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SIMULASI STRUKTUR SALURAN PENDEK MOSFET MENEGAK 
 
 

ABSTRAK 
 
 

Baru-baru ini, penghujung bagi pelengkap semikonduktor logam oksida 

(CMOS) mendatar sudah semakin nyata. Transistor kesan medan semikonduktor 

oksida logam (MOSFET) menegak (VMOST) adalah salah satu struktur yang 

menjanjikan untuk masa depan teknologi CMOS. Masih banyak kajian perlu 

dilakukan pada struktur VMOST agar akan mantap seperti teknologi CMOS 

mendatar. Telah diketahui bahawa ada banyak parameter perlu mempertimbangkan 

dalam rekabentuk sebuah MOSFET. Dengan bantuan rekabentuk teknologi komputer 

tambahan (TCAD), parameter-parameter bagi MOSFET boleh diubahsuai dengan 

cepat dan jimat kos. Projek ini berdasarkan kepada dua dimensi (2D) simulasi kerja. 

Simulator yang digunakan adalah ATHENA, DEVEDIT dan ATLAS keluaran 

SILVACO International masing-masing bagi struktur peranti dan ciri-ciri elektrik 

dari peranti parameter struktur dengan yang dicadangkan dengan mekanisme fizikal 

dalaman berkaitan dengan operasi peranti. Tujuan projek ini adalah untuk 

mempelajari struktur NVMOST seperti VMOST dengan pertumbuhan lapisan 

epitaxial (VMOST-EL), MOSFET menegak menggabungkan saku dielektrik (DP-

VMOST) dan get penggantian menegak (VRG) MOSFET. Untuk VMOST-EL, 

kesan daripada pelbagai pengedopan saluran kepekatan, NC, pada 80 dan 50 nm 

panjang saluran yang dibincangkan. VMOST-EL dengan 50 nm bagi L dan 2 x 1018 

cm-3 bagi NC, Vth, JD dan Joff masing-masing ialah 0.22 V, 1227 µA/µm and 2.8 x 10-

7 A/µm. Keputusan kajian menunjukkan bahawa NC banyak mempengaruhi ciri-ciri 

elektrik. Selain itu, kesan dari jarak antara saku dielectrik dan get oksida, WC, pada 

pelbagai NC diperiksa pada DP-VMOST. DP-VMOST dengan WC = 10 nm dan NC = 

 xiv



2 x 1018 cm-3 mempunyai 1024 μA/μm bagi JD, 2.2 x 10-8 A/μm bagi Joff dan 0.32 V 

bagi Vth. DP banyak mengurangkan susutan dari salir ke saluran serta persimpangan 

pn yang menyumbang terhadap prestasi saluran pendek sub-100 nmVMOST lebih 

baik. Tambahan pula, ada kemungkinan untuk mengawal ciri elektrik peranti dengan 

hanya mengubah WC berbanding mengendalikan kepekatan pengedopan saluran atau 

ketebalan get oksida. Perbandingan dengan kerja Donaghy et al. (2004), trend yang 

beza bagi  Joff, apabila pengedopan saluran kepekatan 3 x 1018 cm-3, nilai yang 

diperoleh adalah lebih rendah daripada Joff bagi NC = 4 x 1018 cm-3. Fenomena ini 

kemungkinan disebabkan of model yang diguna untuk pencirian. Akhirnya, untuk 

VRG-MOSFET, kesan dari lebar bagi kawasan jasad antara dua saluran, WB, dengan 

pelbagai NC juga dikaji. Ia menunjukkan bahawa jasad keupayaan yang akan 

menyebabkan kawasan jasad menjadi separa atau sepenuhnya tersusut banyak 

dipengaruhi apabila WB dan NC rendah. Bagi VRG MOSFET dengan L = 50 nm, NC 

= 3.5 x 1018 cm-3 dan WB = 200 nm, ia menunjukan 0.53 V bagi Vth, 482.6 µA/µm 

bagi JD dan 3.31 x 10-13 A/µm bagi Joff. Sebaliknya, hasil  Hergenrother et al. (1999) 

dengan 50 nm bagi L and 3.5 x 1018 cm-3 bagi NC, ia menunjukan 0.73 V bagi Vth, 5 

x 10-10 A/µm bagi Joff dan 68 µA/µm bagi ID. Perbezaan ini disebabkan simulasi ini 

hanya dalam 2-D struktur MOSFET VRG. Manakala, struktur yang diperkenalkan 

oleh Hergenrother et al. (1999) ialah “persegi panjang” mengelilingi struktur dengan 

