

SEMI-FLUID: A CONTENT DISTRIBUTION
MODEL FOR FASTER DISSEMINATION OF

DATA

SALAH NOORI SALEH

UNIVERSITI SAINS MALAYSIA

2010

SEMI-FLUID: A CONTENT DISTRIBUTION MODEL FOR FASTER
DISSEMINATION OF DATA

By

SALAH NOORI SALEH

Thesis submitted in fulfillment of the requirements
for the degree of

Doctor of Philosophy

March 2010

ii

ACKNOWLEDGEMENTS

 بســـــــــــــــم االله الرحمن الرحيـــــــــــــــم
 " اقرأ باسم ربك الذي خلق "

I would like to take this opportunity to convey my sincere thanks and deepest

gratitude to my supervisor, Prof. Dr. Sureswaran Ramadass, for all the help and

valuable guidance provided to me during the preparation of this thesis. I consider

myself privileged to have had the opportunity to work under his guidance.

Moreover, I would like to convey my appreciation to the MCS ver. 6 core

team, all NAv6 center members, the School of Computer Sciences, the Institute of

Postgraduate Studies, the university library, and the Mlabs staff for their help and

support. A special thanks to my friend Ayman Helweh for his valuable help.

My sincere gratitude also goes to my wife Dr. Ban. I thank her for her

support, understanding, and encouragement during every step of my study and my

writing of this thesis.

The favour, above all, before all, and after all, is entirely Allah’s, to Whom

my never-ending thanks and praise are humbly due.

iii

DEDICATION

I would like to dedicate this thesis to the dearest ones, my father for his

patience and the encouragement he provided me with during the entire period of the

study, and my late mother (May Almighty Allah rest her soul) who shared the stress

in my life, encouraged me in times of dismay, cheered me up in times of distress, and

renewed my hope in times of despair. I would also like to dedicate this thesis to my

darling wife, lovely son, brother, and sister.

