

ENHANCING CONTROL FLOW COMPREHENSION USING
ZOOM VISUAL FLOW (ZViF) TECHNIQUE TO REPRESENT

CONTROL STRUCTURES

ROZITA KADAR

UNIVERSITI SAINS MALAYSIA
2011

ENHANCING CONTROL FLOW COMPREHENSION USING
ZOOM VISUAL FLOW (ZViF) TECHNIQUE TO REPRESENT

CONTROL STRUCTURES

by

ROZITA KADAR

Thesis submitted in fulfillment of the requirements
for the Degree of
Master of Science

MARCH 2011

ACKNOWLEDGEMENT

In the name of Allah, (Al-Mighty) The Gracious, The most Merciful.

Alhamdullilah, my utmost thanks to Allah for giving me strength that allows me to

complete this research. I am highly grateful to my supervisor, Dr. Shahida Sulaiman

whose dedication, guidance, advice, idea and moral support have tremendously aided

me in this study. The research experience that I have gained is something that I will

truly treasure. I would like to thank Universiti Teknologi MARA (UiTM) for the

opportunity to pursue my postgraduate studies, for the generous financial assistance

through SLAB (July 2007 – July 2009). Many thanks also to the School of Computer

Sciences and the Institute of Postgraduate Studies, Universiti Sains Malaysia (USM) for

various facilities and kind assistance provided throughout the process. Special thanks to

the Director of Universiti Teknologi MARA Pulau Pinang, Associate Professor Mohd

Zaki bin Abdullah, the Coordinator of the Department of Computer and Mathematical

Sciences Ms. Shakirah binti Mohd Abdul Rahman and the ex-coordinator, Ms. Tengku

Muhaini binti Tuan Mat for their understanding and support. My appreciation also goes

to all my colleagues, especially Ms. Suzana binti Ab. Rahim, Ms. Natasha binti Nordin,

Ms. Shamsunarnie binti Mohamed Zukri and Ms. Siti Nurleena binti Abu Mansor for all

their ideas and supports. Moreover, my special thank goes to my husband Mohd Zamri

Udin and my beloved kids Luqman, Rijal, Najwa, Harith, and Raudhah for the advice

and moral support in my journey of finishing this research. Last but not least, I would

also like to thank my whole family for their prayers, love, care and support.

