
 

AN IMPROVED WAVELET NEURAL NETWORK FOR 

CLASSIFICATION AND FUNCTION 

APPROXIMATION 

 

 

 

 

 

 

ONG PAULINE 

 

 

 

 

 

 

 

UNIVERSITI SAINS MALAYSIA 

2011 



 

AN IMPROVED WAVELET NEURAL NETWORK FOR 

CLASSIFICATION AND FUNCTION APPROXIMATION 

 

 

 

 

by 

 

 

 

ONG PAULINE 

 

 

 

 

Thesis submitted in fulfillment of the requirements  

for the Degree of  

Doctor of Philosophy 

 

 

 

 January 2011 

 



ii 
 

ACKNOWLEDGEMENTS 

Foremost, I would like to take this opportunity to thank my thesis supervisor, Professor 

Zarita binti Zainuddin, for introducing to me the theory of wavelets as well as artificial 

neural networks, and for her expert guidance and encouragement. Her perspective and 

insight had a profound influence on this thesis. 

Special thanks to The Scheme of Graduate Assistant (Teaching) and USM Fellowship 

under Universiti Sains Malaysia for their generous support which made this research 

possible. 

Last, but certainly not least, I would like to express my gratitude to my parents and 

family, for their patience, relentless support and sacrifices all these years.  

To all others whose names I have failed to mention but who have in one way or another 

helped in the completion of this thesis, I owe you my humblest gratitude.  

 

 

 

 

 

 

 

 

 

 



iii 
 

TABLE OF CONTENTS 

            

 Page 

ACKNOWLEDGEMENTS                                                         ii 

TABLE OF CONTENTS  iii 

LIST OF TABLES ix 

LIST OF FIGURES xiv 

LIST OF ABBREVIATION xxi 

ABSTRAK xxiv 

ABSTRACT xxvi 

  

    

 

  

CHAPTER 1 

INTRODUCTION 

 

1 

  

1.1 Preliminaries 

1.2 Introduction to Artificial Neural Networks 

1.3 Problem Statement 

1.4 Objectives of Thesis 

1.5 Scope and Organization of Thesis 

 

1 

7 

10 

15 

16 

CHAPTER 2 

WAVELET AND WAVELET NEURAL NETWORKS 

19 

  

2.1 Introduction 

2.2       Introduction to Wavelet 

2.3 Properties of Wavelets 

2.4  A Brief Historical Perspective of Wavelets 

2.5 From Fourier to Wavelet Analysis 

19 

20 

22 

23 

25 



iv 
 

 2.5.1 Fourier Transform 

 2.5.2 Windowed Fourier Transform 

 2.5.3 Wavelet Transform 

2.6 Theoretical Analysis of Wavelet Transform 

 2.6.1 Continuous Wavelet Transform 

            2.6.2 Discrete Wavelet Transform 

2.7 Applications o f Wavelet Transform 

2.8 Introduction to Wavelet Neural Networks 

 2.8.1  Universal Function Approximation Theorem and Artificial   

                          Neural Network Theory 

 2.8.2  The Emergence of the Wavelet Neural Networks 

 2.8.3  Wavelet Neural Networks and its Parameterization 

  2.8.3 (a) The Structure of Wavelet Neural Networks 

  2.8.3 (b) Initialization of Wavelet Neural Networks 

  3.8.3 (c) The Learning in Wavelet Neural Networks 

 2.8.4 Unification of Neural and Wavelet Neural Networks 

  2.8.4 (a) Distance-based Neural Networks 

  2.8.4 (b) Radial Wavelet Networks 

  2.8.4 (c) Weighted Radial Basis Functions 

 2.8.5  Applications of Wavelet Neural Networks  

2.9       Summary   

 

 

25 

28 

29 

30 

32 

34 

36 

38 

40 

 

43 

44 

45 

46 

48 

50 

52 

53 

53 

54 

56 

CHAPTER 3 

AN IMPROVED FUZZY C-MEANS CLUSTERING ALGORITHM 

57 

  

3.1 Introduction  

3.2 The Conventional Clustering Algorithm 

 3.2.1 An Overview of the K-Means Clustering Algorithm 

 3.2.2 An Overview of the Fuzzy C-Means Clustering Algorithm 

3.3 The Point Symmetry Distance 

57 

58 

59 

60 

64 



v 
 

3.4 The Point Symmetry Based Clustering Algorithm 

 3.4.1 The Point Symmetry Based K-Means Clustering 

 3.4.2 The Point Symmetry Based Fuzzy C-Means Clustering  

3.5 Limitations of the Point Symmetry Distance Measure 

 3.5.1 Lacking Of the Distance Difference Symmetry Property 

 3.5.2 Inaccuracy for the Symmetrical Inter-Clusters 

 3.5.3 Lacking Of the Closure Property 

3.6 The Symmetry Similarity Level Operator 

 3.6.1 The Distance Similarity Level (DSL) 

 3.6.2 The Orientation Similarity Level (OSL) 

 3.6.3 The Symmetry Similarity Level (SSL) 

 3.6.4 Speeding-Up for Computation-Saving 

3.7 The Modified Point Symmetry Based Clustering Algorithm 

 3.7.1 The Modified Point Symmetry Based K-Means Clustering 

 3.7.2 The Proposed Modified Point Symmetry Based Fuzzy C-      

              Means Clustering 

3.8 Summary 

 

