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Perbandingan Kerintangan Kanji Sagu, Jagung dan Ubi Kentang Terhadap Asid dan 

Alkali 

Abstrak 

Kesan perendaman kanji di dalam larutan 0.025 M natrium hidroksida dan asid hidroklorik 

selama 0, 15, dan 30 hari pada 30°C terhadap struktur granul dan sifat fiziko-kimia kanji 

sagu, jagung dan ubi telah dikaji. Perubahan morfologi pada granul kanji didapati bergantung 

kepada jenis dan sumber botani setiap kanji yang telah dikaji. Kajian sifat pes kanji 

menunjukkan ‘kelikatan puncak’, ‘kelikatan terturun’, ‘kelikatan terencat’ bagi kanji sagu 

dan ubi kentang telah menurun secara signifikan apabila direndam di dalam larutan alkali 

dalam masa yang lama. Namun, kanji jagung menunjukkan kesan sebaliknya iaitu ianya telah 

meningkat secara signifikan. Walau bagaimanapun, penurunan yang signifikan telah dipantau 

berlaku untuk ‘kelikatan puncak’ dan ‘kelikatan terturun’ bagi kesemua kanji yang direndam 

di dalam larutan berasid. Manakala, kelikatan terencat telah meningkat secara signifikan bagi 

kanji sagu yang direndam di dalam asid selama 30 hari. Kuasa pembengkakan bagi kanji ubi 

kentang dan jagung yang direndam di dalam larutan alkali telah meningkat secara signifikan, 

tetapi menurun secara signifikan untuk kanji sagu. Walau bagaimanapun, kuasa 

pembengkakan kanji sagu yang direndam di dalam larutan berasid telah meningkat secara 

signifikan, tetapi menurun bagi kanji jagung dan ubi apabila melalui proses yang sama. 

Kandungan amilosa di dalam semua kanji rendaman asid telah menunjukkan penurunan 

signifikan, tetapi tidak menunjukkan perubahan yang signifikan bagi kanji rendaman alkali 

jagung dan sago, malahan kandungan amilosanya meningkat untuk kanji ubi rendaman alkali.  

Suhu permulaan dan puncak untuk proses gelatinisasi (yang telah dianalisa dengan 

‘differential scanning calorimetry’) telah meningkat secara signifikan, tetapi entalpinya telah 

menurun, bagi semua kanji yang direndam asid atau alkali. Kanji jagung rendaman asid 

menunjukkan  sifat keterlarutan yang paling tinggi berbanding kanji yang lain. Keputusan 
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kajian menunjukkan peningkatan yang signifikan bagi kanji jagung dan ubi rendaman asid, 

manakala sedikit penurunan telah dilihat berlaku pada kanji sagu rendaman asid berbanding 

kanji sagu rendaman alkali. Analisa retrogradasi, suhu puncak menunjukkan penurunan yang 

signifikan bagi kesemua kanji yang direndam. Entalpi untuk  kanji sagu dan ubi rendaman 

asid dan alkali menunjukkan penurunan yang signifikan, manakala kanji jagung rendaman 

asid dan alkali tidak menunjukkan perubahan yang ketara.. Justeru, hasil daripada kajian ini 

menunjukkan sifat fiziko-kima kanji yang terdiri daripada sumber botani yang berlainan akan 

mengalami kesan yang berbeza apabila direndam di dalam larutan alkali ataupun asid. 
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Comparative Susceptibility of Sago, Corn and Potato Starches towards Acid and 

Alkaline Treatments 

Abstract 

The effects of steeping starch (sago, corn, and potato) in 0.025 M of sodium hydroxide and 

hydrochloric acid for 0, 15, and 30 days at 30°C on its granular structure and other 

physicochemical properties were investigated. Changes in the morphology of starch granules 

indicated that the alkaline and acid solution affected the granular structure of the starch to 

different extent, depending on starch type and their botanical sources. Pasting studies showed 

that the peak viscosity, breakdown, and setback of alkali-treated sago and potato starch 

decreased significantly, whereas that of corn starch increased significantly, when steeping 

time was prolonged. Meanwhile, acid-treated sago, corn, and potato starch showed significant 

decreased in peak viscosity, and breakdown. Setback viscosity increased significantly for 30 

days in acid-treated sago starch but decreased significantly for acid treated potato starch. 