ii

TABLE OF CONTENTS

 Page

ACKNOWLEDGEMENT ii

TABLE OF CONTENTS iii

LIST OF TABLES viii

LIST OF FIGURES x

LIST OF ABBREVIATIONS xii

ABSTRAK xiii

ABSTRACT xiv

CHAPTER 1 : INTRODUCTION

1.1 Overview 1

1.2 Background of the Study 3

1.2.1 The Importance of Program Comprehension 4

1.2.2 The Importance of Program Visualization 5

1.3 Research Framework 6

1.4 Research Questions 8

1.5 Objectives of the Study 10

iii

1.6 Scope of the Research 11

1.7 Research Contribution 12

1.8 Organization of the Chapters 13

1.9 Summary 15

CHAPTER 2 : LITERATURE REVIEW

2.1 Introduction 16

2.2 Program Comprehension 16

2.3 Cognitive Models of Program Comprehension Strategies 18

2.4 Program Visualization 21

2.4.1 Graphical Representation Techniques 22

2.5 Other Visualization Techniques 26

2.5.1 Synthetic Personality Inventory (SPI) 26

2.5.2 Multi-Agent Educational System 26

2.5.3 Program Dependence and Slices 27

2.6 Program Visualization Tools 28

2.6.1 jGRASP 28

2.6.2 BRICS 30

2.6.3 P-Coder 31

2.7 User Interface Design 33

2.7.1 Components of Graphical User Interface and Design Principles 33

2.7.2 The Elements of User Interface 35

2.7.2(a) Colour 35

2.7.2(b) Text 36

2.7.2(c) Graphic 37

2.7.2(d) Layout 38

2.8 Summary 39

iv

CHAPTER 3 : RESEARCH METHODOLOGY

3.1 Introduction 40

3.2 Operational Framework or Research Procedure 40

3.2.1 Tripp and Bichelmayer’s Rapid Prototype Model 41

3.3 Method for Developing Prototype Tool 42

3.3.1 Phase I : Gather Prototype Tool Requirements 42

3.3.1(a) Hardware and Software 43

3.3.1(b) System Specification 43

3.3.1(c) Prepare and Analyze Contents for Control Structures 44

3.3.1(d) Set Objective for Prototype Tool 45

3.3.2 Phase II : Construct Prototype Tool 45

3.3.3 Phase III : Evaluate Prototype Tool 45

3.3.3(a)Research Design and Hypothesis 46

3.4 Summary 48

CHAPTER 4 : ZOOM VISUAL FLOW (ZViF) TECHNIQUE

4.1 Introduction 49

4.2 Overview 49

4.3 Zoom Visual Flow (ZViF) 50

4.4 Bottom-up and Top-down Strategy 51

4.4.1 AICoS Notation 51

4.4.1(a) Colours 52

4.4.1(b) Text and Information Display 53

4.4.2 VCoF Flow Diagram 55

4.4.3 Interface Design 61

4.4.4 Flowchart 63

4.4.4(a) Enter Code Flowchart 63

4.4.4(b) ZViF Generated Flowchart 64

v

4.5 Detail Design 65

4.5.1 Sequential Control Flow 65

4.5.2 Selection Control Flow 67

4.5.3 Iteration Control Flow 69

4.6 The Criteria Design 71

4.7 Summary 72

CHAPTER 5 : EVALUATION

5.1 Introduction 73

5.2 Evaluation Procedure 74

5.2.1 Study 1 – Users’ Preference 75

5.2.1(a) The Questionnaire Design 77

5.2.1(b) Analysis and Findings 77

5.2.2 Study 2 – Users’ Comprehensibility 86

5.2.2(a) Questionnaire Design 87

5.2.2(b) Analysis and Findings 88

5.2.3 Study 3 - The Comparative Study on Graphical Representation

Techniques 96

5.2.3(a) The Questionnaire Design 97

5.2.3(b) Result and Discussion 99

5.3 Summary 101

CHAPTER 6 : CONCLUSION

6.1 Summary of the Thesis 102

6.2 Contribution 105

6.3 Revisiting of the Objectives 107

6.4 Future Research 108

6.5 Summary 109

vi

REFERENCES 110

APPENDICES 116

Appendix A: Manual for ZViF Tool 117

Appendix B: Program Use in Study I 123

Appendix C: Program Use in Study II 125

Appendix D: Questionnaire for Study I 127

Appendix E: Questionnaire for Study II 129

Appendix F: Certificate of Appreciation for Winning the Best Paper Award 134

Appendix G: Certificate of Appreciation for Winning the Bronze (Professional) 135

Appendix H: List of Publications 136

vii

LIST OF TABLES

Page

Table 2.1: The Strengths and Weaknesses of Graphical Representation

Techniques 25

Table 2.2: Combination of Colours for User Interfaces (Brown and Cunningham,

1993) 36

Table 4.1: Action Icons Control Structures (AICoS) Notations 54

Table 4.2: Criteria Used in Designing the Technique (Baecker, 1988) 71

Table 5.1: The Number of Respondents and Their CGPA 76

Table 5.2 Performance Characteristics Items and Descriptions

(Hendrix et al., 1998) 78

Table 5.3: PCH Item Response Frequencies (the Number of Students Who

Responded to a Particular Treatment 79

Table 5.4: The Mean and p-value of the Responses Towards Each PCH 81

Table 5.5: The Number of Respondents and Their CGPA 87

Table 5.6: Summary of Findings 90

Table 5.7: The Mean and p-value for 14 Questions Between ZViF and jGRASP 95

Table 5.8: The Mean and p-value for 14 Questions Between ZViF and Text Based 95

viii

Table 5.9: The Existing Graphical Approach and ZViF Approach Styles

 (a) ANSI Flowchart, (b) Nassi-Shneiderman Diagram,

(c) Warnier-Orr Diagram, (d)Action Diagram, (e) CSD

and (f) ZViF 98

Table 5.10: Comparative Study among Graphical Representation Techniques 99

Table 6.1: ZViF Technique Compared to Other Existing Techniques 106

ix

LIST OF FIGURES

Page

Figure 1.1: Frameworks Semantic Software Engineering

(Semanticsoftware.info, 2009) 7

Figure 2.1: The Control Structure Diagram (CSD) Presented by jGRASP

(jGRASP, 2010) 29

Figure 2.2: Viewer for BRICS, Showing the Source Code and Overview Windows

(Pearson et al. 2008) 30

Figure 2.3: The Main Window of P-Coder (PCoder, 2010) 32

Figure 3.1: Flowchart of Operational Framework for Research 41

Figure 3.2: The Relationships of All Variables and Their Attributes 46

Figure 4.1: The Sequential Flow Diagram 56

Figure 4.2: The “If” Flow Diagram 57

Figure 4.3: The “Switch” Flow Diagram 58

Figure 4.4: The “While” Flow Diagram 59

Figure 4.5: The “For” Flow Diagram 60

Figure 4.6: The “Do” Flow Diagram 61

Figure 4.7: Flowchart to Enter the Source Code 63

Figure 4.8: Flowchart to Generate the ZViF 64

Figure 4.9: The Sequential Statement View in ZViF Tool 65

Figure 4.10: The ‘If’ Selection Statement View in ZViF Tool 67

x

Figure 4.11: The ‘While’ Loop Statement View in ZViF Tool 69

Figure 5.1: The Mean of the Responses Towards Each PCH 80

Figure 5.2: The Sequential Flow Diagram a) ZViF b) CSD 82

Figure 5.3: The Selection Flow Diagram a) ZViF b) CSD 84

Figure 5.4: The Iteration Flow Diagram a) ZViF b) CSD 85

Figure 5.5: Total of Correct Answers for Each Questions 89

Figure 5.6: “If” Selection Generated by a) jGRASP b)Visual C++ IDE c)ZViF 91

Figure 5.7: “Do” Loop Generated by a) ZViF b)Visual C++ IDE c) jGRASP 93

Figure 5.8: “While” Loop Generated by a) ZViF b) jGRASP c) Visual C++ IDE 94

xi

LIST OF ABBREVIATIONS

AICoS - Action Icons Control Structures

BRICS - Blocks of Rationally Intuitive Control Structures

CGPA - Cumulative Grade Point Average

CSD - Control Structured Diagrams

GUI - Graphical User Interface

IDE - Integrated Development Environment

jGRASP - Graphical Representations of Algorithms, Structures,

and Processes for Java

P-Coder - Pseudo Coder

PCH

VCoF

-

-

Performance Characteristics

Visual Control Flow

ZViF

- Zoom Visual Flow

xii

MENAMBAHBAIK PEMAHAMAN ALIRAN KAWALAN
MENGGUNAKAN TEKNIK ALIRAN VISUAL BERFOKUS

(ZViF) UNTUK MEWAKILI STRUKTUR KAWALAN

ABSTRAK

 Apabila pengguna awal mempelajari pengaturcaraan, mereka harus memahami

banyak perkara berkaitan pengaturcaraan. Berbagai-bagai teknik dan alatan telah

dibangunkan untuk membantu pengguna ini dalam meningkatkan pemahaman

pengaturcaraan tetapi kebanyakan alatan tidak sesuai untuk mereka. Beberapa alatan