16.4 µm bagi lebar. 
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SIMULATION OF SHORT CHANNEL VERTICAL MOSFET STRUCTURES 
 
 

ABSTRACT 
 
 

Recently, the end of the planar bulk complementary metal oxide 

semiconductor (CMOS) had become visible. Vertical metal oxide semiconductor 

field effect transistor (VMOST) structures are one of the promising structures for 

future CMOS technologies. There are still a lot of research needs to be done on the 

VMOST structures to mature as that of planar CMOS technologies. It is well known 

that there are many parameters needed to be considered in designing MOSFET. With 

the aid of computer-aided design, we can optimize the MOSFET parameters faster 

and with lower cost. This project is based on two-dimension (2D) simulation works. 

Simulators used are ATHENA, DEVEDIT and ATLAS from SILVACO 

International. ATENA and DEVEDIT are used to simulate the device structures. 

Meanwhile, ATLAS is used to predict the electrical outputs of the proposed 

parameters device structures with insight into the internal physical mechanisms 

associated with device operation. The aim of this project is to study NVMOST 

structures, which are VMOST growth with epitaxial layers (VMOST-EL), vertical 

MOSFET incorporating dielectric pocket (DP) (DP-VMOST) and vertical 

replacement gate (VRG) MOSFET. For VMOST-EL, the effects of various channel 

doping concentration, NC, on 80 and 50 nm channel length are discussed. VMOST-

EL with L of 50 nm and NC of 2 x 1018 cm-3, has the Vth, JD and Joff of 0.22 V, 1227 

µA/µm and 2.8 x 10-7 A/µm, respectively. The results revealed that NC have 

significant influence on electrical behaviours. Besides, for DP-VMOST structures, 

the effects of spacing between the pocket and the gate oxide, WC, on various NC are 

examined. DP-VMOST with WC = 10 nm and NC = 2 x 1018 cm-3 has JD of 1024 

 xvi



 xvii

μA/μm, Joff of 2.2 x 10-8 A/μm and Vth of 0.32 V. The DP strongly decreases the 

depletion from drain to the channel as well as the p-n junction area which contribute 

to better short channel performance sub-100 nm VMOST. Additionally, there is a 

possibility to control the device output by only vary the WC rather than controlling 

the doping concentration or gate oxide thickness. As we compared to Donaghy et al. 

(2004) work, the trends are different for Joff, at a channel doping concentration of 3 x 

1018 cm-3, the value of Joff obtained is lower than NC of 4 x 1018 cm-3. This 

phenomenon may due to the models used for characterization. Finally, for VRG-

MOSFET, the effects of the width of the body region between the two channels, WB, 

with various NC are also investigated. It showed that body potential is strongly 

affected by the low WB and NC, which will cause the body region to become partial 

depleted or fully depleted. For VRG MOSFET with L = 50 nm, NC = 3.5 x 1018 cm-3 

and WB = 200 nm, it shows Vth of 0.53 V, JD of 482.6 µA/µm and Joff of 3.31 x 10-13 

A/µm. In contrast, work by Hergenrother et al. (1999) with L of 50 nm and NC of 3.5 

x 1018 cm-3 showed Vth of 0.73 V, Joff of 5 x 10-10 A/µm and JD of 68 µA/µm. The 

disagreements exist because the simulation in this work is only available in 2-D VRG 

MOSFET structures. However, the structure introduced by Hergenrother et al. (1999) 

is “rectangular” surround structure with the width of 16.4 µm. 

 



CHAPTER 1 

INTRODUCTION 

 

 

1.1 Introduction 

    

In the early 1930s, Lilienfeild (1930) was the first, and followed by Heil 

(1935) to propose the principle of the surface field effect transistor. Then, Shockley 

and Pearson (1948) studied the modulation of conductance of thin films of 

semiconductors by surface charges. After that, Kahng and Attala (1960) reported the 

first demonstration of a silicon-silicon dioxide metal oxide semiconductor (MOS) 

transistor. Since that, MOS transistors started to be an important device in electronic 

industry. At that moment, the basic device characteristics have been subsequently 

explored by Ihantola and Moll (1964), Sah (1964), and Heiman and Hofstein (1963). 

