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KESAN PEMVULKANAN IN SITU BAGI GETAH ASLI TERUBAHSUAI 
DENGAN STIRENA SEBAGAI APLIKASI-APLIKASI PELEKAT DA N 

POLISTIRENA DIPERKUAT GETAH 
 

ABSTRAK 

Kajian ini mengenai pencapaian penyediaan formulasi pemvulkanan bagi getah asli 

terubahsuai dengan stirena (SNR) dengan teknik pemvulkanan in situ . Sintesis bagi SNR 

telah disediakan dengan pempolimeran emulsi. Getah asli teryahprotein (DPNR) 

digraftkan dengan monomer stirena dengan penambahan amonium persulfat sebagai 

pemula. SNR vulkanizat telah disediakan dengan kaedah pemvulkanan dan agen-agen 

pemvulkanan yang berbeza. Peringkat pertama kajian ini melibatkan penyediaan SNR 

dengan pempolimeran emulsi dalam nisbah monomer stirena dan DPNR sebanyak 

25%:75%. Untuk aplikasi pelekat, kesan tiga sistem pra-pemvulkanan, pemvulkanan 

lazim (CV), pemvulkanan separa cekap (semi-EV) dan penvulkanan cekap (EV) terhadap 

sifat-sifat tensil SNR pra-vulkanizat diperhatikan. Sistem pemvulkanan semi-EV 

menunjukkan ciri-ciri yang sesuai sebagai pelekat SNR pra-vulkanizat. Sistem 

pemvulkanan semi-EV menunjukkan keputusan yang sama pada pemanjangan takat putus 

(EB) berbanding dengan sistem pemvulkanan CV dengan kekuatan tensil 

 yang rendah. Kesan pengubahsuaian pH dalam sistem pemvulkanan semi-EV 

menunjukkan sifat pelekatan yang baik dalam SNR pada pH 12 dan sesuai untuk 

digunakan dalam aplikasi pelekat. Bagi aplikasi bahan diperkuat getah, proses 

pemvulkanan dengan sulfur sebagai agen sambung-silang telah meningkatkan kekuatan 

hentaman adunan PS/SNR vulkanizat. 
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Keputusan menunjukkan adunan dengan kandungan getah 20% mempunyai kekuatan 

hentaman hampir sama dengan HIPS manakala adunan dengan kandungan getah 

sebanyak 30% adalah lebih liat daripada HIPS. Apabila komposisi getah dalam adunan 

ditingkatkan dari 10% hingga 30%, tenaga dalaman dan takat pemutusan pelenturan juga 

konsisten dengan kekuatan hentaman yang diperolehi. Morfologi pada PS/SNR20% dan 

PS/SNR30% menunjukkan fasa getah  adalah dalam taburan berterusan dan sekata 

berbanding dengan adunan PS/DPNR. Kalorimetri pembezaan penskanan (DSC) 

menunjukkan terdapat pencangkukkan berlaku pada SNR9H. Walau bagaimanapun, 

adunan PS/SNR20% and PS/SNR30% adalah tidak serasi dan fasa  terpisah wujud dalam 

adunan. Analisis dinamik mekanikal (DMA) menunjukkan adunan PS/SNR30% 

mempunyai interaksi yang baik  antara SNR dengan matrik PS, dengan meningkatkan 

maksimum tanδ dalam kawasan getah. Pada fasa kaca PS di bahagian suhu (90 0C-150 

0C), adunan PS/SNR30% mempunyai modulus simpanan dinamik terendah berbanding 

dengan PS/SNR10% dan PS/SNR20%. Kehadiran kandungan getah yang tinggi dalam 

adunan telah mengurangkan kekakuan rantaian PS. Keliatan rekahan bagi adunan 

PS/SNR20% mempunyai nilai Kc yang rendah berbanding HIPS tetapi menunjukkan 

keliatan yang tinggi kerana mempunyai takat putus kelenturan yang lebih tinggi. 

Rintangan penuaan bagi adunan PS/SNR dengan 20% dan 30% kandungan getah telah 

menunjukkan kekuatan hentaman yang lebih baik daripada HIPS selepas prosess 

penuaan. SNR yang disediakan dengan pemvulkanan in situ menunjukkan peningkatan 

yang baik dalam sifat-sifat pelekat sensitif tekanan dan kekuatan hentaman. Aplikasi-

aplikasi SNR sebagai pelekat dan pengubahsuaian hentaman telah tercapai. 
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EFFECT OF IN SITU VULCANIZATION OF STYRENE MODIFIED NATURAL 
RUBBER IN ADHESIVE AND RUBBER TOUGHENED POLYSTYRENE  