Swelling power increased significantly for alkali-treated potato and corn starches, but 

decreased for sago starch. However, swelling power of sago starch showed an increase when 

treated with acid solution, whereas acid-treated corn and potato starch showed significant 

decrease.  The amylose content of all acid-treated starches decreased significantly after 

treatment, but alkali treated sago and corn starch did not shows any significant difference, in 

fact shows the higher amylose content for alkali-treated potato starch. Onset and peak 

temperatures of gelatinization (from a differential scanning calorimeter measurement) 

increased significantly. Acid-treated corn starch shows the highest solubility compared to 

other treated starch. Results shows the significant increased in acid treated corn and potato 

starch, while there was a slight decreased of acid-treated sago starch compared to alkali-

treated sago starch. For retrogradation, the peak temperature showed a significant decrease 

for all treated starches. The enthalpy of acid and alkali treated sago and potato shows a 
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significant decrease, meanwhile alkali and acid treated corn starch shows no significant 

changes. There are no significant changes of chain type when compared to their native starch. 

The results showed that the physicochemical properties of starch from various botanical 

origins were affected to variable degrees when treated with alkaline and acid solution. 

 

 



 1 

CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

 Various types of chemical modifications have been applied to different starches 

to impart certain desirable properties when added to food. The chemical modifications 

include acid hydrolysis, alkali hydrolysis, oxidation, etherification, esterification, and 

cross-linking (Karim et al., 2000). Alkaline solution such as sodium hydroxide (NaOH), 

have been widely used in the production of many traditional food products such as 

tortillas (Campus-Baypoll et al., 1999), waxy rice dumplings, and yellow alkaline 

noodles (Lai et al., 2004). Acid is commonly used to produce ‘soluble starch’ for many 

decades by treating starch with acid for a certain period of time. The product of soluble 

starch is heterogeneous and has relatively high reducing value. 

 

Alkalizing agents have been used to enhance desirable product quality 

characteristics such as color (Maher 1983; Miskelly & Moss, 1985; Moss et al., 1986; 

Bhattacharya & Corke, 1996), aroma, and flavor and develops a firm and elastic texture 

to the product (Lai et al., 2004). Alkali solution is also commonly used in the starch 

extraction (Chiou et al., 2002; Lim et al., 1999). Prolonged, gentle acid hydrolysis is 

commonly performed with either hydrochloric or sulfuric acid to yield Lintner or 

Naegeli amylodextrins, respectively.  Lintner or Naegeli amylodextrins are the products 

of native starch granules under such conditions that the starch granules maintain much of 

their gross form and crystallinity (Watanabe, 1980).  Acid-treated starch, which also 
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known as thin-boiling starch, is used extensively in food, textile and paper industries 

(Wurzburg, 1986). 

 

Starch will undergo some changes in granular structure and physicochemical 

properties during alkaline and acid steeping (Gomez et al., 1990; 1992; Lin et al., 2005). 

The changes of properties on starch during alkaline treatment varied depending on the 

type of alkalizing agent, concentration used, duration of steeping and type of starch. 

Similarly, the changes in physicochemical properties of starch upon acid hydrolysis, 

especially in terms of viscosity and fluidity, also varied with the acid type and the 

condition used during modification (Lin et al., 2005). 

 

1.2 Rationale 

 

Relatively, very few studies have been conducted on alkali hydrolysis compared 

to the other starch modifications, such as enzyme and acid treatment. Reported studies 

on alkali hydrolysis mainly focused on corn starch (Mistry & Eckhoff, 1992; Bryant & 

Hamaker, 1997; Mondragón et al., 2004) because it is the most commonly used starch in 

the food industry. Several studies on alkali hydrolysis reported the changes that occurred 

due to this treatment such as the leaching out of protein from the granule surface during 

gelatinization of rice starch extracted using the alkaline method (Han & Hamaker, 

2002), production of annealed starch molecules during nixtamalization due to the 

increase of gelatinization temperature and amylose content (Méndez-Montealvo et al., 

2007), relatively higher peak viscosity in the pasting profile when treated with alkali 

(Lai et al., 2004) and the influences of the swelling and gelatinization of starch due to 

the ratio of starch/sodium hydroxide (NaOH) (Roberts & Camerons, 2002).  
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Differences in the rate and extent of acid hydrolysis between cereal, tuber, and 

legume starches exist and have been attributed to differences in granules size (Jane et al., 

1994). The annealing process also allowed rapid hydrolysis towards A- and C-type 

starch compared to B-type starch (Nakazawa & Wang, 2003). Bertoft (2004) also 

suggested in his study on the effect of acid hydrolysis towards different crytalline type 

of starch that the amylose could retards the rate of lintnerization and decreases the 

amount of acid resistant to double helices. 