tidak bersifat mesra pengguna, rekabentuk hanya ditumpukan kepada pengguna mahir

dan beberapa Persekitaran Pembangunan Bersepadu (IDE) sangat ringkas dan gagal

untuk digunakan dalam persekitaran dunia nyata. Ini akan melambatkan proses

pembelajaran dan menimbulkan kesukaran bagi pengguna yang tidak mempunyai latar

belakang pengaturcaraan. Skop kajian ini merangkumi teknik visualisasi yang

mewakilkan struktur kawalan untuk pengguna awal. Matlamat utama kajian ini adalah

untuk memberi pendedahan tentang bagaimana meningkatkan kaedah persembahan

visual dalam pengeditan aturcara atau IDE. Kajian ini cuba meningkatkan pemahaman

aliran kawalan dengan menggunakan teknik Aliran Visual Berfokus (ZViF) yang

mewakili kod sumber dalam paparan grafik. Sebanyak dua eksperimen dan satu kajian

perbandingan dilakukan untuk menentukan keberkesanan teknik. Keputusan

menunjukkan bahawa pengguna lebih memilih teknik yang dicadangkan dalam

membantu meningkatkan pemahaman aliran kawalan dalam kalangan pengguna awal

jauh lebih baik dibandingkan dengan teknik Gambarajah Kawalan Struktur (CSD) dan

IDE berasaskan teks.

xiii

xiv

ENHANCING CONTROL FLOW COMPREHENSION USING
ZOOM VISUAL FLOW (ZViF) TECHNIQUE TO REPRESENT

CONTROL STRUCTURES

ABSTRACT

 When novice users learn programming, they have to comprehend a lot of things

related to programming. Many techniques and tools have been developed to help users

to improve their program comprehension but most tools are unsuitable for novices.

Some tools are not user friendly, some designs are just for expert programmers and

some Integrated Development Environment (IDE) are very simple and fail to expose

users to the real world environment. These hinder the learning process and may become

obstacles to users who have no programming background. The scope of the study is on

visualization technique to represent control structures for novice users. The main goal of

this work is to give some insights on how to improve visual presentation method in

program editor or an IDE. This study attempts to improve control flow comprehension

by using Zoom Visual Flow (ZViF) technique that represents source code in graphical

view. Two lab experiments and a comparative study were conducted to determine the

effectiveness of the technique. The result shows that users prefer the proposed technique

that helps to improve control flow comprehension among novices much better than

Control Structured Diagrams (CSD) technique and text-based IDE.

CHAPTER 1

INTRODUCTION

1.1 Overview

Software engineering is an engineering discipline that concerns with all aspects

of software production from the early phases of software specification to software

maintenance (Sommervile, 2001). Its goal is to develop software that satisfies and

possibly exceeds the users’ expectation. In the original model of software lifecycle

(Royce, 1970), there are five phases to be followed, which are (a) requirement analysis

and definition, (b) system and software design, (c) implementation and unit testing, (d)

integration and system task, and (e) operation and maintenance.

Program comprehension is a major activity during software maintenance

(Maletic & Kagdi, 2008). Program comprehension is defined as a process whereby

programmers will understand a software artefact using both knowledge of the domain

and/or semantic and syntactic knowledge to build a mental model of its relation to the

situation. According to O’Brien (2003), this activity is required when maintaining,

reusing, migrating, reengineering or enhancing the software system. One of the

activities to improve program comprehension is to enhance the Integrated

Development Environment (IDE) that provides a Graphical User Interface (GUI).

1

IDE normally consists of a source code editor, compiler and/or interpreter,

build-automation tools and a debugger. GUI is a special screen image-based computer

system that allows software commands to be issued through the use of graphic symbols

to support the process of writing software. The system includes (a) a syntax-directed

editor, (b) program entry graphical tools, (c) integrated support for compiling and

running the program; and (d) relation of compilation errors back to the source (Timoty

& Linda, 2005). GUI is a particular case of user interface in interacting with a computer

by employing graphical images and widgets together with text to represent the

information and actions available for users. Usually the actions are performed through

direct manipulation of the graphical elements. In computer technology, graphical

representation used to improve program comprehension is discussed within program

visualization.

Program visualization uses the capability of human visual system to enhance

program comprehensibility. The purpose of program visualization is to translate a

program into a graphical view to show either the program code, data or control flow

(Briand et al., 1997). This technique is significant to users because the criteria of source

code cannot be physically viewed. Human interpretation or imagination is needed to

help the users to understand the source code. Visualization techniques can be used in

teaching to help users understand on how programs work. It is applicable in the process

of writing programs because it helps them to understand their codes better. This study

uses visualization techniques to show the flow of control structures that consist of

sequential, iteration and repetition. Control structures visualize its control flow to show

the flow of a program. Thus, visualization technique can help users to understand such

programs better mainly among the novices.

2

1.2 Background of the Study

In studying about program languages, users need to be able to comprehend a

program that is completed with syntax, semantic and flow of a program. Most users

especially the novices face a lot of problems when trying to learn a program. According

to Winslow (1996), many novice programmers are unable to transform the problem

solution into source code. They have to take a lot of time to understand the syntax,

semantics and the program flow. They need techniques and tools to help them in the

learning process.

Presently, there are many tools available to improve program comprehension but

not all are suitable for different level of users. Some of the IDEs designed with advance

features are suitable for professional users only (Eclipse, 2010; Zhou, 2008; JAVA,

2001). These features may overwhelm some novices especially those who have no

programming background. Besides, some IDEs are too simple and fail to expose users

to the real world environment (Maletic, 2008; Vainio, 2007; Lahtinen, 2007). The

unwell-structured tools are caused by a lack of knowledge about the effectiveness of the

IDE design (Sommervile, 2001). These tools lack of user friendliness. Hence, programs

become more difficult to understand with a high possibility that the novice

programmers will be neglected due to the complex features in IDE.

User interface layout should be good enough for the purpose of facilitating the

process of learning programs effectively and efficiently. The user interface plays an

important role to help users to visually understand the problem solving strategies (Chen

& Marx, 2005). A good IDE helps software developers in writing programs more

3

quickly and produce better quality code. IDEs with standard features enable users to

familiarize better and reduce their time to learn the features.