Until now, the study of the MOSFET is still going on (Tewksbury, 1981; Shin et al., 

1992; Wang et al., 2008; Flachowsky et al., 2008 and Griffoni et al. 2010).  

MOSFET had been successfully undergone scaling to improve performance 

and followed the Moore’s Law (Moore, 1965) as the number of components on a 

single piece of silicon had doubled every year over the last few decades. The main 

reason of this phenomenon is due to the fact it could be scaled to smaller dimensions 

which improved the integrated circuit performance such as speed, packing density 

and power consumption. Table 1.1 shows the comparison of the critical parameters 
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which are the gate dielectric thickness, the channel length and junction depth of 

MOSFET between year 1970 and 2008. It shows that MOSFET had gone through 

tremendous scaling.  

 

Table 1.1: Comparison of the critical parameters of MOSFET between year 1970 and 
2008. (Adapted from Osburn and Huff, 2002 and ITRS, 2007a). 

 
Parameters 1970 2008 

gate dielectric thickness, tox 50-100 nm 1.1-1.6 nm 

channel length, L 7.5 μm 0.045 μm 
junction depth ~1 μm 0.025 μm 

 

Recently, non-classical CMOS structures had been introduced and proposed 

in the ITRS (2007a) as the current CMOS structure near the limit of scaling. Those 

are fully depleted SOI (FD-SOI) (Ohtou et al., 2007), FINFET (Vega and Liu, 2009), 

tri-gate (Irisawa et al., 2009) and vertical transistors. Among those new structures, 

VMOST structure is one of the promising devices to be the future CMOS. 

 

1.2 Research background 

 

The fundamental differences between lateral and vertical MOS transistor are 

shown in Fig.1.1. Fig. 1.1(a) is a silicon wafer. Fig. 1.1(b) shows the planar MOS 

transistor where both the current carrying plane and the current flows are parallel to 

the wafer surface. For VMOST, both the current carrying plane and the current flow 
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are perpendicular to the wafer surface as shown in Fig 1.1(c). From these points, it 

can be easily recognized either a MOS transistor is a planar or vertical MOSFET. 

 

 

 
Fig. 1.1: Schematic view of planar and vertical MOSFET. (a) Silicon 
wafer. (b) Planar MOSFET. (c) Vertical MOSFET.  

 

As the dimension of MOSFET becomes smaller and smaller, problems such 

as short-channel effects (SCEs), drain induced barrier lowering (DIBL) and hot 

electron effects starts to appear (Chen et al., 2002; Thompson et al., 1998 and 

Troutman, 1979). Fundamental scaling limits and main issue causing failure for 

conventional MOS devices are shown in Table 1.2.  

 

Table 1.2: Fundamental scaling limits for conventional MOS devices and reasons. 
(Adapted from Thompson et al., 1998). 

 
Feature Limit Reason 

Oxide thickness 2.3 nm Leakage (IGATE) 

Junction depth 30 nm Resistance (RSDE) 

Channel doping Vth = 0.25 V Leakage (IOFF) 

Souce/drain extension 
under diffusion 

15 nm Resistance (RINV) 

Channel length 0.06 μm Leakage (IOFF) 

Gate length 0.10 μm Leakage (IOFF) 
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Up to now, these limitations had been overcome with the introduction of 

source drain extension (SDE) (Wakabayashi et al., 2002), low-K dielectrics 

(Kikkawa, T., 2000), silicided contacts (Lee and Li, 2006) and silicon on insulator 

(SOI) structure (Cristoloveanu, S., 1997). Besides these, another critical step in 

fabrication process is lithography. In order to achieve sub-100nm, advanced 

lithography technology is needed to get a fine and consistent pattern. 

With reference to ITRS (2007a), the channel length will be around 10 nm by 

the year 2020 and there are still many challenges and red brick wall needed to 

breakthrough. Thus, further scaling will require the introduction of new technologies 

which are new materials (Liu et al., 2001; Selvakumar and Hecht, 1991; Tezuka et al., 

2007) and new transistor structures (Ohtou et al., 2007; Vega and Liu, 2009 and 

Irisawa et al., 2009) to overcome the challenges. 