 

To date, the comparison of alkali and acid steeping on various starches 

characteristics have not been studied extensively. Therefore, this study was designed to 

determine the comparative susceptibility of starches from different botanical origins to 

acid and alkali treatments. This would provide some insights on the effect of alkali and 

acid on physicochemical and functional properties of starch in relation to its granular 

structure of starch and its botanical origin. The results can be usefully applied to the 

development of novel products with improved textural attributes and extended shelf life. 
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1.3 Objectives 

 

i) To study the effect of prolonged steeping of starch in alkali and acid on 

physicochemical and functional properties of starch. 

ii) To compare the effect of botanical origin of starch on the extent of acid 

and alkali modification upon prolonged steeping in acid and alkali.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Starch 

Starch is naturally found in all organs of higher plants that include leaves, stems, 

woody tissues, roots, tuber, bulbs, rhizomes, fruits, and flowers (Jane et al., 1994). 

Starch could be divided by different botanical sources such as from seeds (e.g. corn, 

wheat, rice, sorghum), tubers (e.g. potato), roots (e.g. tapioca, sweet potato, arrowroot), 

legume seeds (e.g. peas, beans, lentils), fruits (e.g. green bananas, unripe apples, green 

tomatoes), trunks (e.g. sago palm) and leaves (e.g. tobacco) (Chen, 2003). Starch plays 

an important role as a predominant carbohydrate source in our daily meals such as rice, 

wheat, maize and potatoes. 

 

There are a group of parameters that characterize a particular starch of same 

botanical origin, such as: granule size (1–100 mm in diameter), shape (round, lenticular, 

polygonal), size distribution (uni- or bi-modal), association as individual (simple) or 

granule clusters (compound) and composition (a-glucan, lipid, moisture, protein and 

mineral content) (Tester et al., 2004) (as shown in Table 2.1). The variation of starch 

granules and their molecular constituents can influence starch functional properties, 

(Copeland et al., 2009), and their physico-chemical properties (Svegmark & 

Hermansson, 1993). Starch contributes greatly to the textural properties of many foods 

and has many industrial applications as a thickener, colloidal stabilizer, gelling agent, 

bulking agent, water retention agent and adhesive.  
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Table 2.1: Characteristics of starch granules from different botanical sources 

Starch  Type  Shape   Distribution  Size (µm) 

Barley  Cereal  Lenticular (A-type)  Bimodal  15-25,  

    Spherical  (B-type)    2-5 

 

Maize  Cereal  Spherical/polyhedral Unimodal  2-30 

(waxy & 

 normal) 

 

Amylomaize Cereal  Irregular  Unimodal  2-30 

 

Millet  Cereal  Polyhedral  Unimodal  4-12 

 

Oat  Cereal  Polyhedral  Unimodal  3-10 * 

          80 ** 

 

Pea  Legume Rentiform (single) Unimodal  5-10 

 

Potato  Tuber  Lenticular  Unimodal  5-100 

 

Rice  Cereal  Polyhedral  Unimodal  3-8 * 

          150 ** 

 

Rye  Cereal   Lenticular (A-type) Bimodal  10-40 

    Spherical   (B-type)    5-10 

 

Sorghum Cereal  Spherical  Unimodal  5-20 

 

Tapioca Root  Spherical/  Unimodal  5-45 

    Lenticular  

 

Triticale Cereal  Spherical  Unimodal  1-30 

 

Sago  Palm  Oval   Unimodal  20-40 

 

Wheat  Cereal  Lenticular (A-type) Bimodal  2-10 

    Spherical (B-type) 

* Single, ** compound.    (Source: Tester & Karkalas, 2002) 

 

2.2 Component of Starch 

Starch is basically formed from homopolymers of six carbon sugars, glucose, 

that is known as building block in starch. D-glucopyranose units in starch has two 
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linkages known as α-1,4 and α-1,6 glycosidic bond (Figure 2.1). This linkages exist 

when carbon 1 react with carbon 4 that produce α-1,4 and carbon 6 that resulted α-1,6 

linkages.  