This research discusses the visualization technique that will represent the source

code in a graphical view to help novices to improve their control flow comprehension.

According to Hendrix et al. (2002), representing any ideas with pictures rather than

words is intuitively more appealing because a visual presentation will be more readily

understood than its textual counterpart. This research aims to support beginners or

novice programmers who have been exposed to programming languages by providing

effective visualization technique and tool. Thus, the control flows and the source code

structures will be shown visually. Therefore, a more suitable tool providing IDE

elements that includes an effective technique is proposed in the production of a better

IDE and well-designed GUI to improve learning process especially in program

comprehension.

1.2.1 The Importance of Program Comprehension

There have been a large numbers of researches directed at the problem of

program comprehension (Maletic & Kagdi, 2008). Zaidman et al. (2006) find that

software engineers tend to spend up to 50% of their time trying to comprehend the

structure of a software system. Many problems in program comprehension arise due to

the use of textual representation as the primary source of information. In fact, a program

is in the form of a hierarchical structure, but the actual behaviour of a program cannot

be reflected as the program is represented in text form. A program can be understood if

users manage to comprehend the flow of a program including its syntaxes and

4

semantics. The program comprehension activity is more difficult when users try to

understand programs that are written by others.

Program comprehension is important in order to understand the problem domain

written for a specific program. It also builds a mental representation of the program that

is often seen as a hypothesis-driven process (Vainio and Sajaniemi, 2007). Moreover,

the study of program comprehension can help to explain how programmers understand

a program or software. The combination of theories and tools will help a programmer

understands the codes or programs better (O’Brien, 2003).

1.2.2 The Importance of Program Visualization

The subject that is not physical in nature or hidden from view needs to be

interpreted for its comprehension. Therefore, program visualization that concedes the

process of making intangible things physically visible helps to generate better

information for humans. Brusilovsky (2006) states that visualization can provide a clear

metaphor for understanding complicated concepts and uncovering the dynamics of

processes that are usually hidden from the users’ vision. The purpose of program

visualization is to extract information from a program and present it in a graphical form

(Roman & Cox, 1992). Thus, program visualization uses graphics to enhance the art of

program presentation and thereby facilitates the visualization, understanding and

effective use of computer program for computer users. According to Lahtinen et al.

(2007), program visualization is typically used in introductory programming courses

because visualization can help students with difficulties in learning.

5

A suitable visual representation must be considered carefully to ensure the

effectiveness of visualization viewed. Program visualization is important to comprehend

a program because program is text-based and is not shown physically. Moreover,

program visualization helps the users to understand the behaviours of a program due to

difficulties that may appear when users try to understand the program. Additionally, it

needs a technique that can represent the text-based information into graphic illustration

so that users can increase their understanding. According to Hendrix et al. (2000),

representing objects, process and ideas with pictures rather than words are intuitively

more appealing.

In the midst of today’s technologies and capabilities of computer graphics, many

software programs become easier to use because of the availability of a graphical

interface. This technology, especially graphical representation, contributes

tremendously in the learning process because graphic-based program assists the

understanding of the process better compared to text-based only. Thus, this study

proposes a technique that represents text-based programming into graphical view.

1.3 Research Framework

 In maintaining the software, more time is spent in comprehending the source

code. Thus, in order to reduce the time used, this research refers to Semantic Software

Engineering that encompasses theoretical aspects of the systematic design as well as the

implementation and deployment of knowledge-oriented software systems

(Semanticsoftware.info, 2009). There are four major areas that are discussed in this

field: applications, system architectures, foundation, and forward and reverse

engineering (see Figure 1.1).

6

Software
Engineering

Applications

Fuzzy set
theory

Language
technology

Distributed
Systems

Semantic
Desktops

Text Mining
Systems

Biomedical
Systems

Building
Engineering

Program
Comprehension

System
 A

rchitectures

Forw
ard/R

everse Engineering

Program Comprehension

Textual, lexical and
syntactic analysis

Execution and
testing

Foundation

Traceability

Graphing method
(visualization)

Analysis

Figure 1.1: Frameworks Semantic Software Engineering (Semanticsoftware.info, 2009)

 In this study, program comprehension is focused on the reverse engineering. The

research area of this study discusses on how to develop tools and methodologies to

assist in understanding the source code.

7

Nelson (1996) discusses on the specialization area in program comprehension and

proposes the major approaches to improve program comprehension as described below:

(i) Textual, lexical and syntactic analysis: These approaches focus on the source

code and their representations.

(ii) Graphing methods (visualization): There are a variety of graphing approaches

for program comprehension to show the control flow of the program, data

flow and data dependency. This approach is the mapping of program to the

graphical view to show the programs visually.

(iii) Executing and testing: These approaches are for profiling, testing and

observing program behaviour.

 The technique proposed in this study implements the graphing method. Most of

the researchers discuss the graphing method under program visualization area.

1.4 Research Questions

For this research, the main question focuses on How to provide an effective

technique to visualize control structures that can improve novices’ control flow

comprehension? The sub-questions are as follows:

(i) What are the suitable techniques for novices? There are a lot of techniques

that are suggested in improving control flow comprehension. Most of the

techniques are not suitable to novices. This study compares the existing

techniques concerning their strengths and weaknesses.

(ii) Are the existing tools effective? Well-designed tools can avoid users from

learning complex programming languages and help them to reduce the time in

learning process. However, most of the tools are not suitable for novices. This

8

research studies the characteristics of the tools and techniques available besides

comparing the strengths and weaknesses of the tools.

(iii) How to visualize control structures? This study chooses the control structures

program to test the technique. Visualization is the best technique to understand

the control structures rather than text-based because users need to understand the

flow of controls by looking at how each structure is operated as it can be

illustrated. So, this study aims to find out the effective way to visualize the flow

of the control structures.