APPLICATIONS 
 

ABSTRACT 
 
In this research, establishment of vulcanization formulation of styrene modified natural 

rubber ( SNR ) vulcanizates by using in situ vulcanization technique was investigate. The 

synthesis of SNR was prepared through emulsion polymerization. Deproteinized natural 

rubber latex (DPNR) was grafted with styrene monomer with the addition of ammonium 

persulfate as initiator. SNR vulcanizate was prepared with different vulcanization 

methods and vulcanization agents. The first stage of the work involved in established the 

emulsion polymerization of SNR with ratio of styrene monomer and DPNR ratio 25%: 

75%. For adhesive application, the effect of three pre-vulcanization systems, 

conventional vulcanization (CV), semi-efficient vulcanization (semi-EV), and efficient 

vulcanization (EV) on tensile properties of SNR pre-vulcanizates were observed. The 

semi-EV vulcanization system showed suitable properties as SNR pre-vulcanizates 

adhesives. It showed similar trend in elongation at break (EB) compared to CV system 

with low tensile strength (TS). The effect of pH modification on semi-EV pre-vulcanized 

system showed the SNR with good anchorage ability at pH 12 suitable for adhesive 

application. For rubber toughened material application, in  situ vulcanization process with 

sulfur as crosslinking agent had improved the impact strength of the PS/ SNR 

vulcanizates. The results showed at 20% of rubber content has comparable impact 

strength with HIPS while 30% of rubber content showed more ductile than HIPS.  

Addition of more rubber contents from 10% increased to 30% showed an increased in 

internal energy and deflection at break which consistent with the impact strength 
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obtained. The stained photographs of PS/SNR20% and PS/SNR30% showed co-

continuous rubber phase and more homogenous than PS/DPNR blend. Differential 

scanning calorimetry (DSC) analysis showed the occurring of grafting in SNR9H, 

however the blends of PS/SNR20% and PS/SNR30% showed incompatible and phase 

separated exist in the blends. Dynamic mechanical analysis (DMA) showed the 

PS/SNR30% had more interaction between SNR and PS matrix hence the maximum tan δ 

increases in the rubber region. At glassy PS  temperature region (90 0C-150 0C), 

PS/SNR30% had lowest dynamic storage modulus compared to PS/SNR10% and 

PS/SNR20%. This large amount of rubber molecule had reduced the rigidity of the PS 

chain. Fracture toughness of PS/SNR20% had lower Kc value than HIPS but showed 

better ductility with higher deflection at break. Aging retention property of PS/SNR 

blends contained 20% to 30% of rubber content showed better impact strength after aging 

compared to HIPS. In situ vulcanization of SNR had shown great improvement in 

pressure sensitive adhesion properties and impact property. The applications of SNR as 

adhesive and impact modifier had achieved. 
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CHAPTER 1 
INTRODUCTION 

1.1 Latex based adhesive 

The bonding agents used in paper product are known as adhesive which mostly is latex 

based. Other than paper products, leather goods and textiles, latex based adhesives also 

had been used in rigid substrates such as wood, floors, metal, glass, plastic and ceramic. 

The advantages of latex based adhesive are as follow: 

• Reduced cost of production. 

• Able to formulate adhesive with a wide range of total solid contents and viscosities, 

such as adhesive with high total solid content at relatively low viscosity for easy 

handling. 

• Absence of flammable and toxic solvents 

• Utilizing polymer of high molecular mass 

• Superior resistance to deterioration during aging. 

• Ease of wetting on solid substrate and to penetrate on porous substrate. 

 

Generally the copolymer lattices are more effective used as based for latex adhesive than 

the unmodified polymer lattices. Adhesive with graft copolymer or a block should adhere 

well to different adherend. The adhesive need to fulfill the condition where the degree of 

separation of the two (or more) types of the repeat unit in a copolymer should have 

sufficiently large domain with two types of polarity. Secondly, the block of the 

copolymer should able to migrate from each other to enable strong adhesive bonds can be 

formed at the respective adherend surfaces. The copolymer need to have adequate size 

with no extensive crosslinking that can separate at the respective adherend surfaces. 
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Basically the adhesive bond formed from the latex based adhesive have to withstand the 

influence exposure such as sunlight, hydrocarbon oil, ozone and heat in which these 

bonds are strongly depends on the polymer component. Furthermore, latex based 

adhesive bond able to withstand high humidity and water through nature and the amounts 

of hydrophilic substances in the latex. Some polymers used for the production of latex-

based adhesive are inherently capable of being crosslinked. The crosslinking are formed 

if appropriate reagents are included in the adhesive formulation and physical conditions 

for crossliking are established, or the reagents can migrate into the adhesive films from 

the adherend substrate. The advantages of crosslinking are to improve the resistance of 

adhesive towards aging, reduced sensitivity of bond strength and flexibility on changes 

temperature, improve the resistance to deterioration by water and organic solvents. There 

are also adhesion modifiers in latex based adhesive such as aqueous solution and 

dispersions of resin, tackifiers, plasticizer, crosslinking agents, fillers, thickeners and 

other additives (Blackley, 1997)  

Among the other substances are added in the latex based adhesive are: 

• Surface active substances 

• Antioxidants 

• Anti-forming agents, anti-freezes and  freeze-thaw stabilizers 

• Fungicides, corrosion inhibitors, flame-retarders 

• Colorants, de-odorants and re-odorants. 