 

 

 

Figure 2.1: α-1,4 and α-1,6 glycosidic bonds of starch (Thomas & Atwell,1999) 

 

Glucose polymerization of starch results in two types of polymers, amylose and 

amylopectin. Amylose and amylopectin represent approximately 98-99% (dry weight) of 

the starch granules (Tester et al., 2004), which amylose contributed about 15-30% of 

approximate weight (Jane et al., 1994). The ratio of the two polysaccharides varies 

among the starches according to their botanical origin (Tester et al., 2004). Amylopectin, 

the major component of most starches, consists of a large number of shorter chains that 

are bounded together at their reducing end side by a (16)-linkage, which makes this 

very large polysaccharide extensively branched (Manners, 1989). Amylose consists only 

of either a single or a few long chains, thus making the molecule linear or slightly 

branched (Takeda et al., 1992).  

α-1,6 glycosidic bond 

α-1,4 glycosidic bond 
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The variations between amylose and amylopectin contribute to the variation in 

behavior and properties. According to Zobel et al. (1988), the difference in properties 

between amylose and amylopectin can be observed in simple experiment such as gel 

forming. At 2% of concentration, amylose can forms a rigid and free standing gel, 

whereas amylopectin remain in solution form. Furthermore, amylose is known for its 

capacity to form coherent, free standing film that are reasonably strong and flexible 

when plasticized, but amylopectin film are very brittle and weak.  

 

2.2.1 Amylose 

Amylose is traditionally considered as a linear polymer that is linked through α-

1,4 glycosidic linkages. Amylose consists mainly of α-1,4 linked D-glucopyranosyl 

residues (Figure 2.2). Study done by Curá et al. (1995) revealed that amylose is not 

linear but slightly branched by α-1,6 glycoside linkages. The side chain length can range 

from 4 to over 100 (Hizukuri et al., 1981) and the extent of chain length increases when 

the molecular size of amylose increases (Greenwood & Thompson, 1959). The 

molecular weight of amylose has been reported to vary between 10
5
 and 10

6
 Dalton 

(Morrison & Karkalas, 1990) and DP ranging from 500 to 5000 (Galliard & Bowler, 

1987). DP is the total number of anhydroglucose residues present divided by the number 

of reducing ends. According to McGrance et al. (1998), the formation of a helical 

complex between amylose and iodine is responsible for the intensity of the typical deep 

blue color of starch dispersions stained with iodine and such principle forms the basis of 

quantitative determination of amylose content. Amylose is present in the amorphous 

structure. 
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Amylose: α-1,4-glucan; ave n=ca 1000. The linear molecule may carry a few occasional 

moderately long chain linked α-1,6. 

Figure 2.2: Amylose molecule (Tester & Karkalas, 2002).  

 

Amylose molecules are thought to occur in the granule as individual molecules, 

randomly interspersed among the amylopectin molecules and in close proximity with 

one another. The location of amylose can be in the amorphous and/or crystalline region 

depending on the botanical source of the starch (Oates, 1997). The amylose fraction can 

be isolated by few methods such as aqueous leaching procedures (Hizukuri, 1996), 

dispersion and precipitation (Adkins & Greenwood, 1969; & Banks et al., 1971) and 

ultracentrifugation methods (Montgomery et al., 1961; Majzoobi et al., 2003). 

 

2.2.2 Amylopectin 

Figure 2.3 and 2.4 shows structure and chain distribution of amylopectin. In 

contrast to amylose, amylopectin is a much larger molecule compared to amylose. The 

molecular weight of amylopectin is about 10
7
-10

9
 Dalton (Buléon et al., 1998) and the 

degree of polymerization is typically within the range of 9600-15900 (Takeda et al., 

2003). Amylopectin is highly branched polysaccharide that consists of approximately 

95% α-1,4 and 5% of α-1,6 linkages. Figure 2.4 shows the cluster model of amylopectin 
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adopted from Tester et al. (2004). Chen (2003) suggested that amylopectin structure 

consists of three types of chains (Figure 2.4) i.e A-chain, B-chain and C-chain. The C-

chain carries the sole reducing group in the molecule to which the B-chains are attached, 

while the terminal A-chain is attached to B-chain (Manners, 1989). The characterization 

of amylopectin basically depends on the ratio of A-chain to B-chain. 

 

 

Amylopectin: α-1,6 branching point. For exterior chains a=ca. 12-23. For interior chains 

b=ca 20-30. Both a & b vary according to the botanical origin. 

Figure 2.3: Amylopectin molecule (Tester & Karkalas, 2002) 

 

 

Figure 2.4: Chain distribution of amylopectin (Tester et al., 2004). 

 

Some of the physicochemical properties of amylose and amylopectin are 

summarized in Table 2.2. 
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Table 2.2: Summary of the physicochemical properties of amylose and amylopectin. 