(iv) What are the important features that should be provided and how do the

features work? One of the objectives of study is to develop the prototype tool

that is applicable to the technique. This study has to find the features that

novices are familiar with. The intended features are simple, easy and user

friendly.

(v) How to ensure the technique is effective? The evaluation of the prototype tool

will be conducted. The result from the collected data answers the hypotheses to

ensure the effectiveness of the technique that is applied on the tool.

In order to identify the effectiveness of the tool, it is crucial to discuss these four

main arguments to produce the most effective tool that can support users to overcome

any problems. The four arguments are as listed below:

(i) What should the tool support? The tool should be suitable for novices. It must

be easy and simple to use. The tool should focus on visualizing a program rather

than representing a program in text-based in understanding the behaviour of a

program.

9

(ii) Why should the tool support? Without the capability to visualize the flow of a

program, most novices will face many problems in program comprehension. The

tool should attempt to visualize the flow of a program in graphical view.

(iii) When should the tool support? The tool should be provided to the beginners or

novices at the start of learning process. At present, a program can only be found in

text-based software and they need an aid tool to comprehend a program in other

methods.

(iv) How should the tool support? The tool should help novices to comprehend a

control flow in other methods rather than text-based. The graphical view of source

code is more effective to help novice users in understanding and comprehending a

program.

 ZViF tool applied in this research implements ZViF techniques designed to

fulfil users' needs. All features provided are in standard design and simple layout to

overcome the lack in using existing tools. Besides, the tool is mainly built for novices.

1.5 Objectives of the Study

This research is important in order to help novices to improve their control flow

comprehension in their learning process. Besides, this study can be seen as a form of

guideline for designers or anyone who is interested in developing tools that focus on

improving control flow comprehension. This study can contribute as an introduction in

learning programming language for the novices. Therefore, the research objectives are

as follows:

(i) To enhance the visualization technique in order to improve understanding of

control flow in program comprehension activity among novices;

10

(ii) To produce effective tool that can be used as an aid among novices when they

learn control structures of a programming language; and

(iii) To measure the significance of the proposed technique and its tool in improving

control flow comprehension if it is used among novices.

1.6 Scope of the Research

The scopes of the study are as follows:

(i) Visualization technique: Visualization technique can be used to visualize the

program code, data or control flow. The visualization technique proposed only

covers the scope of the control flow. The technique visualizes the control flow of

control structures by determining the sequence of statements.

(ii) Control structures: The technique only chooses control structures to visualize

the control flow. The control structure also known as control construct consists of

three types: sequences, selections and iterations. The flow of control structures is

difficult to determine because it has some conditions that need to be applied to

control the flow of statements. This study chooses C++ programming language to

apply the proposed technique.

(iii) Novices: The people who can be categorized as novices are those with non-

programming background or beginners in learning a program. When novices learn

a programming language, they face a lot of problems. This study focuses on this

group of people to help them in their learning process.

11

1.7 Research Contribution

 When novices start to learn programs, they face a lot of problems in trying to

understand the program code, its operation and its flow. Although many researchers had

worked in finding different strategies and techniques to overcome these problems but

most researchers still have yet to discuss in great length on how to help users when they

learn a certain program.

 Thus, the technique called Zoom Visual Flow (ZViF) is proposed to visualize

the control structures. The ZViF technique uses diagram with the combination of text

and color to show programs in visual manner. Program flows are presented by using

Action Icons Control Structures (AICoS) and Visual Control Flow (VCoF). The

details of the technique are discussed in Chapter 4.

 This research provides the graphical representation technique to comprehend a

control flow of control structures because it is the best way to explain certain things

rather than using text-based. This technique helps the users to understand a control flow

by translating it into graphical view to show the program code, data and control flow.

When the text-based method is translated and displayed graphically with the

combination of text, it becomes more translucent for novices to understand information

presented.

 This study also develops a tool that implements the proposed technique. In

designing the tool, the main criterion observed is the functions which are suitable for

novices. The diagrams with the combination of text are used to represent each control

structure in simple form. A different form of diagram represents a different task. It eases

12

the users’ memories in using each of the diagrams. The diagrams intend to portray the

semantic feature while the text provides the way to clarify the meaning to the users. The

tool offers capabilities in highly visual and readable description of a program. The tool

that implements this technique is intended for teaching purpose.

 The technique is produced in an effort to provide a program visualization tool

that addresses the problems faced by novices when learning a program related to

cognitive model. This study hopes to provide valuable input to lecturers, curriculum

planners and researchers on the aspects of designing and developing tools for program

comprehension as well as to improve teaching and learning processes. Most

importantly, it provides useful new knowledge to novices about the way to comprehend

a control flow.

1.8 Organization of the Chapters

 This thesis is organized into six chapters. Chapter 1 to Chapter 6 present in

chronological order, an introduction, literature review, research methodology, the

development of ZViF, evaluation and discussion respectively. The organization of the

chapters of the thesis is as follows:

 Chapter 1 introduces the overview of software engineering and program

comprehension that is one of the core activities in software engineering through

enhancing a GUI in IDE. In addition, this chapter also discusses on the program

visualization that is used to translate a program into graphical view. It also describes the

background of the study followed by the importance of program comprehension and

program visualization. Research framework for program comprehension and the

13

research questions as well as sub-questions are designed. Objectives of the study are

mentioned which is later followed by the research contribution list.

 Literature review that is related to the study is discussed in Chapter 2. In this

chapter, previous studies regarding program comprehension and program visualization

are discussed in details by providing the ideas, strategies, techniques, and tools

proposed by previous researchers. This chapter also discusses on the guidelines,

characteristics and principles observed to produce a better user interface.

 Chapter 3 is research methodology that discusses in details about the

procedures taken since the beginning until the end of the conducted research. In the first

section, the operational framework or research procedure conducted in this study is

illustrated and the reasons for choosing Tripp and Bichelmayer’s Rapid Prototype

Model in this study are listed. Next, the methods in developing prototype tool are

discussed in details. There are three phases in developing the prototype, which are

gather prototype tool requirements, construct prototype tool and evaluate prototype tool.