iv

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS …………………………………………….………… ii

DEDICATION …………………………………………….………………........… iii

TABLE OF CONTENTS …………………………………...…….….…….….… iv

LIST OF TABLES …………..……..…………………………..…………….....… x

LIST OF FIGURES ………………………………………………………........… xi

LIST OF ABBREVIATIONS ……………………………..………...….........… xv

ABSTRAK …………………………..………….…………..…........……….... xvii

ABSTRACT …………..……….………………………………….……...........… xix

CHAPTER ONE: INTRODUCTION ……………………………….…...…......... 1

1.1 Motivation ………………………...………………..………….…… 1

1.2 Background …………………………..………………………..….… 2

 1.2.1 Fluid Model …………………………………………...…... 3

 1.2.2 Chunk Model ………………………………..………......... 5

1.3 Problem Statement ………………………….…………….….…...… 7

1.4 Research Objective ……………...………………….…….….…...… 8

1.5 Thesis Contribution ..……………………….…………….…...….… 8

1.6 Thesis Organization .……………………….………………..…..… 10

v

CHAPTER TWO: LITERATURE REVIEW ……………….………..….….…. 12

2.1 Introduction ………………………………………………….…...... 12

2.2 Complete File Store-and-Forward ……………………………..….. 12

 2.2.1 Multipoint File Transfer System (MFTS) ….……..……... 14

 2.2.2 Large File Distribution within CDNs (FastReplica) 15

2.3 Chunk Model with Scheduling ………………….….……........….. 17

 2.3.1 Rarest Piece First (RPF) ..….…………….…….........…... 20

 2.3.2 Most Demanding Node First (MDNF) …..……..………... 21

 2.3.3 Maximum Flow (MaxFlow) ..…….………….…...……... 23

 2.3.4 Gossiping with Multiple Messages …….………….......... 24

2.4 Fluid Model with Scheduling …..……….…..……….……...…..... 25

 2.4.1 Multi-Class Model …….…….………………....………... 27

 2.4.2 Peer Grouping Scheme …….……………………….…..... 27

2.5 Chunk Model with Encoding ………………….….…………...….. 28

 2.5.1 P2P Receiver-Driven Mesh-Based Streaming (PRIM) 30

 2.5.2 Microsoft BitTorrent (Avalanche) ……..…..……..…....... 33

2.6 Fluid Model with Encoding …….……….…..………………….…. 36

 2.6.1 High Bandwidth Data Dissemination (Bullet) ..….…...... 38

 2.6.2 Reliable Overlay Multicast (ROMA) .…………....….….. 41

2.7 Fluid Model with Backpressure …….………..……………….….. 43

 2.7.1 End-to-End Multicast Congestion Control (E2E MCC) 45

 2.7.2 Reliable Application Layer Multicast Protocol (REALM) . 49

2.8 Chapter Summary …………………………………………..…...… 52

vi

CHAPTER THREE: METHODOLOGY AND DESIGN …………………….. 54

3.1 Introduction …………………………...……………….….............. 54

3.2 Modeling Standard Overlay Topologies in Homogeneous Network . 58

 3.2.1 Linear: A Linear Chain Topology ….……..…….…...…... 59

 3.2.2 Treek: A Tree Distribution Topology ….……..…….…..... 62

 3.2.3 PTreek: A Topology Based on Parallel Trees ….…..…..... 63

 3.2.4 Mesh: A Topology Based on Random Connection …........ 66

3.3 Heterogeneous Overlay Network …..……….…..……..………...... 67

 3.3.1 Reorganizing Heterogeneous Peers in

 Standard Topologies ………………………………...…… 69

 3.3.2 Mathematical Representation for Mesh Topology ……..... 74

 3.3.3 Analysis of Network Coding for Heterogeneous P2P ….... 83

3.4 Modeling Content Distribution Models in Heterogeneous Network . 86

 3.4.1 Chunk Model ….……..……..………………………..….... 87

 3.4.2 Fluid Model with Backpressure ….……..……………..... 101

 3.4.3 Fluid Model with Encoding …………..….…..……......... 103

 3.4.4 SFCD Model ……………..……………..………..…....... 105

3.5 SFCD Model for Large-Scale Distributed Network of Servers ..… 107

3.6 Chapter Summary ………………………..…………………..…… 109

vii

CHAPTER FOUR: IMPLEMENATION DETAILS ……………...…...….…. 114

4.1 Introduction ………….………………………..………….............. 114

4.2 The Proposed MS-MFTS Architecture ………….……….............. 114

4.3 MS-MFTS Main Entities …………………...………..……….….. 116

 4.3.1 MS-MFTS Client Entity ….…………………...…....…... 120

 4.3.2 MS-MFTS Server Entity ……………………….....…...... 120

 4.3.3 MS-MFTS Reflector Entity ……………….....…....…..... 122

4.4 The Proposed SFCD Model ………………..………….............….. 123

 4.4.1 SFCD Model Main Units and Structure ………....…... 125

4.4.1.1 Flow Distribution ..….………...............…....... 126

4.4.1.2 Binding Buffer …………………………...…... 127

4.4.1.3 Traffic Monitoring ………...…….…………... 128

 4.4.2 SFCD Model Integration with MS-MFTS ..……..…….... 127

4.5 SFCD/MS-MFTS System Control and Messaging .….....……....... 131

 4.5.1 Message Structure …….…….……………………..…..... 131

 4.5.2 Messaging Types …….…………………………...…....... 133

 4.5.3 Message Distribution Engine ……………………........... 134

4.6 File Distribution Process ….….…..……………….…..…………. 135

 4.6.1 Sending File to Group of Clients ……....………...…....... 138

 4.6.2 Group of Clients Requesting for a File ……….…….….. 144

4.7 Chapter Summary ………………………………………..……..… 148

viii

CHAPTER FIVE: EXPERIMENTAL SETUP …………………………..…. 149

5.1 Experimental Platforms ……………………………................... 149

5.2 SFCD/MS-MFTS WAN/LAN Testing Environment 149

 5.2.1 Experimental Setup ………..…………………….….... 150

5.3 SFCD/MS-MFTS LAN Testing Environment ……………....... 153

 5.3.1 Experimental Setup ………..……………………..…... 154

5.4 PlanetLab Testing Environment …..……………………….….. 157

 5.4.1 Experimental Setup ……………………….…..………... 157

5.5 Chapter Summary ………………………………………..…..… 160

CHAPTER SIX: RESULTS AND DISCUSSION ………………………..…. 161

6.1 SFCD Model Performance Evaluation ……………..................... 161

6.2 Mathematical Evaluation …………………………..…….…….. 162

6.3 Overall Performance for SFCD/MS-MFTS WAN/LAN Testing .. 162

6.4 Overall Performance for SFCD/MS-MFTS LAN Testing …...... 165

6.4 Overall Performance for SFCD PlanetLab Testing ………........ 169

6.6 Chapter Summary ………………………………………..…..… 171

CHAPTER SIX: CONCLUSIONS AND FUTURE WORK …..….........…. 173

6.1 Conclusion ………….…………………………..….…..….......... 173

6.2 Directions for Future Research …………………………….…….. 174

REFERENCES …………………………………...….……….....................… 176

APPENDICES …………………………………...….……….......................… 186

APPENDIX A: MATHEMATICAL EVALUATION DETAILS .…..………. 187

ix

A.1 SFCD Evaluation in Linear Topology ……………...................... 188

A.2 SFCD Evaluation in Treek Topology ……………....................... 192

A.3 SFCD Evaluation in PTreek Topology ……………..................... 197

A.4 SFCD Evaluation in Mesh Topology ……………....................... 201

APPENDIX B: ANALYSIS OF CHAINS OF TCP CONNECTIONS .….…. 206

LIST OF PUBLICATIONS …………………………………...……...........… 209

x

LIST OF TABLES

Page

Table 2.1 Summary of methods and enhancements used in Fluid and 53
 Chunk content distribution models

Table 3.1 Different combinations of content distribution models 57
 with standard overlay topologies: mathematical models

Table 3.2 Amount of work for different collaboration schemes: 82
 summary table

Table 3.3 Total download time: summary table 111

Table 3.4(a) Average download time: summary table (part 1) 112

Table 3.4(b) Average download time: summary table (part 2) 113

Table 6.1 Total download time calculation in MS-MFTS: 163
 summary table

Table 6.2 SFCD model vs methods and enhancements used in Fluid 172
 and Chunk content distribution models: summary table

Table A.1 Mathematical evaluation for content distribution 188
 models: possible scenarios

xi

LIST OF FIGURES

Page

Figure 2.1 Multipoint File Transfer System (MFTS) 14

Figure 2.2 FastReplica in the small: distribution step 16

Figure 2.3 Organized view of a mesh-based overlay with 17 peers 33

Figure 2.4 Sample description of Avalanche network coding system 36

Figure 2.5 High-level view of Bullet’s operation 40

Figure 2.6 ROMA overlay node implementation 42

Figure 2.7 End-to-End Multicast Congestion Control 46

Figure 2.8 Overlay MCC model 47

Figure 2.9 MCC overlay distribution tree 49

Figure 2.10 The Structure of a REALM Protocol Node 50

Figure 3.1 Linear topology with homogenous peers 60

Figure 3.2 Chunk transition in homogenous Linear topology (C=3) 61

Figure 3.3 File sharing in homogenous Linear topology 61

Figure 3.4 Treek topology with homogenous peers (k=2) 62

Figure 3.5 PTreek topology with homogenous peers (k=2) 64

Figure 3.6 Linear topology with heterogeneous peers 71

Figure 3.7 Treek topology with heterogeneous peers (k=3) 72

Figure 3.8 PTreek topology with heterogeneous peers (k=3) 73

Figure 3.9 PTree with generous collaboration scheme (k=2 and f=2) 76

Figure 3.10 PTree and generous with partial collaboration scheme 78
 (k=2, f=1, and j=2)

Figure 3.11 PTree and generous with full collaboration scheme 80
 (k=j=2 and f=2)

Figure 3.12 Different collaboration schemes between heterogeneous peers 81

xii

Figure 3.13 Random/mesh topology represented using PTree and generous 82
 with full collaboration scheme

Figure 3.14 Peer-to-peer with network coding 86

Figure 3.15 Chunk transition in heterogeneous Linear topology 87

Figure 3.16 Linear topology with heterogeneous peers (𝑇𝑇1

′ > 𝑇𝑇2
′): 90

 timing diagram

Figure 3.17 Calculating the remaining time (𝑇𝑇1

‴): one class is receiving only 91

Figure 3.18 Linear topology with heterogeneous peers (𝑇𝑇2

′ > 𝑇𝑇1
′): 93

 timing diagram

Figure 3.19 Multi-Server Multipoint File Transfer System (MS-MFTS) 108

Figure 4.1 MS-MFTS sites and file distribution 115

Figure 4.2 MS-MFTS client perspective 116

Figure 4.3 MS-MFTS layers overview 117

Figure 4.4 MS-MFTS overall entities and Semi-Fluid integration 119

Figure 4.5 SFCD model with parallel download/upload 123

Figure 4.6 Overview of SFCD model 125

Figure 4.7 SFCD model architecture and main units 126

Figure 4.8 Overview of Flow Distribution unit 127

Figure 4.9 Overview of Binding Buffer unit 128

Figure 4.10 Overview of Traffic Monitoring unit 129

Figure 4.11 MS-MFTS overall message structure 132

Figure 4.12 File distribution session 136

Figure 4.13 File requesting session 137

Figure 4.14 Initial handshaking for file distribution session 141
 (timing diagram)

Figure 4.15 Different incident with file distribution 142
 (Normal sending, file exist, and initialization failed)

xiii

Figure 4.16 Different incident with file distribution 143
 (Stop sending, Stop receiving, and Transferring error)

