitive identification through mass determination and the 

quantitative analysis of the compound of interest. 

 

1.14.1 Reverse-phased High Performance Liquid Chromatography (RP-HPLC) 

The International Union of Pure and Applied Chemistry (IUPAC) defines 

chromatography as “a physical method of separation in which the components to be 

separated are distributed between two phases, one of which is stationary (the stationary 
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phase), while the other (the mobile phase) moves in a definite direction.” The mobile 

phase for the liquid chromatography is a mixture of solvent which distributes on a 

column (stationary phase) in a definite direction (Ardrey, 2003). High performance 

liquid chromatography which carries out a reverse phase chromatographic separation 

utilizes a polar mobile phase with a non-polar stationary phase (Simpson, 2002).  

The elution time for an analyte to move out from the chromatographic column is 

termed as retention time (tan). However, it is influenced by column length and mobile 

phase flow rate. Thus, capacity factor (k’) is used to demonstrate the retention time of an 

analyte and the unretained compounds (Simpson, 2002, Ardrey, 2003).  

In proteomic studies, the high performance liquid chromatography separates 

protein based on the interaction of the hydrophobic binding between amino acid side 

chain of a protein and hydrophobic surface of chromatographic column (Simpson, 200). 

Typically, a mixture of solvent is use in the high performance liquid chromatography 

mobile phase. The initial condition of mobile phase always started with a highly aqueous 

solvent followed by modification of subsequent mobile phase composition to produce a 

gradient condition along the chromatographic separation process. Thus, a highly polar 

protein is eluted earlier than the less polar protein. The high performance liquid 

chromatography consists of five components: pump, injector, mobile phase, column and 

detector (Ardrey, 2003). However, the separated samples are further analysed and then 

detected in the mass spectrometry. Thus, the detector in the high performance liquid 

chromatography is not being used. 
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