Gazeley and Mente (1985) describe the preliminary investigation of tackifying additives 

in reducing the molecular mass of the natural rubber. In the case of pressure sensitive 

adhesive, the adhesive has to be sufficiently soft in the dry state, and able to deform 



 3

under low pressure so good surface contact can be achieved. However, the sufficient 

cohesive strength is also required for adhesive application. Unfortunately both tack and 

cohesive are inversely correlated. So higher level of resin is needed for development of 

good tack compared to equivalent solution-based pressure sensitive adhesive. 

In some latex-containing adhesive, the latex component is present in only small 

amount. The function of adhesive is to improve or develop existing properties possessed 

by the adhesive, rather than to convey distinctive characteristics of its own 

(Blanckley,1997).  

Characteristic and process of vulcanized NR based adhesive: 

• May used chemical catalysts/accelerators at ambient temperatures or heat curing 

to vulcanize the adhesive, as to improve strength and temperature resistance. 

• Additives such as tackifiers, fillers and plasticizer and antioxidants are often used 

to improve the ageing of adhesive 

• Can be set by solvent/ water evaporation/ vulcanization. 

• Process involved NR emulsion contains stabilizers, wetting agents and other 

component. Adhesive may cured by heat or at room temperature, provided a 

suitable accelerator is used. 

According to Petrie (2006), unvulcanized adhesive tends to lose its strength at 

temperature 66oC and the vulcanized adhesive has maximum service temperature at 93 oC. 

Caution must be taken as exposure of adhesive to higher temperatures can cause 

permanent softening.  
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1.1.1 Pressure sensitive adhesive 

Pressure-sensitive adhesives (PSA) are fluid applied. These types of adhesives are 

viscoelastic material and do not undergo a chemical reaction. PSA remains in the gel 

state which is tackiness capable of being removed rather than a permanent bond after 

wetting the substrates. In order to have good surface contact, PSA has to be sufficiently 

soft in the dry state to deform under low pressure and has sufficient cohesive strength 

contact to react as adhesive. However, in most cases the tack and cohesive strength are 

inversely correlated (Blackley, 1997). 

In the 19th century, the discovery of natural rubber as the first solvent based PSA 

and its usage are widely recognized in tapes and labels industries. Recent development 

such as control of adhesive properties through structured particles design of water –borne 

PSA are studied by Andrew et. al.(2009). For further improvement over the joint strength, 

the mixed adhesive joint technique can offer a good combination of strength and ductility 

(Silva & Lopes, 2009).  

Nanocomposite PSAs also one of the new growth adhesive materials which are 

popular among the studies of researcher. There is published study that deals with 

synthesis of acrylic polymer/montmorillonite (MMT) clay nanocomposite PSAs by 

suspension polymerization (Kajtna & Sebenik, 2009). For medical grade application, the 

design of new water soluble PSA for patch preparation are reported by Minghetti et 

al.(2003). Mixture of polyisobutylene (PIB) and sodium carboxymethylcellulose (CMC) 

are physiologically inert and both yield a special moisture absorbing PSA, thus suitable 

for medical application as patch preparation. The rheological properties of PIB and CMC 

are studied by Piglowski and Kozlowski (1985). 
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Polymer mostly use as PSAs are block copolymers of elastomer with styrene, 

natural rubber, polyacrylate, random polymer butadiene-styrene rubber or butyl rubber 

(Andrew & Khan,1990; Satas,1989). For example, carboxylated butadiene-styrene rubber 

and butadiene-styrene rubber are used as base for PSA and styrene-2-ethyl hexyl acrylate 

copolymer containing 14 mass% of styrene is used as PSA modifier (Florian and 

Novak,2004). 

 

1.1.2 The effect of nature of adherend surface 

Latex based adhesives usually contain substances of widely different polarities, which 

some of the substances are hydrophobic and others are hydrophilic. This is common in 

latex based adhesive due to minor amount of various substances, such as surface active 

substances and hydrocolloids which essentially hydrophilic in nature. It is known that 

latex based adhesives are hydrophobic colloidal dispersions which contain at least two 

phases which are aqueous phase and polymer particles. There is a dispersed phase in 

latex based adhesives which can be occurred due to the filler particles. In principle, 

predominantly polar surface of adherend encourage the polar component of adhesive to 

accumulate at the interface between the adherend and the adhesive. Similarly, the surface 

which is predominantly non polar encourage the non polar component of the adhesive at 

the interface between the adherend and the adhesive (Comyn et.al,1992). 