In the evaluation section, the variables, attributes and hypotheses are determined.

 The development of ZViF prototype tool is described in details in Chapter 4. In

this section, AICoS notations and VCoF flow diagrams used in the tool are discussed. In

the next section, more discussion on the algorithm to display the flow of programs is

presented. In the last part of the chapter, the source code that is written in Java language

involves in developing ZViF tool is discussed.

14

 Chapter 5 presents in details the procedure to evaluate the proposed technique

and result of the research. The evaluation procedure includes questionnaire design, data

collection procedure, data analysis and its findings. In evaluation, there are two types of

lab experiment studies: users’ preference and users’ comprehensibility. The comparative

study on graphical representation techniques is also done to compare the existing

techniques and the proposed technique. The result and discussion are made at the end of

each study.

 Chapter 6 is the last chapter that concludes the research by drawing the

summary of the thesis. The contributions of the study are determined based on the

findings. It also provides suggestions for further research work, which are stated at the

end of the chapter.

1.9 Summary

 Specifically, this chapter provides an overview on the problem of learning a

program especially among novices. The background of the study was also discussed

together with the research questions. This chapter also mentions the objectives that need

to be achieved in this study. The research’s framework and contributions have also been

listed. Finally, the organizations of the chapters in this thesis are presented briefly so as

to show an overview of respective chapter.

15

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Various researches have been conducted in program comprehension over the last

few decades (De´tienne, 1997; De´tienne et al., 2001; Storey, 2005). Many researchers

suggest ideas, techniques and tools, which can help the users to comprehend a program.

Firstly, this chapter focuses on the program comprehension in general followed by

program comprehension strategies that are proposed by some researchers. Program

visualization is one of the techniques that give a lot of contributions in learning a

program. The roles and importance of program visualization are discussed. Next, the

existing graphical representation techniques and the existing tools are also discussed.

Besides, this chapter also highlights why IDE plays an important role in the learning

process especially to improve program comprehension. At the end of this chapter,

several sections on finding a better way on how to design and develop a tool to provide

the most effective IDE are discussed.

2.2 Program Comprehension

One of the software engineering activities involves program comprehension. In

the original model of software engineering lifecycle, there are five phases to be

followed: requirement analysis and definition, system and software design,

16

implementation and unit testing, integration and system task as well as operation and

maintenance. Program comprehension is the major activity during software maintenance

(Maletic & Kagdi, 2008). Program comprehension is important because it can explain

how programmers understand a program or software. The process of comprehending a

program becomes more complex and it has been recognized as a major time-consuming

process in software maintenance (Storey et al., 1999) taking up to 60% of the total time

devoted to maintenance (Dunsmore et al., 2000).

 Corritore and Wiedenbeck (2001) state that program comprehension concerns

on the individual programmer’s understanding of ‘‘what a program does and how it

does it in order to make functional modifications and extensions to a program without

introducing errors”. According to Von Mayrhauser (1995), program comprehension is

“an activity in which the program reader extracts meaning by understanding how a

particular program or code fragment performs its task, or what task a particular item

performs”. Deimel and Naveda (1990) define program comprehension as “the process

of taking source code and understanding it”.

 Program comprehension is a combination of two characteristics: The theories

that provide how to improve program comprehension and tools that can implement the

theories. These two characteristics will change the way programmers understand the

codes or programs. Storey (2005) reviews some of the key theories of program

comprehension and discusses on how these theories are related to tools that support it.

Many researchers also consider two models when they study program comprehension,

which are mental model and cognitive model. A mental model describes the constructed

combination of information contained in the source code and documentation with the

17

assistance of experts and domain knowledge that the programmer brings into the task

(Grubb & Takang, 2003). In other words, mental model shows the maintainer’s mental

representation of the program that needs to be understood. A cognitive model describes

the processes and information structures used to form the mental model (O’Brien,

2003). De´tienne (2001) also reviews cognitive models and conducts the experiment in

this area.

 Although much research has been done, Corritore and Wiedenbeck (2001) point

out that the studying of program comprehension remains incomplete and it should be

continued in order to produce the best strategies to improve program comprehension.

2.3 Cognitive Models of Program Comprehension Strategies

Many studies have been conducted to observe the process on how programmers

understand the code. Finally, they propose five cognitive models of program

comprehension strategies: bottom-up (Shneiderman & Mayer, 1979), top-down

(Brooks, 1983), integrated approach (Von Mayrhauser & Vans, 1985), knowledge-base

(Letovsky, 1986) as well systematic and as-needed (Littman et al., 1986).

 Shneiderman and Mayer (1979) suggest that some programs are understood

from bottom-up comprehension strategy where programmers read the source code by

constructing a multilevel internal semantic structure to present the program. Low-level

software artefacts are mentally chunked or the lines of code are grouped into

meaningful high-level abstraction. Chunking is the process of recognizing the function

of program components and fragments. These pieces are then grouped until

18

understanding is formed. This strategy can help to improve program comprehension,

especially to novices because users can focus on smaller programs.

 The work by Pennington (1987) observes how programmers understand a

program by using the bottom-up strategy, which focuses on gathering statements and

controlling flow information. It believes that understanding the overall control flow is

more important than understanding the function of programs. This strategy produces at

least two mental models, which are program model and domain model. The micro-

structure will be chunked and cross-referenced by macro structure to form a program

model. The domain model relates objects and functions in the problem domain to

language entity sources. According to O’Brien (2003), the bottom-up model of program

comprehension primarily addresses situations where the programmer is unfamiliar with

the domain. Comprehending program by using bottom-up strategy needs a mental

model and cognitive model of a program. The process of chunking the source code will

be based on the program domain. However, this strategy is not applicable to novices

because they do not have the capability to determine the program domain.