Figure 4.17 Initial handshaking for file requesting session 146
 (timing diagram)

Figure 4.18 Different incidents with file requesting session 147
 (timing diagram)

Figure 5.1 Snapshot of SFCD/MS-MFTS sites (WAN/LAN testing) 152

Figure 5.2 SFCD/MS-MFTS WAN/LAN testing diagram 153

Figure 5.3 Snapshot of SFCD/MS-MFTS sites (LAN testing) 155

Figure 5.4 SFCD/MS-MFTS LAN testing diagram 156

Figure 5.5 Snapshot for PlanetLab testing 159

Figure 6.1 SFCD/MS-MFTS evaluation for different content distribution 164
 model:Average download time for WAN/LAN testing

Figure 6.2 SFCD/MS-MFTS evaluation for different content distribution 166
 model: Average download time for LAN testing
 (Client A1 sending)

Figure 6.3 SFCD/MS-MFTS evaluation for different content distribution 167
 model: Average download time for LAN testing
 (Client B2 sending)

Figure 6.4 SFCD/MS-MFTS evaluation for different content distribution 168
 model: Average download time for LAN testing
 (Client C3 sending)

Figure 6.5 PlanetLab evaluation for different content distribution 169
 model:Total download time and file size = 50MB

Figure 6.6 PlanetLab evaluation for different content distribution 170
 model:Total download time and file size = 300MB

Figure A.1 Total download time for class 1 using different content 189
 distribution model with Linear topology

Figure A.2 Total download time for class 2 using different content 190
 distribution model with Linear topology

Figure A.3 Average download time using different content 291
 distribution model with Linear topology

xiv

Figure A.4 Total download time for class 1 using different content 293
 distribution model with Tree topology

Figure A.5 Total download time for class 2 using different content 294
 distribution model with Tree topology

Figure A.6 Average download time using different content 295
 distribution model with Tree topology

Figure A.7 Total download time for class 1 using different content 298
 distribution model with PTree topology

Figure A.8 Total download time for class 2 using different content 299
 distribution model with PTree topology

Figure A.9 Average download time using different content 200
 distribution model with PTree topology

Figure A.10 Total download time for class 1 using different content 202
 distribution model with Mesh topology

Figure A.11 Total download time for class 2 using different content 203
 distribution model with Mesh topology

Figure A.12 Average download time using different content 204
 distribution model with Mesh topology

xv

LIST OF ABBREVIATIONS

ADSL Asynchronous Digital Subscriber Line

ALM Application Layer Multicast

BRB Bind Recovery Buffer

CDN Content Distribution (Delivery) Network

CLR Common Language Runtime

DSDFT Data Size Dependent File Transfer

E2E MCC End-to-End Multicast Congestion Control

FEC Forward Error Correction

FTP File Transfer Protocol

IL Intermediate Language

IP Internet Protocol

LAN Local Area Network

LDS Local Data Structure

MCS Multimedia Conferencing System

MDC Multiple Description Coding

MDNF Most Demanding Node First

MFTS Multipoint File Transfer System

MS-MFTS Multi-Server Multipoint File Transfer System

NAv6 National Advanced IPv6 Center

P2P Peer-to-Peer

PRIM P2P Receiver-Driven Mesh-Based Streaming

QC Quality Control

QoS Quality of Service

RAP Rate Adaptation Protocol

RDS Remote Data Structure

REALM Reliable Application Layer Multicast

ROMA Reliable Overlay Multicast

RPF Rarest Piece First

SFCD Semi-Fluid Content Distribution

TCP Transmission Control Protocol

TFRC TCP-Friendly Rate Control

UTC Coordinated Universal Time

xvi

WAN Wide Area Network

XOR Exclusive OR

xvii

SEMI-CECAIR: MODEL PENGEDARAN KANDUNGAN UNTUK
PENYEBARAN DATA YANG LEBIH PANTAS

ABSTRAK

Tesis ini mencadangkan serta melaksanakan suatu model agihan kandungan

bagi mengurangkan atau meminimumkan kelengahan penyaluran data sebaya. Buat

masa ini, agihan kandungan dalam rangkaian tindihan-atas adalah berdasarkan dua

model berikut: model Kelulan dan model Bendalir. Model Bendalir menyediakan

penghantaran kandungan secara berterusan daripada sumber kepada penerima

berbilang. Bagi truput (throughput) yang tinggi, suatu nod sebaya sepatutnya

mengagih satu bit apabila ia menerima bit tersebut. Walau bagaimanapun, bagi

model Bendalir dalam rangkaian heterogen, ia memerlukan penjagaan khusus kerana

terdapatnya gandingan yang agak ketat di antara nod bersebelahan. Maka ia

menyebabkan batasan prestasi asas, seperti melambatkan kadar pemindahan dalam

sistem mengikut kadar pemindahan nod sebaya yang paling perlahan. Dalam model

kelulan, kandungan terlebih dahulu dipenggal ke kepingan yang sama saiz dan

pengagihan berlaku dalam kepingan. Maka, nod sebaya tidak akan mengagihkan

sesuatu kepingan, sehinggalah ia telah menerima kepingan tersebut sepenuhnya.

Model kelulan merupakan gandingan pautan longgar: sesuatu nod sebaya tidak akan

mengagih sesuatu kelulan, sehinggalah ia telah menerima kelulan tersebut

sepenuhnya, menyebabkan nod sebaya menunggu untuk menerima keseluruhan

kelulan sebelum ia mengagihkannya semula. Keadaan ini tidak diingini kerana

pindahan kandungan mungkin mengambil masa yang lama. Lebih-lebih lagi, dalam

tempoh tersebut, kapasiti muat naik bagi node sebaya yang muat turun tidak

digunakan sepenuhnya. Lengahan adalah kritikal bagi aplikasi interaktif masa

nyata. Model agihan kandungan yang lemah menyebabkan tempoh agihan yang

xviii

panjang. Sebaliknya, model yang baik memendekkan masa pelengkapan dan

penggunaan sumber seperti lebar jalur rangkaian secara cekap. Model agihan

kandungan Separa Bendalir yang baru ini akan mengagihkan kandungan kelulan

dalam rangkaian tindihan-atas heterogen yang berbeza dalam bentuk bendalir, tanpa

mempunyai sebarang tekanan–berbalik (backpressure) yang disebabkan oleh model

agihan kandungan Bendalir, atau lengahan transisi kelulan yang disebabkan oleh

model agihan kandungan kelulan. Pembuktian secara matematik dan keputusan ujian

pelaksanaan sebenar menunjukkan bahawa model yang dicadangkan ini menunjukan

penyelesaian optimum bagi semua kes yang diuji bagi rangkaian hetrogen.

xix

SEMI-FLUID: A CONTENT DISTRIBUTION MODEL FOR FASTER
DISSEMINATION OF DATA

ABSTRACT

This thesis proposes and implements a novel content distribution model for

reducing or minimizing delay in data dissemination. Currently, content distribution is

based on two models: the Fluid model and the Chunk model. The Fluid model

provides continuous transferring of the content from the source to multiple receivers.