. 
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1.1.3 The effect of the high humidity and liquid water upon strength of adhesive 

bonds 

Water is highly polar small molecule. The present of the water will further weaken the 

adhesive bond strength between the adhesive film and the adherend surface. If the 

adhesive film is in contact with water, surface active substances presence in adhesive 

may dissolve in the contiguous aqueous phase. Thus, the surface free energy of the water 

and the thermodynamic work of adhesion of the adhesive bond are reduced (Comyn et.al, 

1993). So when produce a new adhesive, the adhesive which is least affected by the 

humidity is favored when strong adhesive bonds is desired. 

1.2 Rubber toughened plastic 

1.2.1 Compatibility effect Test 

In order to determine whether a polymer-polymer mixture has separated into two phases, 

light scattering, microscope and measurement of glass transition temperatures are often 

used as a standard test method for compatibility. For most binary pairs, in which the 

polymers are completely incompatible, these method can distinguish by difference in 

refractive index and glass transition temperature (Tg). However, it is difficult to 

distinguish a single homogeneous phase from a fine dispersion of one polymer in another.  

The existing analytical methods differ in their ability to make this distinction and give 

contradictory results. As a result, calorimetry may indicate a single glass transition for a 

sample while dynamic mechanical testing detects two separate transitions. Sometime, 

electron microscopy can resolve this problem provided there is sufficient electron 

contrast between the two components. If there are differences in chemical reactivity 

which enable one constituent to be stained or etched preferentially, then it is a useful aid 
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to analysis the compatibility. Kinetic effect further complicated the problem. In principle, 

the concept of compatibility is refer to thermodynamic and related to the equilibrium 

state of the mixture. Caution must be taken as mixing and demixing of polymeric systems 

are diffusion-controlled process which can take longer time to reach equilibrium. For 

second kinetic effect, the partially miscible system between its bimodal and spinodal 

compositions can exist indefinitely as a metastable homogeneous phase in the absence of 

a nucleation mechanism. Thus, some caution is necessary to prevent wrong interpreting 

experimental evidence as failure to mix is not necessary an indication of thermodynamic 

incompatibility, nor is the existence of an homogeneous phase proof of complete 

thermodynamic compatibility (Bucknall,1977). 

 

1.2.2 Graft-copolymerization reaction  

A specialized type of block copolymer in which blocks of one monomer units are 

covalently bonded to a main-chain polymer comprising exclusively units derived from 

other monomer is known as graft copolymer. It is said to be grafted on to the main chain 

polymer when the monomer units constituting the attached blocks. The aims of producing 

graft-copolymerization reaction in natural rubber latex are for production of self-

reinforced and thermoplastic natural rubber.  

 A few of published reports (Bloomfiled, 1956; Merrett & Wood, 1957; Allen et 

al.,1959; Sekhar,1958; Ceresa,1973; Pendle,1973) stated that the amount of grafting of a 

second polymer such as PS and polymethyl methacrylate (PMMA) onto NR backbone is 

low (less than 50%). This is due to the presence of protein layer which prohibit the graft 

copolymerization of vinyl monomers onto natural rubber. In this case, deproteinized 
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natural rubber latex (DPNR) is more suitable as a grafted polymer compared to high 

ammonia natural rubber latex (HANR). This is due to the removal of protein layer in 

natural rubber and replacement of surfactant in lattices which increase the degree of 

grafting and furthermore increase the physical properties of copolymer (Ceresa, 1962; 

Allen, 1963; Ceresa, 1973; Pendle, 1973).  

 Emulsion polymerization can be used to produce grafted copolymer. For 

emulsifier-free emulsion polymerization, the minimum number of component essential 

for the creation of an aqueous emulsion polymerization reaction system is three, rather 

than four: monomer(s), water and initiator. The present of colloid stabilizer is 

unnecessary. The initiator used in the emulsion polymerization reaction will generate 

radical –anions end groups which provide colloid stability at the surface of the polymer 

particles (Blackley, 1997). According to Nguyen (2000), during emulsion 

polymerization, if the DPNR used as main chain polymer for grafting and with already 

contains amount of surfactant which lower than critical micelle concentration (CMC) 

value during its manufacturing, hence, the used of addition surfactant in the system can 

be neglected. Such system will avoid the formation of micelles and has high degree of 

grafting which known as emulsifier-free emulsion polymerization. 