 The top-down strategy is the understanding by comprehending the top-level

detail program such as what it does and when it executes. It also includes the

understanding of low-level details such as data type, control and data flow, and

arithmetic patterns. Brooks (1983) proposes the top-down strategies in which the

programmer develops a hierarchy of hypotheses on what the program does and how the

program works. The verified hypotheses depend heavily on the presence and absence of

beacons, where indicators present a particular structure or operation of the internal and

external program. According to Soloway and Ehrlich (1984), a top-down strategy is

19

used when the syntax of the program is familiar to the programmer. They also observe

how expert programmers recognize program plans and exploit programming

conventions during comprehension. In this strategy, they determine the hypotheses to

know the program domain. Users have to select the beacons based on their knowledge

foundation, mental model and external representation. Thus novices must have the

ability to select the beacons and hypotheses.

 Letovsky (1986) studies programmers who use either bottom-up or top-down

strategy to comprehend a program that is called knowledge-base strategy. The work

mentions that program understanding depends on the programmer’s knowledge

foundation and the assimilation process involving both top-down and bottom-up

strategies. Other strategies include the integration of bottom-up, top-down and

knowledge-base called systematic and as-needed which is theorized by Littman et al.

(1986). Von Mayrhauser and Vans (1985) suggest the integrated approached strategy to

improve program comprehension.

 Most novices face difficulty in determining the flow of a program (Pennington,

1987), which causes them to fail in understanding what happens inside a program

(Brusilovsky et al., 2006). By using the combination of bottom-up, top-down and

external representation, this study attempts to reduce problems in comprehending a

control flow of a program. Bottom-up strategy can be used to determine the flow of a

program and top-down strategy can be used to recognize the function and process of the

program. This study utilizes the combination of these strategies to visualize a control

flow of control structures from the source code. The strategy that has been used for this

study is discussed in Chapter 4.

20

2.4 Program Visualization

Software visualization is divided into two groups; algorithm visualization which

is used to study abstract algorithm and program visualization which visualizes on source

code or data structure (Yehezkel, 2002). This research focuses on program visualization

to improve understanding of the program. Baecker (1988) states that to visualize means

“to see the mental image form of something”. According to the study, graphics are used

as an art to enhance program comprehension because graphics encompass the

disciplines of typography, graphic design, animation, cinematography and the

technology of interactive computer graphics. Based on Myers (1986), program

visualization is the program that is specified in the conventional textual manner where

the graphics are used to illustrate some aspects of the program or its run-time execution.

According to Roman and Cox (1992), program visualization is a field of study

that concerns with the use of graphical representations in the computer environment and

deals with graphical presentations, supervision and exploration of program expressed in

textual form. According to the survey that is done by Brusilovsky et al. (2006), the

majority of respondents (89%) felt that enhancing graphical visualization with textual

visualization will help to improve the value of visualization.

Program visualization is suitable to be used in the introductory program courses

because visualization implements pictures or notations. It is suitable for novice users

(Lahtinen et al., 2007) but the usability and instruction should be planned more

carefully to make it more beneficial for the users (Hendrix et al., 2000; Lahtinen et al.

2007).

21

According to Krinke (2004) there are many program visualization tools that

have been developed to support teaching and learning of programming but most of them

have negative feedback. The reasons for this finding may be derived from the facts

which the tools and visualizations are constructed in a uniform fashion and the

visualization systems do not allow for enough interaction between users and the system

(Ohki and Hosaka, 2003; Bednarik et al., 2005; Pearson et al., 2008; Raeder, 1985).

2.4.1 Graphical Representation Techniques

 A variety of graphical pseudo code forms have been proposed; for examples:

ANSI Flowchart (Nassi & Shneiderman, 1973), Nassi-Shneiderman Diagram (Cornelia

& Marilyn, 1973), Warnier-Orr Diagram (Martin & McClure, 1984), Action Diagram

(Martin & McClure, 1985) and Control Structured Diagram (jGRASP, 2009). All these

techniques use symbols to represent most operations in programming. The goal of each

technique is essentially the same, which is to provide a clear picture of the structure and

semantics of the program through a combination of graphical construction and some

additional textual notations.

Flow Chart technique (Nassi & Shneiderman, 1973) clearly describes the flow

of action that can describe the program abstraction between program statement and the

code of the completed program. Nassi-Shneiderman Diagram (Cornelia & Marilyn,

1973) has proven to be useful in all phases in programming development because of the

excellent graphic technique, which are simple to use, elegant in appearance, easier to be

understood by novice users and allow the users to build their own structure.

22

 Warnier-Orr Diagram (Martin & McClure, 1984) uses a set of brackets to show

the level of the system and aid the design of program structure by identifying the input,

process and output. Action Diagram (Martin & McClure, 1985) is used to construct the

flow of sequence, repetition, condition, module, and data store. CSD has been

developed since 1995 and the improvement of the technique and tool that apply the

technique that has been done until now (Cross & Sheppard, 1988; Hendrix et al., 2002;

Hendrix & Cross, 1998; jGRASP, 2009; jGRASP, 2010). CSD is designed to reduce the

time required for program comprehensibility by clearly depicting the control structures

and control flow at all relevant levels of program abstraction.

The goal of each technique is essentially the same, which is to provide a clear

picture of the structure as well as semantics of the program through a combination of

graphical construction and some additional textual notations. Each style has its own

strengths and weaknesses. The strengths and weaknesses of graphical representation

techniques are summarized in Table 2.1. From this table, CDS is the best technique

because it uses simple graphical notations and its program flow is shown clearly by

using the line. Nonetheless, there are still weaknesses of this technique as it can also be

found in other techniques.

Therefore, this study proposes a technique that can reduce some of the

weaknesses found in the five techniques discussed. The strengths of the proposed

technique are as follows:

(i) Using simple and special graphical notations to indicate the task of a program;

(ii) Maintaining the original source code;

(iii) Showing clear flow of action; and

23

(iv) Converting graphic view easily.