For high throughput, a receiving node should distribute a bit once it has received that

bit. However, working with the Fluid model in a heterogeneous network needs

special care because the model incorporates tightly coupled connections between

adjacent nodes. This imposes fundamental performance limitations, such as dragging

down all transfer rates in the system to the rate of the slowest receiving node. In the

Chunk model, contents are first chopped into pieces of equal size and the subsequent

distribution happens in pieces. That is, a node will not distribute a piece until it has

fully received that piece. A Chunk model is a loosely coupled connections; a node

will not distribute a chunk until it has fully received that chunk, making nodes wait

to receive the entire chunk before they can start distributing it. This becomes

untenable because content transfer may take a long time and during this time the

upload capacity of downloading nodes is unutilized. Delay is critical for real-time

and interactive applications. A poor content distribution model could result in

considerably longer distribution time, while a good model could shorten the

completion time and efficiently utilize resources like network bandwidth. The novel

Semi-Fluid content distribution model proposed in this thesis will distribute chunk

content in different heterogeneous networks in a fluid manner, without having any

backpressure caused by Fluid content distribution model, or encountering chunk

xx

transition delay caused by Chunk content distribution model, by optimizing the

existing (Chunk and Fluid) content distribution models, and enabling better

utilization of node’s resource, such as local storage and bandwidth. Mathematical

proof and real implementation test results show that our proposed Semi-Fluid content

distribution model finds an optimal solution for all cases tested in heterogeneous

networks.

CHAPTER ONE
INTRODUCTION

1.1 Motivation

For high-concurrency applications ranging from live streaming to reliable

delivery of popular content, recent research trends proposed serving these

applications using an end-system, or overlay network. Overlay network is a virtual

network of nodes and logical links that is built on top of an existing network with the

purpose to implement a network service that is not available in the existing network.

Overlay networks offer a powerful alternative compared to traditional mechanisms

for content delivery, especially in terms of flexibility, scalability, and deploy-ability.

In order to derive the full benefits of the approach, some care is needed when

providing methods for representing and transmitting the content in a manner that is

as flexible and scalable.

Distribution in overlay networks leverages on the uploading capacity of the

receiving nodes (peers) to aid in the content distribution process. Specifically, once a

node has received any portion of the content, it can redistribute that portion to any of

the other receiving nodes. Content distribution in overlay networks are based on two

models: the Chunk model and the Fluid model.

Prior research on overlay networks mainly focuses on peer and content

discovery and scheduling, overlay topology formation, fairness and incentive issues,

etc, but seldom investigates the content distribution problem which is also a core

component in many overlay network systems, like peer-to-peer file sharing and

media streaming. A poor content distribution model could result in considerably

2

longer distribution time, while a good model could shorten the distribution time and

efficiently utilize resources like network bandwidth.

1.2 Background

Over the past decades, users have witnessed the growth and maturity of the

Internet, which has caused enormous growth in network traffic, driven by the rapid

acceptance of broadband access, the increases in systems complexity, and rich

content. The ever-evolving nature of the Internet brings new challenges in managing

and delivering content to users. For example, popular Web services often suffer

congestion and bottlenecks due to the large demands posed on their services. Coping

with such unexpected demand causes significant strain on a Web server and

eventually the Web servers are completely overwhelmed with the sudden increase in

traffic. The Web site holding the content might become temporarily unavailable.

A content delivery network or content distribution network (CDN), is a

system of computers networked together across the Internet that cooperate

transparently to deliver content to end users, most often for the purpose of improving

performance, scalability, and cost efficiency. Collaboration among distributed CDN

components can occur over nodes in both homogeneous and heterogeneous

environments. CDNs have evolved to overcome the inherent limitations of the

Internet in terms of user perceived Quality of Service (QoS) when accessing Web

content. They provide services that improve network performance by maximizing

bandwidth, improving accessibility, and maintaining correctness through content

replication.

3

The recent work (2004) on CDN can be largely divided into three categories:

(i) infrastructure-based content distribution like, the distributed server architecture,

(ii) overlay network-based distribution, like application layer multicast (ALM), and

(iii) peer-to-peer content distribution, which includes P2P file sharing and P2P media

streaming.

1.2.1 Fluid Model

The Fluid model is applied in application layer multicast (ALM) for replacing

IP multicast and providing a reliable content delivery network. The Fluid model

incorporates tightly coupled connections between adjacent nodes in a distribution

environment. For high throughput, a receiving node should distribute a bit once it has

received that bit.

The Narada protocol (Yang-hua, Sanjay, & Hui, 2000; Yang, Sanjay,

Srinivasan, & Hui, 2001) was one of the first application layer multicast protocols

that demonstrated the feasibility of implementing multicast functionality at the

application-layer, in which streaming content is replicated and forwarded using only

the resources of peers who themselves want this data. The inherent advantage of

these schemes is extreme scalability. This is because these protocols proportionately

increase the amount of resources devoted to transferring data as the number of clients

who want the data increases.

Yoid (Francis, 2000), along with Narada, is one of the first application layer

multicast protocols. Since Yoid directly creates the data delivery tree, it has a direct

4

control over various aspects of the tree structure. This is in contrast to the mesh-first

approach (Narada) which has an indirect control over the tree structure.

Initially, ALM with Fluid model proposed the use of a Tree topology to

distribute streams among peers, where all peers are arranged into a tree rooted at the

source. The content is streamed down from the source to every peer along the tree

edges in a push-based manner. Though the tree approach is simple and achieves low

delay, the failure of a node can seriously affect the streaming quality of all its

descendants due to tree re-construction. Furthermore, the streaming rate cannot be

guaranteed as it is limited by the least uplink bandwidth of a node in the tree.

Therefore, trees cannot accommodate network dynamics and asymmetric bandwidth

well. Also the leaf nodes in the tree do not participate in the distribution process.

Single tree performance can be significantly improved by using a parallel tree

PTree (multi-tree) topology, which organizes the peers in 𝑘𝑘 different trees such that

each peer is an interior peer in at most one tree and a leaf peer in the remaining

(𝑘𝑘 − 1) trees. The content is then striped into 𝑘𝑘 stripes, where each stripe is

distributed on a different tree. This approach has three important limitations: (i) in

the presence of churn (where peers may open and close connections or leave and

rejoin the infrastructure at arbitrary times), maintaining multiple tree-shaped overlays

with desired properties could be very challenging. (ii) The rate of content delivery to

each peer through individual trees is limited by the minimum throughput among the

upstream connections which could be even smaller than the bandwidth of a single

sub-stream. (iii) Peers cannot share the content more than one time.

5

1.2.2 Chunk Model

In some distribution systems a file is broken down into many chunks that can

be downloaded independently. These chunks are then redistributed again by the

receiving nodes as soon as the chunk is completely received and verified. Breaking a

file into smaller units has several advantages for performance and robustness.