The reaction time in emulsion polymerization depends on the reaction 

temperature used in the system. Some studies on modification of HANR latex with vinyl 

monomer had reported using temperature range from 50-70oC for different initiator and 

surfactant system. According to Nguyen (2000), modification of DPNR latex with 

styrene monomer with balance of properties can be achieved in the modified DPNR films 
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by using 60oC of reaction temperature together with initiator concentration of  2% by 

weight of styrene in the system,. 

Based on study by Nguyen (2000), the total solid content (TSC) of 40% is 

recommended for the emulsion polymerization reaction of grafted styrene on natural 

rubber for ratio of natural rubber to monomer styrene at 75%:25%. Above the 40% of 

TSC, the rubbers tend to collide more frequently due to the distance between the rubber 

particles reduce and thus the system will easily coagulated. 

Another established graft copolymer example was self reinforced rubber obtained 

from graft-copolymerization with methy-methacrylate (Bloomfield 1952). It is well 

known as ‘Heveaplus MG’ in industry. Typical formulation for graft-coplymerization of 

methyl methacrylate and of styrene in ammonia-preserved natural rubber latex using a 

hydroperoxide-polyamine initiation system are shown in Table 1.1.According to 

Bloomfield (1952), significant extents of grafting occur if hydroperoxide-polyamine 

combination or dibenzoyl peroxide is used as initiator. However, if azobisisobutyronitrile 

and peroxodisulphates   are used as initiator, almost no grafting occurs for the former, 

and low grafting occurs for the latter. The dependence of the extent of grafting upon the 

nature of the initiator is inconsistent with the reaction mechanisms in which grafting 

occurs principally hydrogen-abstraction by interaction between a propagation polymer 

chain and a rubber macromolecule or copolymerization; neither of these reactions would 

be expected to depend upon the nature of the free radical which initiated the 

polymerization. Thus, it is believed that grafting occurs primarily by interaction between 

rubber molecules and the primary radicals which form from the initiator. 
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Table 1.1: Typical formulation for graft-coplymerization of methyl methacrylate and 
of styrene in ammonia-preserved natural rubber latex (Bloomfield ,1952) 

 
 Part by mass 

 Methyl methacrylate Styrene 

Ingredient Dry Actual Dry Actual 

Natural rubber(as 30%m/m 

latex,0.4% m/m ammonia 

100 333 100 333 

Non-ionogenic stabilizer  

(as 20% aqueous solution) 

- - 3 15 

Methyl methacrylate 33 33 - - 

Styrene - - 55 55 

Tert-butyl hydroperoxide 0.18 0.18 0.25 0.25 

Tetraethylenepentamine 

(as 10% m/m aqueous solution) 

0.21 2.1 0.1 1.0 

Time of polymerization/hour 3 6.5 

Polymerization temperature/oC 12 55 

Conversion/% 90 95 

 

A combination of tert-butyl hydoperoxide and tetraethylenepentamine showed rapid 

initiation and smooth polymerization of both methyl methacrylate and styrene in 

ammonia-preserved natural rubber latex. Bloomfield (1952) indicated that methyl 

methacrylate could be used to polymerize natural rubber latex with the used of dibenzoly 

peroxide only if the ammonia was removed, the temperature need to nearly 80oC, and a 

substantial quantity of a non-inorganic stabilizer need to add to prevent colloidal 

destabilization.  

Allen et.al. (1959) reported that the polystyrene, having a greater tendency to mix 

with natural rubber than with polymethyl methacrylate, which less tendency to phase-
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separated to form micro-aggregates. Thus the distribution of monomer styrene within the 

composite latex particles is expected to be more uniform. 

Recently, Pukkate et. al. (2007) study the graft-copolymerization of styrene onto 

natural rubber in order to form nano matrix structure. Nano-matrix structure is formed by 

graft-copolymerization of styrene onto urea-deproteinized natural rubber (U-DPNR) latex. 

The grafted U-DPNR is characterized by Fourier-transform infrared (FT-IR) 

spectroscopy, Hydrogen-1 nuclear magnetic resonance (1H NMR) spectroscopy and 

transmission electron microscopy. Conversion and grafting efficiency of styrene are more 

than 90% under the best condition of the graft-copolymerization. In transmission electron 

micrograph of film specimen stained by OsO4, it is found that natural rubber particle of 

about 0.5 µm in diameter is dispersed in polystyrene matrix of about 15 nm in thickness. 