Properties Amylose Amylopectin 

Molecular structure Essentially linear Highly branched 

Molecular weight 150,000-400,000 10-15 million 

Gels Firm, irreversible Soft, reversible 

Films Coherent Not readily form 

Iodine colors Blue Reddish-purple 

Digestibility by amylase 100% 60% 

  (Source: Eliasson, 2004) 

 

Botanical origin and starch type are the most important factors that determine the 

ratio of amylose and amylopectin in starch granules. High amylomaize has a high 

amylose content that is as high as 80%, while waxy starch may contain about 97% 

amylopectin and normal starch might have 20-50% amylose, depending on starch type. 

The ratio of amylose and amylopectin within a particular type of starch is an important 

criteria to consider with respect to starch functionality in food applications.  

 

2.2.3 Minor Component of Starch 

Despite the presence of the major components, the existence of minor 

components such as lipids, proteins and minerals play a significant importance in the 

properties of starches. These small amounts of non-carbohydrate components, 

particularly lipids, proteins, phosphate and ash, would affect the behaviour of starch in 

various applications. Some of these impart desirable qualities to the starch, while others 
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affect the quality (Moorthy, 2002). The contents of minor constituents of starch differ 

with different botanical sources of starch. Table 2.3 below shows the differences in 

chemical characteristics from different botanical sources of starch.  

 

Table 2.3: Chemical characteristics of starch granules from different botanical sources. 

 

Starch Amylose (%) Lipids (%) Protein (%) Phosphorus (%) 

Corn
a 

28 0.8 0.35 0.00 

Waxy corn
a 

<2 0.2 0.25 0.00 

High amylose corn
a 

50-70 0.2 0.5 0.00 

Wheat
a 

28 0.9 0.4 0.00 

Potato
a 

21 0.1 0.1 0.08 

Mung bean
b 

40-50 0.3 0.3 0.00 

                               (Source: a: BeMiller & Whistler, 1996; b: Hoover et al., 1997) 

 

2.3 Granular Structure of Starch 

2.3.1 Starch Morphology 

Native starch granules show a dark birefringence cross (‘Maltese cross’) centred 

at the hilum when viewed under polarised light. This characteristic shows the crystalline 

substances in the starch granular structure as shown in Figure 2.5. The intensity of 

birefringence strongly depends on the shape and on the orientation of the granules with 

regard to the light beam Buleon et al. (1998).  
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Figure 2.5: Polarized light micrograph for sago starch 

 

 The degree of crystallinity, the orientation of the crystallites and the thickness of 

the granules are the main factors that influence the apparent intensity of birefringence 

shown in polarized light. In starch granules, the branches of amylopectin form double 

helices, which are arranged in crystalline domains. Contrarily, amylose largely makes up 

the amorphous regions, which are randomly distributed between the amylopectin 

clusters (Blanshard, 1987). 

 

Gallant & Sterling (1976) approached the treatment of acid hydrolysis to observe 

the distribution of crystalline and amorphous areas of starch. Under this condition, 

granules weaken crack and show lamellar organization. Layered concentric shell 

structure of starch granules has been observed by scanning electron microscopy (SEM) 

and transmission electron microscope (TEM) after acid hydrolysis (Figure 2.6). It is 

suggested that the crystalline part of the granules is represented by resistant lamellar 

remained in starch granules. Starch granules are proposed to consist of 120-400 nm thick 

amorphous and semi-crystalline layers (French, 1984). Gallant et al. (1997) observed 
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that lamellar are organized in spherical blocklets with a diameter ranges from 20 to 500 

nm, varies on their location within the granules and botanical origin. 

 

The shape and size of starch granules can be identified by Scanning Electron 

Microscopy. It is revealed that the starches differed in granule shapes and sizes ranging 

from large (potato) to small (corn and tapioca) and oval (potato) to polyhedral (corn) or 

spherical with some truncated (tapioca) granules. The characteristics of some starch 

granules are listed in Table 2.4. 

  Table 2.4: Characteristics of some starch granules. 

Starch Granule shape Diameter range (μm) 

Corn
a
 Round, polygonal 2-30 

Wheat
a
 Round, polygonal 1-45 

Potato
a
 Round, lenticular 5-100 

Tapioca
b
 Round, truncated, 

cylindrical, oval, spherical, 

compound 

4-43 

Sweet potato
b
 Round, polygonal, oval, 

bell, polygonal 

2-72 

Arrowroot
b
 Round, polygonal 5-50 

Mung bean
c
 Oval, round 7-26 

 (Source: a: from Chen, 2003; b: from Moorthy, 2002; c: from Hoover et al., 1997)  
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Figure 2.6: The presence of amorphous growth ring in starch granules. 