Chunk technology was first introduced by BitTorrent clients (BitTorrent,

2004; Cohen, 2003), though other variations have also been proposed (Sherwood,

Braud, & Bhattacharjee, 2004). In BitTorrent, a file is split into chunks, typically of

the order of a thousand chunks per file. To download a complete file, a user

downloads different chunks of the desired file from other users. The chunks are not

downloaded sequentially, but are based on the rarity of the chunk at that time. When

all the chunks have been downloaded, the chunks are reassembled, and the user has

their file. This method of splitting a file into many pieces greatly facilitates the

sharing of large files.

Nowadays most peer-to-peer file-sharing applications depending on Chunk

model use a practice which is called swarming (Stutzbach, Zappala, & Rejaie, 2005).

Swarming is a new type of data transfer which leverages the cooperative nature of

peer-to-peer networking to serve large numbers of users without placing a heavy

burden on a centralized web server. With swarming, any user that has downloaded

some piece of content from a server can then itself act as a server to other peers for

that content. Because no single peer has the entire content, nor a high amount of

bandwidth, peers download content from each other in parallel (Byers, Luby, &

Mitzenmacher, 1999; Rodriguez & Biersack, 2002; Rodriguez, Kirpal, & Biersack,

6

2000), constructing the larger file from the pieces they collect. This approach frees

the web server from having to deliver the entire file to all users. Instead, it gives a

piece of the file to some users and then relies on those users to exchange the data

among themselves.

The Chunk model meets certain requirements: (i) loosely coupled

connections that accommodate asymmetric bandwidths. (ii) Fully supporting parallel

download for chunks from different peers (swarming). (iii) Peers can easily make the

decision to pull or push chunks; which helps a lot in content and peer scheduling. (iv)

Finally, the Chunk model is the only model up till now that is used by the Mesh

topology which is the most robust topology to churn.

The success of the Chunk model, and especially file swarming mechanisms,

has motivated a new approach for scalable streaming of live content that is the mesh-

based Peer-to-Peer streaming. In this approach, peers form a randomly connected

mesh and incorporate swarming content delivery to stream live content. Peer-to-Peer

streaming is classified into: video-on-demand (Annapureddy, Gkantsidis, Rodriguez,

& Massoulie, 2006; Do, Hua, & Tantaoui, 2008), live media broadcasting (Bocca,

2008; Maria Elisa et al., 2009; PPLive, 2007; SpotCast, 2007), and video

conferencing (Akkus, Civanlar, & Ozkasap, 2006; Hossain, Yi, & Yuan, 2009;

Ponec, Sengupta, Chen, Li, & Chou, 2008).

7

1.3 Problem Statement

Generally, application layer multicast (ALM) depends on the Fluid model for

content distribution. The Fluid model provides continuous transferring of the content

from the source to multiple receivers. However, working with the Fluid model in a

heterogeneous network needs special care, because the model incorporates tightly

coupled connections between adjacent nodes in a distribution environment. When

participating peers are very heterogeneous, particularly in terms of the amount of

download bandwidth they use, this will significantly limit the performance of all

peers. One solution is to use push-back flow control to rate-limit the upstream link

coming from the sender. This backpressure or single-rate schemes have known

limitations in presence of a large number of groups: a single slow receiver can drag

down the data rate for the whole group. Another solution is to employ network

coding, which encodes content into a linear combination of blocks. Under this

mechanism, slow peers can recover missing blocks after they receive enough blocks

(attempt to recover the original content from the encoding symbols). However,

network coding also has weaknesses. A peer may need to spend a huge amount of

time on decoding the data it receives. Also, coding will add extra information (XOR

operation symbols) to the original data packets, which results in reception overhead.

Peer-to-Peer (P2P) always depends on the Chunk model, where all

connections among the peers are completely loosely coupled. This definitely fits with

the heterogeneity of the internet. In order to maximize the participation of each of the

peers in the network, large content is typically divided into many small pieces (or

"chunks") that are directly exchanged between the peers. Chunk model systems have

a key difference with Fluid model systems: the content is organized into chunks

8

whose size is significantly greater than IP packets. A peer will not distribute a chunk

until it has fully received that chunk, making peers wait to receive the entire chunk

before they can start serving it. This becomes untenable because content transfer may

take a long time, during this time the upload capacity of downloading peers is

wasted. The Chunk model imposes a fundamental performance constraint; where

peers’ uploading bandwidth is not fully utilized. This constraint adds a significant

delay for peer-to-peer file sharing which increases the final distribution time for the

file. Subsequently, peer-to-peer streaming applications suffer from low-quality video,

periodic hiccups, and high delay (stream diffusion metric).

1.4 Research Objective

The main objective of this thesis is to develop a new content distribution

model that distribute chunk content in different heterogeneous overlay networks in a

fluid manner, to overcome the backpressure created by Fluid content distribution

model, and to overcome the chunk transition delay caused by Chunk content

distribution model.

1.5 Thesis Contribution

We consider the problem of architecting a reliable content delivery system

across an overlay network using TCP connections as the transport primitive. The

primary set of target applications are applications requiring reliability and high

bandwidth, such as delivery of large files or video streams. The proposed Semi-Fluid

content distribution model enables multiple-rate reception, with individual rates that

match the end-to-end available bandwidth along the path, while using unlimited

buffers at application-level relays, and the standard TCP protocol. The key to our

9

method is to make a departure from the straightforward approach in which each

intermediate peer forwards all received packets to the downstream peers to achieve

reliability, or using chunks only with store-and-forward approach. We apply an

intermediate approach, whereby each intermediary peer forwards only those received

chunk’s packets to downstream peers that can immediately be written into the

downstream TCP socket. It also builds a group of adjacent chunks in a single

application buffer to be sent to all other slow receivers.

The main contribution of this thesis is to propose and design a new Semi-

Fluid content distribution model that supports:

 Heterogeneous networks.

 Different overlay topologies.

 Swarming technique (parallel download).

The proposed Semi-Fluid content distribution model features distributed

congestion control that achieves optimal bandwidth utilization. It is a combination of

Chunk and Fluid content distribution models for faster dissemination of data in peer-

to-peer networks.

Mathematical proof and real implementation test results show that the

proposed Semi-Fluid content distribution model provides an optimal solution for the

cases tested in heterogeneous networks. Therefore, we believe our model is a

promising solution to be employed as the core distribution model in different overlay

topologies, shortening the total download time experienced by users.

10

1.6 Thesis Organization

This thesis is organized into six chapters. The content is arranged such that

each chapter provides a basic idea to further proceed to the next chapter. Firstly, this

chapter (Chapter 1) introduces the background principles of content distribution

models along with our research objectives and contributions.

In Chapter 2, we review literature and fundamental concepts related to our

work and issues surrounding it. We discuss other overlay network protocols and

methods, related work for improving both Chunk and Fluid content distribution

models. We provide motivation for our work by describing some candidate

architectures and the limitations of those proposed solutions.