The conversion and grafting efficiency for the grafted U-DPNR are compared with those 

for a control sample prepared from enzymatic deproteinized natural rubber (E-DPNR) 

with styrene. Figure 1.1 shows the preparation of grafted styrene-copolymer. Graft-

copolymerization of U-DPNR and E-DPNR are carried out with tert-butyl hydroperoxide 

/tetrethylenepentamine as an initiator in latex stage. The highest conversion and grafting 

efficiency of styrene for U-DPNR-g-PS copolymer is achieved at 1.5 mol/kg-rubber feed 

of styrene to be about 90 and 90 w/w%, respectively, as shown in Figure 1.2 and Figure 

1.3. 
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Figure 1.1: Preparation of U-DPNR-g-PS and E-DPNR-g-PS copolymers  
(Pukkate et. al.,  2007). 
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Figure 1.2: Content of styrene units and conversion of styrene for U-DPNR-g-PS and E-
DPNR-g-PS copolymers;( ∆ ), conversion of styrene for U-DPNR-g-PS copolymer; (●), 
conversion of styrene for E-DPNR-g-PS copolymer; (○ ), content of styrene for U-
DPNR-g-PS copolymer; (▲), content of styrene for E-DPNR-g-PS copolymer(Pukkate et. 
al.,2007). 
 
 

 

Figure 1.3: Value of grafting efficiency of styrene for (□  ),U-DPNR-g-PS  and (○  ), E-
DPNR-g-PS copolymer (Pukkate et. al.,2007). 
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Graft copolymer also can be prepared by radiation. Asaletha et.al.(1998) prepared 

graft copolymer of NR and PS (NR-g-PS) by polymerizing styrene in rubber latex using 

60 Co γ- radiation as initiator. Styrene monomer is added into emulsion which is then 

mixed with NR latex. The dose rate is 0.1166 MRadmin-1. The free homopolymers 

natural rubber and polystyrene are removed by extraction with petroleum ether and 

methyethylketone. 

 

1.3       Problems statement 

High ammonia natural rubber latex (HANR) is commonly used in latex dipped products 

but has allergy issue (Dairlymple & Audley, 1992; Yip et. al.,1995;   Pendle,1993).Thus, 

deproteinized natural rubber latex (DPNR) become the focus of studies to solve the 

protein issue. The production of DPNR is by subjecting the natural rubber latex (NR) to 

enzymatic treatment and centrifugation (Ichikawa et.al.,1993). Most of the proteinaceous 

substances are removed from NR after the deproteinization process. Protein plays an 

important role in stabilizing the rubber particles and film forming properties of latex. In 

order to maintain the stability of DPNR, surfactant is added into DPNR to stabilize the 

lattices. In comparison of HANR and DPNR, the former is stabilized by protein and lipid 

layer (Gazeley et.al., 1988), as the latter is virtually stabilized by surfactant. 

 Most graft-copolymerization process favors the used of DPNR than HANR. 

According to Nakason et.al (2003), the grafting efficiency percentage decrease with an 

increase of MMA concentration when the DPNR or HANR is grafted with methyl 

methacrylate (MMA).  In comparison with the two type of lattices, DPNR provides 

higher grafting efficiency which contains larger quantity of grafted poly (methyl 
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methacrylate),a larger average particle size, and few free natural rubber molecules are 

observed in the grafting system. These differences are attributed to the removal of 

proteins. The protein layer can act as free-radical scavengers and terminate the free-

radical species during graft copolymerization. Thus DPNR becomes the focus of the 

recent studies.  

 The discovery that brittle plastics can be toughened by using minor portion of 

rubber has led to the commercialization of high impact thermoplastics. One of the leading 

commodity thermoplastic materials is high-impact polystyrene (HIPS). However, the 

commercial HIPS were prepared by mass suspension polymerization of poly-butadiene 

with styrene which is a copolymer of styrene and butadiene usually has a rubber content 

of 8-14 wt% (Bucknall, 1977). 

 PS is known to be difficult to compatibilize with natural rubber (NR). Thus, it 

could be expected that the mechanical properties of PS/NR blend could be further 

enhanced via the incorporation of a suitable compatibilizer. Natural rubber /polystyrene 

(NR/PS) blends with the addition of compatibilizer which is NR-g-PS had improved the 

mechanical properties of NR/PS blends (Chuayjuljit et al, 2005). Research on dynamic 

vulcanization of NR/PS blends are well established by Asaletha et.al.(1999). Dynamic 

vulcanization of the blends is carried out by different curing agent, ie: sulfur, peroxide 

(DCP) and mixed system (sulfur with peroxide). All blends are prepared by melt mixing 

and solution casting technique. 

 The study reported here is an investigation of PS-modified NR (SNR) prepared by 

using emulsion polymerization. Instead of vulcanized the SNR by dynamic vulcanizaion, 

in situ vulcanization in SNR latex is recommended to prepare the SNR vulcanizate. In 
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situ vulcanization process is carried out immediately after the emulsion polymerization of 

SNR latex in room temperature. SNR vulcanizate is left to dry in room temperature and 

then leached with deionized water to remove all the water soluble impurities in SNR 

vulcanizate. The formulation recommended for in situ vulcanization is sulfur based 

vulcanization. This SNR vulcanizate is ready to be used as impact modifier.  