New transistor structures especially VMOST structures had gone through 

intensive research works. It is due to the three main advantages as described by Gili 

et al. (2003). Firstly, the channel length is defined by non-lithographic methods. 

Secondly, surround or double gate structures allow more channel width per unit area, 

which thus increase the drive current per unit area. Thirdly, the gate length is 

decoupled from packing density. Therefore, the layout requires less space than planar 

MOS transistors in some applications especially device that need long channel 

transistors. This was shown by Risch et al. (1996) and Risch et al. (1997) where the 

planar layout channel width is 8F and the area size is reduced more than a factor of 

 4



two for vertical layout. Note that F is the smaller dimension used in MOSFET layout 

design rules. 

Up to date, VMOST structure is still new and limited in production lines 

compare to the mature planar MOSFET technologies. Still, a lot of research is 

needed to be done in order to replace planar MOSFET in future. Most of the reported 

works of VMOST in literature only fabricated one set parameters of the structures. 

With simulation, it consumes lesser time and cost to optimized the device parameters. 

For VMOST structures, there are still a lot of parameters that remains unclear and 

need to be optimized. Therefore, simulation is the best solutions to study the effects 

of those parameters.    

                                                                                 

1.3 The importance of TCAD modelling 

 

Technology computer-aided design (TCAD) plays an important role in the 

development and optimization of technologies, devices and integrated circuits (ICs). 

According to Giles (2004), the complexity of a modern technology could not be 

successfully completed without extensive use of modelling tools in almost every 

aspect of its development. Furthermore, TCAD can also be used as an education 

tools (Parent and Del Rio-Parent, 2007). 

The main reasons is that TCAD is one of the few enabling methodologies that 

can reduce development cycle times and costs (ITRS, 2007b). As we all know, to test 

varied new parameters of a device can be very costly and time consuming. In 
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addition, numerical simulation of semiconductor device fabrication and operation is 

important to the design and manufacture because it offers the feasibility to give 

insight into the relationships between processing choices and nanoscale devices that 

can not be obtained from physical metrology tools alone. Besides, TCAD is 

important for the step of the optimisation of devices or ICs. There are many 

parameters that can influence the performance of devices or ICs. Therefore, with the 

assists of TCAD, it could be optimized easily without repeating the fabrication for 

testing. Even though sometime the parameters proposed in TCAD do not function in 

real devices but the failure is low. 

 

1.4 Research Objectives 

 

The aims of this research are to simulate three types of NVMOST in 2-D 

structures: 

1. Single gate VMOST growth with epitaxial layers (VMOST-EL) 

structures 

2. Single channel length vertical MOSFET incorporating a dielectric 

pocket (DP) (DP-VMOST) structures 

3. Double gates vertical replacement gate (VRG) MOSFET. 

The short channel effects with various channel doping concentration, NC, on those 

structures are discussed. Besides, spacing between the pocket and the gate oxide, 
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WC, for DP-VMOST and the effects of the width of the body region between the two 

channels, WB, for VRG MOSFET on various NC are examined, respectively. 

 

1.5 Originality of the research works 

 

 The originality of this research work lays in the study of few parameters for 

the three types of VMOST structures with 2-D simulator. For DP-MOSFET 

structure, it shows that as we varied the WC, the outputs will also be altered. 

Therefore, it is possible to be used to vary the device outputs. Moreover, with 

different mobility models, it shows different trends of the off-state leakage current at 

channel doping concentration of 4 x 1018 cm-3. For VRG-MOSFET structure, as the 

WB decreases, the body region would become partially or fully depleted, which is in 

analogy with the thin double gate VMOST. From the results, it shows the possibility 

of tailoring the device outputs by varying the WB.    

 

1.6 Organization of dissertation 

 

This dissertation is organized as follows:  

In Chapter 2, selected vertical MOS transistors (VMOSTs) structures in 

literature are reviewed. 

In Chapter 3, the theory of the MOSFET will be described. Moreover, the 

short channel effects (SCEs) of MOSFET will also be explained. 
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Chapter 4 is devoted to the explanation of simulation tools. The simulation 

programs are ATHENA, ATLAS and DEVEDIT from Silvaco International. Each of 

the programs will be illustrated. 