Chapter 3 presents the methodology of how the proposed SFCD model was

designed. The chapter also covers the evaluation of different content distribution

models. Lastly, the methodology and design for integrating the proposed SFCD

model in a large-scale distributed network of servers is also introduced.

Chapter 4 covers the architecture and implementation of the Multi-Server

Multipoint File Transfer System, and the implementation of the proposed SFCD

model, and the way it integrates and interacts with the Multi-Server Multipoint File

Transfer System.

Chapter 5 covers the discussion on the experimental setup issues for

evaluating our proposed SFCD model using the real implementation.

11

Chapter 6 covers an in-depth analysis and discussion of our proposed SFCD

model mathematically, and its performance through detailed experiments and in real

Internet environments and PlanetLab testbed.

Finally, Chapter 7 covers the conclusions of the thesis, as well as

recommendations for further research.

CHAPTER TWO
LITERATURE REVIEW

2.1 Introduction

The related work that we discuss in this chapter concerns prior research on

overlay networks, their structure and requirements. In particular, we discuss other

supporting technologies to content distribution models. We primarily focus on the

work that has been done to support the Chunk and Fluid content distribution models,

to improve their performance. These enhancements can be categorized into six

groups. We discuss each of these groups individually, and present the advantages and

disadvantage of using them. Also, a few examples are given for each group. Using

different overlay topologies (peer organization strategy) is the only enhancement that

we did not discuss in details within this chapter. Our aim is to study only the

enhancements that directly affect the content distribution models behavior, and make

them suitable for heterogeneous network.

2.2 Complete File Store-and-Forward

Traditional client/server file distribution systems depend on the store-and-

forward file distribution mechanism, where the file needs to be completely uploaded

first from the sender to the server; then the receivers will start downloading the file

from the server.

Although store-and-forward doesn’t depend exactly on Chunk or Fluid

models for its distribution mechanism, if we look at it, we can consider it either Fluid

or Chunk model. It is a Fluid model where the file is sent completely and

13

continuously in a flow stream. On the other side, it can be a Chunk model if we

suggest using one chunk, which is the whole file size.

Combining complete file store-and-forward with peer-to-peer networks was

first motivated by old random Gossip models (Frieze & Grimmett, 1985; Pittel,

1987), as part of the work in distributing file’s data in unstructured networks. Initial

data dissemination in unstructured networks approaches (Alan et al., 1988; Karp,

Schindelhauer, Shenker, & Vocking, 2000) advocated uploading the whole file at

one go. This involves users in random gossip model receiving the complete file and

then uploading it to other users chosen at random.

Complete file store-and-forward could also be found in distributed network

file systems. Project (Siegel, Birman, & Marzullo, 1990) is a distributed file system

that focuses on file semantics in relation to efficiency, scalability, and reliability. The

system uses servers that are interchangeable and collectively provides the illusion of

a large, single server to its clients. Replicas of files are stored on a subset of file

servers which are then forwarded to users.

Depending on Complete file store-and-forward mechanism in multi-servers is

considered a slow process and doesn’t fully utilize the server’s resources, especially

when the number of distribution servers increases.

However, for large files, making users wait to receive the entire file before

they can start serving it becomes untenable for two reasons: (i) file transfer may take

a long time, and during this time the upload capacity of downloading users is wasted,

14

and (ii) users who have received the file may depart before uploading a complete

copy, resulting in the complete file being lost to others.

2.2.1 Multipoint File Transfer System (MFTS)

The existing Multipoint File Transfer System (MFTS) is an ideal platform for

offering synchronous and asynchronous file distribution, mainly for sharing small

and medium file sizes, which is suitable for real-time collaborative environments

(Noori, Sureswaran, Budiarto, & Rao, 2004; Noori, Sureswaran, & Rao, 2004c).

Figure 2.1: Multipoint File Transfer System (MFTS).

MFTS (Figure 2.1) is implemented on a reliable Data Size Dependent File

Transfer (DSDFT) protocol (Noori, Sureswaran, & Rao, 2004a). This protocol

depends on variably-sized data packets, where packet sequence numbers are derived

based on the variation of the data size. This method allows for a more efficient use of

the available bandwidth, by removing the sequence number portion that is used

15

within protocols like FTP. The MFTS design and architecture resolved certain

problems inherent in file distribution systems, such as: (i) providing a connection-

secure data channel, (ii) enabling clients who join the file distribution group late to

download all or selected files, both previously and currently distributed (commonly

known as the join-late problem), and (iii) keeping all clients up-to-date with the

original file being transferred. This is achieved by means of characterizing each

transferred file with its original modified date in a universal time format.

The existing platform of MFTS is based on client-server (single server)

architecture. Because of this, it suffers from a scalability bottleneck problem. As the

outgoing bandwidth of the server is shared among all concurrent clients, the more the

clients, the less bandwidth each client can have. Hence, the performance of this

approach deteriorates rapidly as the number of simultaneous clients increases.

2.2.2 Large File Distribution within CDNs (FastReplica)

FastReplica (Cherkasova & Lee, 2003) addresses the problem of reliable and

efficient file distribution in content distribution networks (CDNs) (e.g. Akamai

(Akamai, 1998; Chao, 2006)), which is an infrastructure based network, that employs

a dedicated set of machines to reliably and efficiently distribute content to clients on

behalf of the server.

FastReplica focuses on distributing large size files such as software packages

or stored streaming media files (also called on-demand streaming media), by

considering a geographically distributed network of servers and a content distribution

across it. The system is based on a large-scale distributed network of servers located

16

closer to the edges of the Internet for efficient delivery of digital content including

various forms of multimedia content. The main goal of the CDN’s architecture is to

minimize the network impact in the critical path of content delivery as well as to

overcome a server overload problem that is a serious threat for busy sites serving

popular content.

FastReplica proposed a novel algorithm, for efficient and reliable replication

of large files. In order to replicate a large file among 𝑛𝑛 nodes (𝑛𝑛 is in the range of 10-

30 nodes), the original file is partitioned into 𝑛𝑛 subfiles of equal size and each subfile

is transferred to a different node in the group. After that, each node propagates its

subfile to the remaining nodes in the group, as shown in Figure 2.2. Thus, instead of

the typical replication of an entire file to 𝑛𝑛 nodes by using 𝑛𝑛 Internet paths

connecting the original node to the replication group, FastReplica exploits 𝑛𝑛 × 𝑛𝑛

diverse Internet paths within the replication group where each path is used for

transferring 1/𝑛𝑛-th of the file.

Figure 2.2: FastReplica in the small: distribution step.

17

In the basic algorithm for FastReplica, nodes are organized into groups of

fixed size (𝑛𝑛), with full group membership information at each node. To distribute

the file, a node splits it into n equal-sized portions, sends the portions to other group

members, and instructs them to download the missing pieces in parallel from other

group members. Since only a fixed portion of the file is transmitted along each of the

overlay links, the impact of congestion is smaller than in the case of tree distribution.