Part of the study involved the application of SNR vulcanizate as pressure sensitive 

adhesive (PSA). The ratio of accelerator to sulfur used from three type of pre-

vulcanization system which are conventional vulcanization system (CV), semi-efficient 

system (semi-EV) and efficient vulcanization system (EV). Pre –vulcanization were 

carried out immediately after the emulsion polymerization at 60oC. The focus in this 

work was to develop a PSA with good performance in anchorage properties, good mean 

maximum load results and longer average time to fail. 

Another application of SNR vulcanizate in the industry is rubber toughened 

material. The vulcanization system used is semi-EV vulcanization system. Polystyrene 

(PS) make up a large proportion of total tonnage of plastic currently being used mainly 

for consumer products or non load bearing application. In order to improve the toughness 

property of PS glassy polymer and divert the application of PS to high impact 

applications, small amount of rubber as impact modifier is recommended to add in to PS 

matrix. SNR vulcanizate which contains highly grafted PS portion is believed to have 

better interaction with PS in PS/SNR vulcanizate blend and act as impact modifier.  

 

 

 



 17

1.4       Objectives of studies 

The focus of the study reported here is concerned with the application of SNR as pressure 

sensitive adhesive and rubber toughened PS. Both applications are using chemical 

modified DPNR with styrene monomer. The main objectives of this study are: 

1. To investigate the in situ vulcanization system for SNR vulcanizates by using 

sulfur based vulcanization. The effect of the vulcanization systems will be studied 

for both applications. 

2. To study the effect of SNR pre-vulcanizate as pressure sensitive adhesive in PS-

PS, PS-NR and NR-NR substrates. The formulation of SNR pre-vulcanizate with 

optimum improvement in anchorage properties, good mean maximum load results 

and longer average time to fail are to be determined. 

3. To investigate the effect of SNR vulcanizate as impact modifier in PS blends. The 

optimum rubber composition of PS/SNR blends are to be determined in order to 

achieve higher reinforcement and toughening effect on PS matrix. 

4. To compare the PS/SNR vulcanizate with commercial HIPS and to study the 

compatibility of PS/SNR vulcanizate blends.  
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CHAPTER 2 
LITERATURE REVIEW  

 
2.1 Emulsion polymerization 

There are four components in conventional reaction system for the aqueous emulsion 

polymerization: monomer, water, initiator and colloidal stabilizer. Sodium-n-dodecyl 

sulphate is colloidal stabilizer (emulsifier or surfactant) of non-polar monomers of low 

solubility such as styrene. Initiator is water soluble and functions as free radical generator. 

The common water soluble initiator used is peroxodisulphates (persulphates) of 

monovalent cations, such as potassium, ammonium and sodium. When the surfactant is 

added into the aqueous solution, it will saturate the water phase and then aggregated to 

form micelles, thus, critical micelle concentration (CMC) occur. According to Gerrens & 

Hirsch (1975), CMC has to be above 2.6 g/l H2O, to ensure that micelles are formed for 

polymerization (Flory, 1956; Gordon, 1970; Blackey, 1975; Eliseeva et.al .,1981; Rosen, 

1982;  Odian, 1991;  Painter & Coleman, 1994; Kumar & Gupta,1998).  

In processing the styrene butadiene as example, both styrene and butadiene 

monomer added will diffuse through the water phase and into the micelles until 

equilibrium is obtained. Most polymerization occurs within the monomer-swollen 

micelles. The polymerization begins after the addition of initiator. Initially, the free 

radicals are formed with the presence of initiators. Free radical reacts with the monomer 

double bonds, and the chain growth began. The hydrophobic chain migrates to the 

swollen micelles with further increase of molecular weight is observed. Majority of 

polymerization occurs in the swollen micelles (Rander, 2006). Figure 2.1 shows concept 

of the free radical emulsion polymerization  
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Figure 2.1: Concept of free radical emulsion polymerization (Rander, 2006) 

  

The application of styrene-butadiene (SB) latex in coating industry such as paperboard 

coating, textile coating, as binder and coating for flooring felts, and as carpet backing. 

Typical properties of SB latex are shown in Table 2.1 
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Table 2.1: Properties of styrene-butadiene latex (Rander 2006) 

Property Value 

Solids 

pH 

Brookfield viscosity 

Average particle diameter 

Surface tension 

Specific gravity (at 25oC) 

Styrene/butadiene ratio 

Film properties: 

Tensile strength (at break) 

Elongation 

50% wt. 