In Chapter 5, the results and discussion of the three simulated VMOST 

structures, namely, VMOST-EL, VMOST incorporating dielectric pocket (DP) and 

VRG MOSFET, are discussed. 

Finally, in Chapter 6, conclusion of this dissertation and recommendations for 

future research are given.  
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CHAPTER 2 

LITERATURE REVIEW 

 

 

2.1 Introduction 

 

 

In this chapter, present and selected VMOST structures will be reviewed. The 

VMOST structures are VMOST fabricated with ion implantation, VMOST growth 

with expitaxial layers (VMOST-EL), VMOST with fillet local oxidation (FILOX), 

Vertical MOSFET incorporating dielectric pocket (DP-VMOST), vertical 

replacement gate (VRG) MOSFET, double and surround gate vertical MOSFET.  

 

2.2 Vertical MOSFET with ion implantation 

  

This category of VMOST structures had been demonstrated by Zhou et al. 

(2005), Gili et al. (2006a), Josse et al. (2001), Gili et al. (2003a), Kunz et al. (2004), 

Schulz et al. (2000a), Schulz et al. (2000b), Schulz et al. (2001) and Chen et al. 

(2002). In this approach, the channel(s) is(are) formed on the sidewall of mesa etched 

while source/drain regions are formed by self-aligned ion implantation as shown in 

Fig 2.1. The channel length is depends on the depth of ion implantation junction. As 
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the dimension becomes smaller, the junction of source and drain also becomes 

smaller. 

  

 

 
Fig. 2.1: Process flow for the fabrication of standard implanted 
VMOST structure. (Adapted from Gili, E., 2003b.)   

 

According to Schulz et al. (2001), VMOST structure formed by ion 

implantation is CMOS compatible. An advantage of this process is the self-aligned 

source/drain regions by ion implantation. Through this method, the optimization of 

the direct current (DC) characteristics is difficult to achieve due to the 

one-dimensional doping profile of the channel length of VMOS (Behammer et al., 

1998). 

Fig. 2.2 shows the output and transfer characteristics of VMOST with ion 

implantation with channel length, L, of 100 nm, channel doping concentration, NC, of 

2 x 1018 cm-3 and gate oxide thickness, tox, of 3 nm. It is clearly showed that the 

results for drain on top (DOT) and source on top (SOT) are almost the same. Note 

that DOT is the drain contact on top pillar and the source contact on the etch side.  
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Fig. 2.2: (a) Output and (b) transfer characteristics for VMOST with ion 
implantation with channel length, L, of 100 nm, channel carrier concentration of 2 
x 1018 cm-3 and gate oxide thickness of 3 nm. (Adapted from Schulz et al., 2001.) 

 

Meanwhile, SOT is the source contact on top pillar and the drain contact on the etch 

side. The threshold voltage, Vth, is 0.6 V with a low off-state leakage current density 

in two dimension, Joff, about 8 x 10-12 A/μm (defined at drain voltage, VDS = 1 V) and 

drain current density in two dimension, JD, of 120 μA/μm (defined at VGS = 1.2 V). 

Low JD is mostly due to the high Vth and also the rough sidewall of the mesa which 
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causes the mobility degradation. Moreover, the DIBL and subthreshold slope, S are 

70 mV and 102 mV/dec, respectively.  

 

2.3 Vertical MOSFET with expitaxial layers 

 

This category of devices had been demonstrated by Behammer et al. (1996), 

Klaes et al. (1998a) Klaes et al. (1998b), Risch et al. (1996), Schulz et al. (1998) and 

Moers et al. (1999). In this approach, the channel(s) is(are) formed by n+/p/n+ layers 

epitaxial growth and then mesa etched to form the channel region at sidewall. This 

shows that channel of VMOST is defined by growth layer. Instead of defining the 

source/drain regions using ion implantation, the doping profile is formed by in-situ 

doping during the epitaxial growth of n+/p/n+ layers. Basically, the epitaxial layers 

are grown using molecular beam epitaxial (MBE) (Gossner et al., 1995; Fink et al., 

2002; Hansch et al., 1999;, Kaesen et al., 1998 and Fink et al., 2000) or chemical 

vapor deposition (CVD) (Behammer et al., 1996; Klaes et al, 1998a; Klaes et al., 

1998b; Schulz et al., 1998 and Moers et al., 1999). The use of MBE allows very 

precise control of doping to investigate device physics associated with channel 

engineering. Therefore, it introduces a new way for control of doping profile 

especially with MBE that could be controlled very precisely, even at the atomic 

level. However, the epitaxial process is hardly CMOS compatible.  