However, since it treats all paths equally, FastReplica does not take full advantage of

high-bandwidth overlay links in the system. Since it requires file store-and-forward

logic at each level of the hierarchy necessary for scaling the system, it may not be

applicable to high-bandwidth streaming. Also the latency observed by the end-users

is still high as the client will not be able to receive the file until the server completely

receives the whole file.

2.3 Chunk Model with Scheduling

In practice, a shared file or video stream is divided into multiple chunks. To

increase the availability of these chunks, a good data distribution scheduling

algorithm is needed (Chan, Li, & King-Shan, 2005; Dongni, Li, & Chan, 2008; Guo,

Liang, & Liu, 2009; Jochen Mundinger, Weber, & Weiss, 2008). This is the core of

any file sharing or P2P video streaming system, since without actual data

transmission and distribution, no data sharing is possible. A scheduler tells each peer

which chunk should be sent and to whom. A poor data distribution scheduler could

result in considerably longer download time, while a good scheduler could shorten

the completion time and efficiently utilize all resources, like network bandwidth.

18

Experiments, such as those in (Rodriguez & Biersack, 2002), have shown that

using parallel downloading scheme in P2P file sharing systems, in which an end user

opens multiple connections with multiple file sources to download different portions

of the file from different sources and then reassembles the file locally, could result in

higher aggregate download rate and thus shorter download time. The multiple

connections within the parallel download scheme need a good scheduler algorithm,

to get significant performance improvements in collaborative file sharing.

Before proceeding to the scheduling examples, we have to distinguish two

models for determining the transmission: Pull-based and Push-based (Meng, Jian-

Guang, Li, & Shi-Qiang, 2005; Sanghavi, Hajek, & Massoulie, 2007). In both

models, peers have to exchange their file or video stream piece possession

information periodically. They differ in how to make the decisions of which piece to

send and to whom.

Most existing P2P applications use the Pull-based model, in which the

receiver determines which file pieces he needs from others and subsequently sends

request messages to the nodes he chooses. The file source who receives these request

messages could choose to accept or reject the requests based on some policies, such

as his available bandwidth and the requestors’ contributions. While in Push-based, a

peer determines which piece it should transmit and which peer it should send the

piece to. This approach of scheduling was first adopted by (Ma & King-Shan, 2008).

In a large distributed cooperative system, finding an optimal chunk

propagation scheme that minimizes the client download time is very difficult. This is

19

especially the case in practical systems that cannot rely on a central scheduler and,

instead, allow nodes to make local decisions. The scheduling problem becomes

increasingly difficult as the number of nodes increases. When nodes are at different

stages in their downloads, or when incentive mechanisms are introduced to prevent

leeching clients.

The Pull-based model is commonly used in existing applications, such as

BitTorrent, in which the receiver determines which file pieces he needs from others

and subsequently sends request messages to the nodes he chooses. The file source

that receives these request messages could choose to accept or reject the requests

based on some policies, such as his available bandwidth and the requestors’

contributions. One disadvantage of this model is that there will be many short-length

but frequent request messages flowing through the network, taking up network

bandwidth and processing time. In addition, it may happen that all peers decide to

request the same file piece from the same source, thus wasting queuing time at the

source node (or even getting rejected by the source node).

Finally, there are some drawbacks or complexity with some scheduling

algorithms, to achieve a valid scheduler: (i) At least one file chunk must be

distributed among the peers in each cycle, if the bandwidth available for uploading or

downloading is not completely utilized, leading to increased number of cycles to

complete the file sharing. (ii) Weights assigned to the nodes for deciding the

maximum flow should not remain constant throughout the cycle. When choosing

recipients, those peers who have been assigned to receive something may still be

20

further assigned to receive more as their static weights remain as the highest,

resulting in unfair resource allocation.

2.3.1 Rarest Piece First (RPF)

The RPF algorithm concentrates on the piece selection strategy. It identifies

the rarest file pieces and tries to increase their availability in the network by

transmitting them first. By doing so, the source peers for the rarest file pieces are

increased and will help the peers to continue file sharing even if one of the source

peers fails. Hence, RPF inherently distributes all pieces from the original source to

different peers across the network as quickly as possible, such that the distribution

can continue even if the original source leaves.

The Rarest Piece First algorithm is borrowed from the Rarest Element First

algorithm employed in BitTorrent. In RPF, those file pieces that most peers do not

have (rarest) are distributed first.

BitTorrent (BitTorrent, 2004; Cohen, 2003) is one of the most popular P2P

file sharing applications with thousands of simultaneous users. A shared file is

chopped into multiple small pieces (each about 256KB or 512KB). Some tracker

servers are used to periodically announce the list of connected peers who participate

in the same sharing session. Each peer then uses this peer list to contact other peers

and report to them which pieces it currently possesses. It also requests those missing

pieces it does not have from those peers who have them. A peer can maximize its

downloading speed by requesting different pieces from different peers at the same

time.

21

A poor scheduling algorithm may lead to every peer getting nearly the same

set of pieces and consequently decreases the number of file piece sources which a

peer can simultaneously download from. BitTorrent employs the Rarest Element

First algorithm, in which those pieces that most peers do not have are downloaded

first. This algorithm is good at increasing the availability of different file pieces in

the network and can distribute all pieces from the original source to different peers

across the network as quickly as possible.

RPF aims at increasing the availability of different file pieces in the network,

such that peers may still have some pieces that other peers want. In case the file is

published by a single source who may just seed (remain available to contribute) the

file for a short period of time, RPF also tries to distribute all pieces from the original

source to different peers across the network as quickly as possible, so that the

distribution can continue even if the original source leaves.

2.3.2 Most Demanding Node First (MDNF)

The MDNF algorithm concentrates on the peer selection strategy. It identifies

the peers with most missing pieces and tries to fulfill its demands first. This strategy

brings down the overall download time of file pieces since the peers with highest

demands are satisfied first. When the peer with highest demands is satisfied, the

available copy of those pieces is increased by one (Jonathan, Victor, & King-Shan,

2007).

22

To fully understand the modeling of RPF and MDNF, we can follow below

example for the aim of reducing the average distribution time by depending on both

RPF and MDNF (Ma & King-Shan, 2008).