 

The spherical blocklets of starch granules as observed by TEM (Figure 2.6) are 

also known as ‘growth rings’ (Gallant et al., 1997; Smith, 1999; Baker et al., 2001; 

Donald et al., 2001; Ridout et al., 2002; Li et al., 2003; & Pilling & Smith, 2003). Figure 

2.7 represents the proposed granular structure in starch granules. Layered granular 

structure between amorphous and crystalline region in growth ring are sugested as a 

general granular structure in starch granules. 
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Figure 2.7: Diagrammatic representation of the lamellar structure of a starch granule 

according to Donald et al. (1997).  

 

According to Cameron & Donald (1992), starch granules contain relatively broad 

radial growth rings comprising semi-crystalline shells (about 140 nm thick) separated by 

broad amorphous zones of at least the same thickness. In this model, the semi-crystalline 

growth rings themselves (104 nm) contain 16 radiating clusters of amylopectin exterior 

chains (A1 and B2) with the actual length of the registered double helices about 6.65 nm 

(equivalent to the crystalline lamellae) interspersed within amorphous lamellae of about 

2.2 nm (amylopectin α-1,6 branch points).  

  

The structure of amylopectin molecules, those branches from the hilum (centre 

of growth) towards the periphery of the granule, is also known as ‘hair liked’ structure 

(Tester et al., 2004). Meanwhile, amylose does not appear to have any significant effect 

on crystallinity in normal and waxy starches (which may be virtually are amylose free) 
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both of which display strong birefringence). However, the amylose may contribute 

significantly to the crystallinity  in high amylose starches (Tester et al., 2000). 

 

The location of amylose and amylopectin in starch granule is uncertain and still a 

subject of debate by many researchers. According to Zobel (1988), location of the 

amylose and amylopectin vary depending on their starch type. The location of amylose 

molecules in normal maize starch are suggested to be separated from amylopectin, while 

in potato starch the amylose molecules are interspersed among amylopectin.  Jane et al. 

(1986) suggested that amylose and amylopectin are interspersed and intertwined with 

each other, which consequently can preserve the integrity of starch granule during 

thermal transition by holding amylose and amylopectin together. This statement is in 

agreement with Jane (2006) that also suggested that amylose is interspersed among 

amylopectin. Olkkhu & Rha (1978) suggested that the structure of the starch granule is 

usually taken to be amorphous near the surface of the granule and the amylopectin and 

amylose macromolecules are thought to be of a crystalline nature inside the granule. The 

granule is then totally or partially covered with protein, which explains why starch 

always contains some protein when manufactured industrially. 
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2.3.2 Starch Crystallinity 

 When viewed under X-ray diffraction, native starch granules exhibit two 

different type of crytallinity. Generally, the A-type starches are mainly from cereal 

starches and the B-type is from tuber amylose-rich starches. Meanwhile, C-type 

starches, which are mostly found in legumes, stems, and, cereals are from the mixture of 

A- and B- type diffraction diagrams. Other than that, V-type starches are reported to be 

found where starches conjugate with fatty acids and monoglycerides, which appear upon 

gelatinization of starch, which is rarely detected in native starches Buléon et al. (1998). 

 Starches contain about 10% of moisture, which is not distributed evenly in the 

granules. The concentric pattern of semi-crystalline layers as shown in Figure 2.8 is also 

responsible for the birefringence of native starch granules when viewed under polarizing 

light microscopy (Copeland, 2006).  

              

Figure 2.8: Schematically polymorphic structure of starch granules. 
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The forms of double helical structure between A- and B- type crystalline forms 

are essentially the same. Buléon et al. (1998) proposed that the arrangement of 

amylopectin chains in starch granules plays an important role in determining the 

differences in starch types. However, the packing of the helices in the A-type crystalline 

structure is more compact than in B- type crystallites, which have more open structure 

with a hydrated core. It is also suggested that A-type starch has a shorter chain of 

amylopectin than B-type starch (Jane, 2006; Copeland, 2009). The differentiation of A-

type and B-type starch granules has been shown in Figure 2.9. 

 

              

Figure 2.9: Schematically A- and B-type starch structure. 

 

2.4 Functional Properties of Starch 

2.4.1 Swelling and Solubility Properties 

Swelling of starch granules is resulted from the heating of the starch granules in 

the presence of excess water. Donovan (1979) suggested that the swelling is the result 

from the expansion of the amorphous regions in the granules, causing the disruption of 
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crystalline region, thereby enhancing the possible interaction of the granules with water. 