Fig. 2.3 shows the (a) schematic cross section of VMOST-EL; (b) Output and 

(c) transfer characteristics of (a) obtained by Risch et al. (1996). The VMOST-EL  
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Fig. 2.3: (a) Schematic cross section of VMOST-EL; (b) Output and (c) transfer 
characteristics of (a) obtained by Risch et al. (1996). 

 

structures have channel lengths, L, of 170, 120 and 70 nm, with the channel doping 

concentration, NC of 2 x 1018 cm-3. Threshold voltage for L of 170, 120 and 70 nm at 

low drain voltage is 0.8, 0.6, 0.4 V, respectively. For L of 70 nm, saturation JD of 0.5 
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mA/µm is obtained at gate voltage, VGS = 1.5 V and drain voltage, VDS = 1.5 V. 

According to Risch et al. (1996), the devices exhibit Kink effects due to the 

avalanche generation which charges the floating gate substrate more positively up to 

the onset of the parasitic bipolar transistor. 

 

2.4 Vertical MOSFET with FILOX 

 

The FILOX (Fillet Local Oxidation) process was demonstrated by Gili et al. 

(2003a), Gili et al. (2004a), Gili et al. (2004b), Kunz et al. (2004) and Tong (2004). 

The concept of introducing FILOX is to reduce the large overlapping capacitances 

between the gate and source/drain regions. Comparison between vertical MOSFET 

with and without FILOX is shown in Fig. 2.4. An oxide much thicker than gate oxide 

is grown on the top of source/drain regions. It is self-aligned to the pillar due to the 

nitride spacers. 

 

 
Fig. 2.4: Comparison between vertical MOSFETs structures: A) standard 
implanted, B) FILOX process. (Adapted from Gili, E., 2003b.) 
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These processes have the advantage that the FILOX oxidation is self-aligned 

to the pillar. The inherent overlapping capacitance between gate spacer and 

source/drain regions are decreasing as shown by Gili et al. (2004a). However, this 

process is hardly to be scaled due to the stress engendered by the nitride layer 

deposition on the pillar. Besides, the time for wet etch to remove the stress relief 

oxide without removing all the FILOX oxide is extremely hard to control with 

precision. Table 2.1 shows the results of the S, Vth, JD for VGS-Vt=1 V, Joff for VGS=0 

V for L of 125 nm with single gate, double gate and surround gate VMOST 

structures with FILOX. Due to the high Vth, the JD of the devices is low. 

 

Table 2.1: Measured parameters of typical transistors with estimated channel length 
of 125nm.(Adapted from Gili et al. 2004a.) 

 
 z (µm) VDS (V) S (mV/dec) Vth (V) JD (A/ µm) Joff (A/ µm) 

Surround gate 24 0.025 107 1.36 6.13 x 10-6 < 10-14 

Surround gate 24 1 109 1.20 7.68 x 10-5 2.49 x 10-12 

Double gate 9 0.025 113 1.54 4.69 x 10-6 < 10-14 

Double gate 9 1 111 1.44 7.20 x 10-5 3.68 x 10-12 

Single gate 4.5 0.025 114 1.59 6.55 x 10-6 < 10-14 

Single gate 4.5 1 117 1.11 8.22 x 10-5 1.57 x 10-11 

(z = channel width, S = subthreshold slope, Vth = threshold voltage, JD for 
VGS-Vth =1 V, Joff for VGS = 0 V) 

 

2.5 Vertical MOSFET incorporating dielectric pocket 

 

The dielectric pocket (DP) concept was first proposed by Jurzak et al. (2000) 

and Jurczak et al. (2001) in conventional lateral MOSFET to suppress short channel 

effects (SCEs) and DIBL without increasing the channel doping. The DP was applied 
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in vertical MOSFET structure by Lamb et al. (2001), Donaghy et al. (2002), 

Donaghy et al. (2004), Jayanarayanan et al. (2006) and Gili et al. (2005). Fig. 2.5 

shows the layout of vertical MOSFET incorporating dielectric pocket (DP-VMOST). 