7-9 

< 500cp at 25oC 

20,000 

45 dynes/cm 

1.01 

50:50 

 

550psi 

520% 

 

 

2.1.1 Smith-Ewart theory 

An ideal emulsion polymerization occurs when radicals entering individual latex particles 

successively initiate and terminate the growing chains. At any given time, the number of 

growing chains will be one-half the number of particles. It is to be noted, the high radical 

concentration does not affect the radical lifetime. The number of polymer particles 

depends on both the initiator concentration and the surfactant concentration (Roderic 

et.al.,1994), 

N α [I] 2/5 [S]3/5                                                   (2.1) 

Where,[ I ] = Concentration of initiator,[ S ] = Concentration of surfactant 
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 In the case of the diene, where the classical method of photoinitiation poses 

difficulties, a rather elegant method for obtaining the absolute value of the propagation 

rate constant kp from emulsion polymerization system (Roderic et.al.,1994), as 

                                                         Rp = kp [M] N/2                                                     (2.2) 

Where, N = Number of the particles per unit volume, Rp = Propagation rate constant, [M] 

= Concentration of monomer in the monomer-polymer particles, 

 

2.1.2 Chain-growth polymerization 

Chain growth polymerization occurs when there is an addition of monomer to reactive 

sites on the growing chain molecules.     

                    

Where, P*n = Polymer chain with reactive site (*) and degree of polymerization of n, M= 

Monomer unit, P*n+1= polymer chain with a reactive site (*) and degree of 

polymerization n+1  

The reactive species which initiate such chain reactions must be capable of 

opening one of the bonds in the monomer and may be a radical, an electrophile, a 

nucleophile, or an organometallic species. Hence this polymerization may proceed by a 

variety of possible mechanisms depending on the electronic nature of the chain-carrying 

species, viz., free radical, cationic, anionic, and coordination, as illustrated in Figure 2.2 

(Roderic et.al.,2005).  

                                                       P*n + M              P*n+1        +M                                                                    (2.3) 
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Figure 2.2 : The reactions of double bonds with various types of initiating species. 

(Roderic et.al, 2005) 
 

The general kinetics for chain propagation by free radical mechanism involve three 

primary steps, i.e., initiation, propagation, and termination as shown in Figure 2.3 

(Roderic et.al, 2005). Where I= initiator, M=monomer, R= initial free radical, and Mj· = 

propagating free radical. 

This sequence of steps then leads to the following simple kinetic treatment: 

Rate of initiation                                     Ri= 2ki [I]                                                    (2.4) 

Rate of propagation                           Rp= kp [M j · ] [M]                                             (2.5) 

Rate of termination                               Rt= 2kt [M j · ]
2
                                                                      (2.6) 

Assuming a steady-state condition where the rate of formation of radicals is equal to their 

rate of disappearance, i.e., Rj =Rt, 

                                                              [Mj · ]= ki
1/2 kt 

-1/2 [I]  ½                                    (2.7) 

And 

                                                                                        Rp = kp ki
1/2 kt 

-1/2 [M][I] 1/2                                  (2.8) 
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Equation 2.8 thus illustrates the dependency of the overall rate of polymerization on the 

concentration of initiator and monomer. Another important aspect of the free radical 

polymerization is the dependency of the number-average degree of polymerization on 

initiator concentration, increases the rate of polymerization but decreases the degree of 

polymerization, Xn, which corresponds to the number-average number of units per chain. 

                                                           Xn= kp ki  
-1/2 kt 

-1/2 [M][I] -1/2                              (2.9) 

   

 
Figure 2.3: Kinetics for chain polymerization by free radical mechanism  

(Roderic et.al, 2005) 
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2.2  Latex Compounding Ingredients 

Lattices require addition of compounding ingredients for a finished product. The range of 

compounding ingredients used for latex are divided into the following categories 

(Howard,1999; Blackley,1997): 

(a) Vulcanization agents: These agents are necessary for vulcanization as the chemical 

crosslinking reaction can improve the physical properties of the latex compound. 

(b) Accelerators:  The function of these chemical with the combination of vulcanizing 

agents will reduce the vulcanizing time (cure time) or increase the rate of 

vulcanization. In most cases, the physical properties of the products are also improved. 

(c) Activators:  These ingredients form chemical complexes after react with accelerators. 

These chemical complexes further increase vulcanization rates and improve the final 

product properties. 

(d) Stabilizer including surfactants: These chemicals are used to reduce the surface free 

energy of aqueous media against air, and the interfacial free energy of aqueous media 

against immiscible organic liquids. This is due to the majority of lattices of industrial 

has aqueous dispersion media. 

(d) Antioxidants:  To increase the ageing characteristic of the latex compound. 

(e) Fillers:  To stiffen the product obtained from latex and also reduce the cost of final   

product. 

(f) Viscosity modifiers (thickeners): To enhance the colloidal stability and modify the 

flow behaviors of latex compound. 

 