In the example, there are 𝑁𝑁 peers forming an overlay network, distributing a

file 𝐹𝐹 that is divided into 𝑀𝑀 pieces of equal size. 𝐹𝐹 can be regarded as a set of pieces,

i.e. 𝐹𝐹 = {𝑓𝑓1, 𝑓𝑓2, … ,𝑓𝑓𝑀𝑀}, and each peer has only a subset of 𝐹𝐹. They build an 𝑀𝑀 × 𝑁𝑁

matrix to store the piece possession information. For 𝑃𝑃𝑖𝑖𝑖𝑖 (1 ≤ 𝑖𝑖 ≤ 𝑁𝑁, 1 ≤ 𝑖𝑖 ≤ 𝑀𝑀) in

the matrix, before the file distribution starts it can take on either one of the two

values: 𝑃𝑃𝑖𝑖𝑖𝑖 = 1 if peer 𝑖𝑖 has piece 𝑖𝑖; 𝑃𝑃𝑖𝑖𝑖𝑖 = 0 if peer 𝑖𝑖 does not have piece 𝑖𝑖. An

example possession matrix is shown below:

𝑃𝑃0 = �

0
1
0
0

0
1
1
0

0
0
1
0

0
0
1
1

1
0
1
1

0
1
1
0

�

Each peer maintains its own possession matrix. Each peer acquires the initial

possession matrix and updates from other peers. Usually other peers broadcast their

possession information so that each peer can build the initial possession matrix on its

own.

Based on the possession matrix, piece rarity and peer demand are developed.

The piece rarity indicates how rare the piece is and is quantified as how many peers

need this piece. In other words, the rarity of piece 𝑓𝑓𝑘𝑘 is the number of zeros across

column 𝑘𝑘 in the possession matrix. On the other hand, the demand of peer 𝑖𝑖 refers to

how many pieces it needs, which is quantified as the number of zeros across row 𝑖𝑖.

23

Consider the example possession matrix 𝑃𝑃0. The rarity of piece 1 is 3 and the demand

of peer 3 is 1.

In RPF protocol, once peer 𝑖𝑖 makes a scheduling decision, it proceeds to

contact its prospective piece recipient. If the recipient accepts the offer, piece

transmission starts. Otherwise, peer 𝑖𝑖 drops this scheduling decision and seeks other

scheduling alternatives. Assume peers 1 and 2 in 𝑃𝑃0 agree on the delivery of piece 5.

After the transmission starts, 𝑝𝑝25 is updated to 1/2 to mark the ongoing transmission.

𝑝𝑝25 is changed to 1 when the transmission is completed.

2.3.3 Maximum Flow (MaxFlow)

The MaxFlow algorithm concentrates on two factors that affect file

distribution in P2P network. This algorithm takes into consideration the rarity of the

file pieces and also the demands of the peers, and assigns weights to the node. A

bipartite graph is formed with all the peers in two sets. One set being the file piece

senders (𝐿𝐿), and the other set being the file piece receivers (𝑅𝑅). Edges are then

formed between the two sets based on which file pieces can be sent from (𝐿𝐿) to (𝑅𝑅).

Then the problem instance is transformed into a flow graph problem. Once the flow

graph has been constructed, the maximum possible flow is calculated, which decides

the number of transmissions that are to take place in that cycle. Hence based on the

maximum matching the schedule for the cycle is formed (Jonathan et al., 2007).

The complexity of this algorithm is 𝑂𝑂(𝑁𝑁2𝑀𝑀 × min{∑ 𝑝𝑝𝑖𝑖𝑁𝑁
𝑖𝑖=1 ,∑ 𝑞𝑞𝑖𝑖𝑁𝑁

𝑖𝑖 }) where

𝑁𝑁 is the total number of peers, 𝑀𝑀 is the total number of file pieces, 𝑝𝑝𝑖𝑖 and 𝑞𝑞𝑖𝑖 are the

upload and download capacities of the peers. Since the MaxFlow algorithm transmits

24

the maximum possible files in each cycle, the number of cycles taken to download

the files pieces by all peers is the least. Hence this algorithm gives the best possible

performance. The problem instance has been transformed to the well-known

maximum bipartite matching problem in order to find as many sender and receiver

pairs as possible in each cycle. Weights are added to the nodes to achieve better

matching.

2.3.4 Gossiping with Multiple Messages

The underlying motivation of random gossip protocol (Sanghavi et al., 2007),

is the design and analysis of piece selection protocols for peer-to-peer networks,

which disseminate files by dividing them into pieces. They first investigate one-sided

protocols, where piece selection is based on the states of either the transmitter or the

receiver. They found that any such protocol relying only on pushes, or alternatively

only on pulls, will be inefficient in disseminating all pieces to all users.

Gossiping with multiple messages proposed a hybrid protocol

(INTERLEAVE) to investigate both one-sided and two-sided piece selection

protocols. For either one of the two protocols, the user needs to make a piece

selection. This piece selection is said to be one-sided if it is based only on the user’s

own current state, and not that of the target. The piece selection is said to be two-

sided if it is based on the current states of both the user and the target. In either case

the selection is independent of system history or the states of other users. Different

ways of making this choice correspond to different protocols.

	(1) Cover
	(2) Table of Contents
	Acknowledgements
	بســـــــــــــــم الله الرحمن الرحيـــــــــــــــم
	" اقرأ باسم ربك الذي خلق "
	DEDICATION
	TABLE OF CONTENTS
	Page
	Table of contents …………………………………...…….….…….….… iv
	List of tableS …………..……..…………………………..…………….....… x
	List of figures ………………………………………………………........… xi
	LIST OF ABBREVIATIONs ……………………………..………...….........… xv
	Abstrak …………………………..………….…………..…........……….... xvii
	AbstracT …………..……….………………………………….……...........… xix
	CHAPTER ONE: INTRODUCTION ……………………………….…...…......... 1
	CHAPTER TWO: Literature Review ……………….………..….….…. 12
	CHAPTER THREE: Methodology and DESIGN …………………….. 54
	CHAPTER FOUR: IMPLEMENATION DETAILS ……………...…...….…. 114
	CHAPTER FIVE: Experimental setup …………………………..…. 149
	CHAPTER SIX: Results and discussion ………………………..…. 161
	CHAPTER SIX: CONCLUSIONS AND future work …..….........…. 173
	References …………………………………...….……….....................… 176
	APPENDICES …………………………………...….……….......................… 186
	Appendix A: Mathematical Evaluation Details .…..………. 187
	Appendix B: Analysis of Chains of TCP Connections .….…. 206
	LIST OF PUBLICATIONS …………………………………...……...........… 209
	LIST OF TABLES
	Page
	LIST OF FIGURES
	Page
	LIST OF Abbreviations

	(3) Chapter 1
	CHAPTER ONE
	INTRODUCTION

	(4) Chapter 2
	CHAPTER TWO
	Literature Review

	(5) Chapter 3
	CHAPTER THREE
	Methodology AND DESIGN

	(6) Chapter 4
	CHAPTER FOUR
	Implementation DETAILS

	(7) Chapter 5 - Color
	CHAPTER FIVE
	Experimental setup

	(8) Chapter 6 - Color
	CHAPTER SIX
	Results and discussion

	(9) Chapter 7
	CHAPTER SEVEN
	CONCLUSIONS AND future work

	(10) Refrences
	References

	(11) Appendices - Color
	APPENDICES
	APPENDIX A
	Mathematical Evaluation Details
	APPENDIX B
	Analysis of Chains of TCP Connections
	List of publications