The implication of DP in VMOST is considerably simpler compare to conventional 

lateral MOSFET. This is because the oxide pocket and the polysilicon drain of the 

device are deposited before dry mesa etched. 

 

 

 
Fig. 2.5: Vertical MOS transistor with dielectric pocket. (Adapted from 
Gili, 2003b.) 

 

The idea of DP is to allow a low doped channel region and thus a low 

threshold voltage. In realizing short channel VMOST, the high body doping is 

necessary to prevent SCEs and punch through. However, as the body doping 

increases, the mobility of electron will decrease. Moreover, the dielectric pocket 

blocks the out-diffusion of impurities from the drain in the body of the device and 

reduces the leakage current path existing in the middle of the body in standard 

structure. The main difficulty is the growth of a uniform epitaxial silicon layer on 
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silicon pillars. This could also prevent the scalability of this process to very thin 

pillars in order to obtain fully depleted devices. 

For DP-VMOST, there are two main parameters that varied the device 

outputs. These two parameters are the body doping concentration and spacing 

between pocket and gate oxide. Fig. 2.6 shows the threshold voltage and off-state 

leakage current versus body doping concentration for 50nm VMOSTs with and 

without dielectric pocket obtained with ISE TCAD. In Fig. 2.6, it shows that 

VMOST with dielectric pocket improved the off-state leakage current and threshold 

voltage. 
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Fig. 2.6: Threshold voltage and off-state leakage current density in 2-D 
versus body doping for 50nm VMOSTs with and without dielectric pocket. 
(Adapted from Donaghy et al., 2004.)   

 

The effects of the spacing between pocket and gate oxide on the threshold 

voltage, on-state drain current and off-state drain current are shown in Fig. 2.7. From 

Fig 2.7(a), it shows that the threshold voltage is decreased as the spacing between 
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pocket and gate oxide is increased until the same value with non-pocket device at 

50nm. However, as the spacing between pocket and gate oxide is increased, both of 

the on-state drain current and off-state drain current also increased. 

 

 

 
(a) 

 
(b) 

 

Fig. 2.7: Result for a p-channel VMOST with channel length 50nm, 
channel width 1μm, body doping varied from 1 x 1018 to 4 x 1018 cm-3 and 
drain voltage -1.0V (a) Effect of the spacing between pocket and gate 
oxide on the threshold voltage. (b) Effect of the spacing between pocket 
and gate oxide on Jon and Joff. (Adapted from Donaghy et al., 2004.)   
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2.6 Vertical replacement gate (VRG) MOSFET 

 

The vertical replacement gate (VRG) MOSFET had been shown by 

Hergenrother et al. (1999), Hergenrother et al. (2001), Hergenrother et al. (2002), Oh 

et al. (2000) and Oh S.-H.(2001). The process to fabricate a vertical replacement gate 

MOSFET is extremely complex as shown in Fig. 2.8. 

  

  

Fig. 2.8: Schematic of the vertical replacement gate (VRG) MOSFET front end 
process flow. (Adapted from Hergenrother et al., 1999.) 

 

As in Fig. 2.8, after the deposition of oxide, PSG, nitride, oxide, nitride, PSG 

and nitride, then only etch to form the sidewall for the channel. Furthermore, PSG 

layers are used as solid source diffusion (SSD) to form self-aligned source/drain 

extensions. 

However, there are a few unique advantages that are very attractive compared 

to other MOSFET structures. Those are (1) all critical transistor dimensions are 

controlled precisely without applying lithography and dry etch, (2) the gate length is 

defined by a deposited film thickness, independently of lithography and etch, and (3) 
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a high quality gate oxide is grown on a single crystal silicon channel. Besides the 

unique advantages, the vertical replacement gate MOSFET includes a self-aligned 

source/drain formed by solid source diffusion and small parasitic overlap, junction 

and source/drain capacitance. In addition, VRG MOSFET with double gate will 

produce larger drive current compared to single gate MOSFET structures.   

Fig. 2.9 shows the (a) subthreshold and (b) JD-VDS characteristics for a VRG 

nMOSFET with LG = 50 nm, tOX = 28 Å and NA = 3.5 x 1018 cm-3 at 1.5 V operation. 