There are several important factors that influence the swelling behavior of the starch 

granules namely as amylose-amylopectin ratio, chain length and molecular weight 

distribution, degree/length of branching and conformation (Eliasson, 2004) and 

formation of lipid-starch complex (Swinkles, 1985). According to the study done by 

Singh et al. (2003) on the swelling power and solubility of starches from different 

botanical sources, they suggested that the swelling power and solubility of the starches 

differed significantly. 

 

The existence of hydroxyl group in the starch granule accelerates their tendency 

to absorb water. However, the hydrogen bonds, which are pre-treated, that bind the 

granules together begin to weaken, permitting the granule to swell uniformly to many 

times its original size when the starch is heated in water beyond a critical temperature 

(which ranges from 56C upwards depending on the starch). The swelling is reversible 

and the granules shrink on drying (Morrison & Karkalas, 1990). 

 

Swelling power is the method to quantify the granule swelling ability. It is 

calculated by measuring the weight sedimented of swollen granules per gram of dry 

starch, or swelling volume (the volume of sedimented swollen granules per gram of dry 

starch) at the corresponding temperature (Konik et al., 1993; Pinnavaia & Pizzirani, 

1998; & Konik et al., 2001). Swelling power is a measure of hydration capacity, since 

the test is a weight measure of swollen granules and their occluded water (Whistler et 

al., 1984).  
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Meanwhile, solubility of the starch depends on several factors including starch 

source, inter-associative forces, swelling power and the presence of other components 

(Moorthy, 2002). However, there are no correlation between swelling and solubility 

Moorthy (2001). Eliasson and Gudmundsson (1996) also suggested low solubility of 

starches could be attributed to the semi-crystalline structure of the starch granule and the 

hydrogen bonds formed between hydroxyl groups in the starch molecules. 

 

2.4.2 Pasting Properties 

According to Whistler et al. (1984), pasting is the phenomenon following 

gelatinization in the dissolution of starch. Thomas & Atwell (1999) reported that pasting 

process is not a separate process from gelatinization but rather an overlapping 

occurrence, perhaps best described as a continuation of gelatinization. Pasting involves 

granular swelling, exudation of molecular components from the granules and finally, 

total disruption of the granules. Although there is no definitive point at which 

gelatinization ends and pasting begins, pasting is usually related to the development of 

viscosity.  

 

Pasting properties of starch was measured by Rapid Visco Analyzer. Viscosity 

and pasting profile of starch can be quantified and deliberated when starch slurry is 

subjected to certain shear strength with excess of water at a controlled temperature. It 

involves starch-swelling, gelatinization, becoming a paste, and then retogradation. 

According to Atwell et al. (1988), pasting is the phenomenon following gelatinization; it 

involves granular swelling, exudation of molecular components from granule, and lastly 

total disruption of granules. Sigh et al. (2003) claimed that gelatinization occurs 
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primarily in the amorphous regions, because of the weak hydrogen bonding in this 

region opposed to the crystalline region. Starches from different botanical sources 

represent different pasting profiles due to their own characteristics such as rigidity of the 

granules that affects the swelling potential (Karim et al., 2000) and amylose leaching of 

the granules (Morris, 1990). 

 

The interaction of starch and water can be observed by the disappearance of 

polarising crosses under polarised microscope. The absence of polarising crosses in 

starch granules indicates that the crystalline structure of starch has been destroyed. 

 There are several phases in the breakdown of starch granular structures. Kerr (1950) 

suggested the first phase of starch breakdown occurs before the onset of gelatinisation. 

Water is slowly and reversibly taken up. This has been confirmed by Jaska (1971) in his 

study using Proton Magnetic Resonance (PMR). The study observed that the mobility of 

water decreased as the temperature increased right before the gelatinization occurs. This 

suggests that the water is being reversibly complexed with the starch molecules in the 

granule. Although this change is reversible at temperatures below the onset of 

gelatinisation, continued exposure of the starch to water can cause changes in the 

granule itself (Gough & Pybus, 1971).  