Meanwhile, Chapter 5 discusses the result of comparative study among these existing

techniques with the proposed technique.

Although most researchers develop with variety of techniques to improve

program comprehension through program visualization, the effectiveness of

visualization is still an open question and is certainly not universally accepted (Hendrix

et al., 2000).

24

Table 2.1: The Strengths and Weaknesses of Graphical Representation Techniques.

Techniques

Strengths

Weaknesses

Flow Chart (Nassi & Shneiderman, 1973)

• Closer to structured
programming.

• Uses basic symbols to
show the flow of a
program.

• Clearly describes the
flow of action and level
of abstraction.

• Can only describe
simple
programming
technique.

• Describes more on
control flow rather
than program
component.

Nassi-Shneiderman Chart (Cornelia &
Marilyn, 1973)

• Excellent graphic
technique which is
simple, elegant and
easier to understand

• Allow users to build
their own structure

• Better in displaying
logic.

• Does not provide
automatic
generation of
source codes or
correct errors.

Warnier-Orr Diagram (Martin &
McClure,1984)

• Shows the flow of
control construct very
well.

• Easy to convert into
structured program code.

• The appearance is
simple, easy to
understand and clear in
showing groupings of
process and data.

• Does not show the
sequential of the
statements clearly.

Action Diagram (Martin & McClure, 1985)

• Uses special graphical
notations to indicate the
task of a program.

• The appearance is
simple by using only
lines to show the block
statements.

• Does not show
clearly the
sequence of
statements.

Control Structured Diagram (Cross &
Sheppard, 1988; Hendrix et al., 2002; Hendrix
& Cross, 1998; jGRASP, 2009; jGRASP,
2010)

• Depicts control
structures and control
flow at all relevant
levels of program
abstraction clearly.

• Uses basic symbols to
show the flow of a
program.

• Does not clearly
describe the source
code.

• Only visualizes the
flow of a program.

• Requires basic
knowledge about
programming
languages.

25

	titlepage
	March16_2011
	ACKNOWLEDGEMENT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	ABSTRAK
	ABSTRACT
	CHAPTER 1
	1.1 Overview
	1.2 Background of the Study
	1.2.1 The Importance of Program Comprehension
	1.2.2 The Importance of Program Visualization

	1.3 Research Framework
	1.4 Research Questions
	1.5 Objectives of the Study
	1.6 Scope of the Research
	1.7 Research Contribution
	1.8 Organization of the Chapters
	1.9 Summary

	CHAPTER 2
	LITERATURE REVIEW
	 Introduction
	2.2 Program Comprehension
	2.3 Cognitive Models of Program Comprehension Strategies
	2.4 Program Visualization
	2.4.1 Graphical Representation Techniques

	2.5 Other Visualization Techniques
	2.5.1 Synthetic Personality Inventory (SPI)
	2.5.2 Multi-Agent Educational System
	2.5.3 Program Dependence and Slices

	2.6 Program Visualization Tools
	2.6.1 jGRASP
	2.6.2 BRICS
	2.6.3 P-Coder

	2.7 User Interface Design
	2.7.1 Components of Graphical User Interface and Design Principles
	2.7.2 The Elements of User Interface
	2.7.2(a) Colour
	2.7.2(b) Text
	2.7.2(c) Graphic
	2.7.2(d) Layout

	2.8 Summary

	CHAPTER 3
	 Introduction
	3.2 Operational Framework or Research Procedure
	3.2.1 Tripp and Bichelmayer’s Rapid Prototype Model

	3.3 Method for Developing Prototype Tool
	3.3.1 Phase I: Gather Prototype Tool Requirements
	3.3.1(a) Hardware and Software
	3.3.1(b) System Specification
	3.3.1(c) Prepare and Analyze Contents for Control Structures
	3.3.1(d) Set Objective for Prototype Tool

	3.3.2 Phase II: Construct Prototype Tool
	3.3.3 Phase III: Evaluate Prototype Tool
	3.3.3(a) Research Design and Hypothesis

	3.4 Summary

	CHAPTER 4
	 Introduction
	4.2 Overview
	4.3 Zoom Visual Flow (ZViF)
	4.4 Bottom-up and Top-down Strategy
	4.4.1 AICoS Notation
	4.4.1(a) Colours
	4.4.1(b) Text and Information Display

	4.4.2 VCoF Flow Diagram
	4.4.3 Interface Design
	4.4.4 Flowchart
	4.4.4(a) Enter Code Flow Chart
	4.4.4(b) ZViF Generated Flowchart

	4.5 Detail Design
	4.5.1 Sequential Control Flow
	4.5.2 Selection Control Flow
	4.5.3 Iteration Control Flow

	4.6 The Criteria Design
	4.7 Summary

	CHAPTER 5
	EVALUATION
	5.1 Introduction
	5.2 Evaluation Procedure
	5.2.1 Study 1 – Users’ Preference
	5.2.1(a) The Questionnaire Design
	5.2.1(b) Analysis and Findings

	5.2.2 Study 2 – Users’ Comprehensibility
	5.2.2(a) Questionnaire Design
	5.2.2(b) Analysis and Findings

	5.2.3 Study 3 - The Comparative Study on Graphical Representation Techniques
	5.2.3(a) The Questionnaire Design
	5.2.3(b) Result and Discussion

	5.3 Summary

	CHAPTER 6
	CONCLUSION
	6.1 Summary of the Thesis
	6.2 Contribution
	6.3 Revisiting of the Objectives
	6.4 Future Research
	6.5 Summary

	REFERENCES
	APPENDICES
	Appendix A: Manual for ZViF Tool
	Appendix B: Program Use in Study I
	Appendix C : Program Use in Study II
	Appendix D: Questionnaire for Study I
	Appendix E: Questionnaire for Study II
	Appendix F: Certificate of Appreciation for Winning the Best Paper Award
	Appendix G: Certificate of Appreciation for Winning the Bronze (Professional)
	Appendix H: List of Publications