The subthreshold is characterised with Joff = 13 nA/μm, DIBL = 90 mV and S = 105 

mV/dec. However, due to the high channel doping concentration of 3.5 x 1018cm-3, 

the threshold voltage is Vth = 0.73 V. Both the high Vth and reduced surface mobility 

cause the low drive current density of the 50 nm VRG-nMOSFET that is 180μA/μm 

(at VGS = 1.8 V) compared to 280μA/μm for channel length 100nm.  

 

 

Fig. 2.9: Subthreshold and JD-VDS characteristics of a channel length 
50nm VRG-nMOSFET. (Adapted from Hergenrother et al., 1999.)    
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2.7 Double and surround gate vertical MOSFET 

 

The double and surround gate vertical MOSFET had been shown by Goebel 

et al. (2002), Zheng et al. (1998), Li et al. (2001), Takato et al. (1991), 

Jayanarayanan (2004), Hakim et al. (2006), Masahara et al. (2003) and Moers 

(2007). Fig. 2.10 shows the sketch of the double or surround gate VMOST. For the 

double and surround gate VMOST, it not only increases drive current per unit area 

but also has the possibility of realizing fully depleted and partial depleted devices 

without the need of SOI substrates. If the body pillar or ridge is narrow enough 

(about 30-70nm, depending on the body doping concentration), the depletion regions 

merge in the middle of the body (Jayanarayanan, 2004). Thus, it can suppress 

floating body effect for fully depleted devices and short channel effects. 

One of the challenging process steps is the definition of very thin pillars or 

ridges. Even it can be done by direct write using electron beam lithography but this 

solution has low throughput. Besides, it is difficult to fabricate thin-pillar double and 

surround gate vertical MOSFETs with the electrode on the top of the pillar. In fact it 

is impossible to align a contact mask to the pillar due to its small dimensions. (Gili, 

2004)  
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Fig. 2.10: Sketch of the double or surround gate VMOST. (Adapted 
from Jayanarayanan, 2004.) 

   

2.8 Summary 

 

In this chapter, the selected VMOST structures are reviewed. All of the 

structures are revised and some of the results are shown. It shows that a lot of works 

have been done on VMOST structures. 
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CHAPTER 3 

THEORY OF MOSFET 

 

 

3.1 Introduction 

 

In this chapter, the principles theory of metal oxide semiconductor field effect 

transistor (MOSFET) will be discussed and only NMOSFET is to be considered. 

Basic principle of planar MOSFET operation will be described as it is similar to 

vertical MOSFET. It is followed by the short-channel effects (SCEs) of the 

MOSFET. 

 

3.2 Basics principles of MOSFET operation 

 

Fig. 3.1 shows the structure of an NMOSFET and the band diagram along the 

channel. The region under the oxide between the source and drain is referred to as 

the channel region. As shown in Fig 3.1, the n+ drain and source are separated with 

p-type silicon. Thus, no current flows from drain to source in the channel region. 

This can be explained using the equilibrium band diagram along the channel. 

Electrons can not flow from source to drain due to the existence of the potential 

barrier. 
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Fig. 3.1: Structure of an NMOSFET. Isometric view of device and 
equilibrium band diagram along channel. (Adapted from Streetman and 
Banerjee, 2000) 

  

 When a positive voltage is applied to the gate, a vertical electric field is 

induced in the oxide. This electrical field also penetrates the semiconductor, where 

electrons will be attracted below the oxide and hole will be repelled. Once the 

positive voltage is strong enough, an inversion layer will be created beneath the gate 

oxide. This inversion layer forms the channel that allows electrons to flow from 

source to drain. As the p-type channel region becomes n-type, the valance band 

moves down and far away from the Fermi level. The potential barrier for electrons 

between the source, channel and drain is decreased. Therefore, electrons can flow 

from source to drain. A change in the gate voltage alters the channel conductance and 

device current.  
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Fig. 3.2: Cross section of an n-channel MOSFET and ID versus VDS curve 
when VGS > Vth for (a) a small VDS value, (b) a value of VDS = VDS(sat) 
and (c) a value of VDS > VDS(sat). (Adapted from Streetman and 
Banerjee, 2000) 

 

The operation of an n-channel MOSFET can be separated into three different 

modes, depending on the voltages at the terminals as shown in Fig. 3.2. First, it is a 

linear region mode (Fig. 3.2(a)) where VGS > Vth and VDS < (VGS – Vth). When the 
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