 

The changes in the starch granules behavior and tendency of starch to retrograde 

can be studied from its pasting behaviour, by monitoring the changes in starch viscosity 

during programmed heating and cooling of a starch suspension by Brabender 

Amyloviscograph or Rapid ViscoAnalyser (RVA).  These techniques allow researchers 

to determine the parameters that are important when measuring the pasting behaviour of 
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starch. Those parameters are (i) the peak viscosity (P), which is the highest apparent 

viscosity obtained during pasting; (ii) peak viscosity temperature (PT), the ease of 

cooking; (iii) resistance to breakdown(H), it illustrates the stability of paste during 

cooking; (iv) setback (C), indicated by the apparent viscosity of the paste after cooling, 

(v) stability of the cooked paste, indicated by the apparent viscosity after stirring at 

certain temperature for certain periods of time. It is crucial to observe the pasting 

behaviour of starch because it reflects the integrity of starch granules, as well as the 

quality and acceptability of different starches in industrial application.  

 

2.4.3 Gelatinization Properties 

Practically, gelatinization refers to the loss of order of birefringence and X-ray 

crystallinity as well as to the swelling of the granule, which in part accompanies loss of 

order (Blanshard, 1987). Detail explanation regarding starch gelatinization phenomena 

has been made by Olkku & Rha, (1978), Glicksman (1969) and Donovan (1979). 

Gelatinization is primarily a swelling driven process. Due to the existence of excess 

water and heat, the amorphous growth ring uptake the water causing this region to swell. 

According to Glicksman (1969), the molecules in starch granules are held together by 

hydrogen bond force; during heating this force is weakened by heat, allowing water to 

be absorbed by the granules. This denotes the 'initial gelatinisation temperature'. After 

that, granules swell tangentially and simultaneously lose their birefringence. These 

phenomena start at the hilum or centre of the granules and spread rapidly to the 

periphery. Gelatinization begins in the intercellular areas where the hydrogen bondings 

are the weakest. It occurs in different temperature ranges for different starches. 

Consequently, swelling in the amorphous regions built a stress upon the amylopectin 
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crystallites, and finally this stress will cause the amylopectin double helices within the 

crystallites to dissociate, hence leading to the breakdown of granule integrity (Donovan, 

1979). 

 

However, other researchers also tried to define starch gelatinization in their own 

perspective. Lelievre (1974) suggested that the gelatinization of starch is related to the 

melting of homogeneous polymers. Marchant & Blanshard (1978) postulated at least 

three processes occur in starch gelatinization, that are diffusion of water into the 

unswollen starch granule, disappearance of the birefringence due to hydration-facilitated 

melting, and swelling of granules. Atwell et al. (1988) defined gelatinization as a 

disordering of the crystalline structure in the starch granule. Hermansson and Svegmark 

(1996) described starch granules swell and form gel particles during gelatinization. They 

suggested that amylopectin is embedded in swollen starch granules while amylose 

diffuses out of the swollen granules and makes up the continuous phase outside the 

granules. Ratnayake and Jakcson (2006) proposed that gelatinization process can be 

initiated at low temperatures and continues until the granules are completely disrupted. 

They also suggested that amylose molecules located in amorphous regions play an 

important role in gelatinization process.  

 

In summary, the gelatinisation of starch involved the following sequence of 

events (Olkku & Rha, 1978): 

 

(1) Granules hydrate and swell to several times their original size. 

(2) Granules lose their birefringence. 
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(3) Clarity of the mixture increases. 

(4) Marked, rapid increase in consistency occurs and reaches a peak. 

(5) Linear molecules dissolve and diffuse from ruptured granules. 

(6) Mixture retrogrades to a paste-like mass or gel. 

 

Along with the development of technologies and enhanced knowledge of the 

structure of granule, there are many new equipments and techniques to observe starch 

gelatinization process. These include light microscopy, electron microscopy, light 

transmission, viscometer, swelling and solubility determinations, nuclear magnetic 

resonance, laser light scattering, X-ray diffraction (Blanshard, 1987) differential 

scanning calorimetry and, high performance size exclusion chromatography (HPSEC) 

(Ratnayake & Jackson, 2007).  

 

Differential scanning calorimetry (DSC) has been used to study the thermal 

behavior of starch including gelatinization (Stevens & Eltons, 1971; Donovan, 1979; 

Hari et al., 1989; Fredriksson et al., 1998; & Ratnayake & Jackson, 2006) and 

retrogradation (Mclver et al., 1968; Rusell, 1987; Jacobson and Bemiller, 1998; 

Ratnayake and Jakcson, 2007). 

 

Data resulted from DSC are To which denotes the initial temperature at which 

starch granules start to swell; Tp represents peak temperature of the starch granule and Tc 

shows the completion of gelatinization process and ΔH represents the 

exothermic/endothermic energy during the measurement. 
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