 

66 

66 

71 

75 

75 

76 

78 

78 

79 

80 

80 

84 

85 

85 

90 

 

97 

 

CHAPTER 4 

AN IMPROVED WAVELET NEURAL NETWORK APPROACH FOR 

CLASSIFICATION 

  

4.1 Introduction 

4.2 Multiclass Tumours Classification 

 4.2.1 Research Background 

 4.2.2  Materials 

 4.2.3 Microarray Data Preprocessing 

 4.2.4 Gene Selection 

 4.2.5 Wavelet Neural Networks Based Classifier 

  4.2.5 (a) Types of Wavelet Families 

100 

 

 

 

100 

105 

105 

107 

108 

111 

114 

114 



vi 
 

  4.2.5 (b) Selection of Input, Hidden and Output Nodes 

  4.2.5 (c) Initialization of Parameter 

 4.2.6 Multifold Cross Validation 

 4.2.7 Performance Assessment 

 4.2.8 Result and Discussion 

  4.2.8 (a) Experimental Result: LEU Dataset 

  4.2.8 (b) Experimental Result: SRBCT Dataset 

  4.2.8 (c) Experimental Result: GLO Dataset 

  4.2.8 (d) Experimental Result: CNS Dataset 

  4.2.8 (e) Discussion   

 4.2.9 Performance Comparison with Other Approaches 

4.2.9 (a) Performance Comparison with Lee’s Work 

4.2.9 (b) Performance Comparison with Ensemble Classifiers 

4.2.9 (c) Performance Comparison with Support Vector 

               Machines Approach 

4.2.9 (d) Performance Comparison with Computational        

                                       Intelligence and Statistical Method 

4.3 Type II Diabetic Patients Classification 

 4.3.1  Research Background 

 4.3.2 Materials and Methodology 

 4.3.3 Result and Discussion 

 4.3.4 Performance Comparison and Discussion 

4.4       Summary 

 

 

116 

117 

117 

117 

118 

118 

121 

123 

125 

131 

136 

136 

138 

139 

 

140 

 

143 

143 

146 

147 

152 

154 

CHAPTER 5 

AN IMPROVED WAVELET NEURAL NETWORK APPROACH FOR 

FUNCTION APPROXIMATION 

 

5.1 Introduction 

5.2 Experimental Design 

156 

 

 

 

156 

157 



vii 
 

5.3 Result and Discussion 

 5.3.1 Case 1: One-Dimensional Continuous Exponential Function 

 5.3.2 Case 2: One-Dimensional Continuous Periodic Function 

 5.3.3 Case 3: Two-Dimensional Continuous Exponential Function 

 5.3.4 Case 4: Two-Dimensional Continuous Periodic Function 

 5.3.5 Case 5: One-Dimensional Continuous Piecewise Function 

5.4 Real-World Application: Blood Glucose Level Prediction 

 5.4.1 Research Background 

 5.4.2 Materials and Methodology 

 5.4.3 Result and Discussion 

 5.4.4 Performance Comparison and Discussion 

5.5 Summary 

 

 

159 

160 

164 

170 

172 

177 

189 

189 

191 

196 

202 

206 

CHAPTER 6 

AN IMPROVED WAVELET APPROACH FOR MICROARRAY SPOT 

SEGMENTATION 

6.1       Introduction 

6.2 Microarray Image Processing 

 6.2.1 Addressing/Gridding 

 6.2.2 Segmentation 

 6.2.3 Quantification 

6.3 Sources of Microarray Image Variations 

6.4 Existing Segmentation Methods 

 6.4.1 Fixed Circle Segmentation 

 6.4.2 Adaptive Circle Segmentation 

 6.4.3 Adaptive Shape Segmentation 

 6.4.4  Histogram Segmentation 

 6.4.5 Other Proposed Microarray Spot Segmentation Methods 

            6.4.6    Fuzzy Gaussian Mixture Model Segmentation 

209 

 

 

 

209 

210 

211 

212 

213 

214 

215 

216 

217 

217 

218 

219 

221 



viii 
 

 

6.5 Image Segmentation Using Wavelet Approach 

 6.5.1 1-D Wavelet-Based Multiscale Edge Detection 

 6.5.2 2-D Wavelet-Based Multiscale Edge Detection 

6.6 Image Segmentation Using A Modified Wavelet Approach 

6.7 Experimental Simulations and Comparison 

6.8       Summary 

 

 

 

222 

223 

226 

230 

234 

246 

CHAPTER 7 

CONCLUSION AND FUTURE WORK 

7.1       Conclusions and Contributions 

7.2       Suggestions for Future Work 

 

 

 

247 

 

 

247 

249 

 

 

 

REFERENCES 252 

LIST OF PUBLICATIONS 273 

APPENDICES 

Appendix A Experimental Results: Case 1 

Appendix B Experimental Results: Case 2 

Appendix C Experimental Results: Case 3 

Appendix D Experimental Results: Case 4 

Appendix E Experimental Results: Case 5 

Appendix F Experimental Results: Diabetes 

275 

275 

281 

287 

293 

299 

305 

  

 



ix 
 

LIST OF TABLES 

  Page 

1.1 Development of ANNs over the past few decades 5 

3.1 The VPC values of FCM, PSDFCM and the proposed 

MPSDFCM algorithms for the first artificial dataset 

 

93 

3.2 The VPC values of FCM, PSDFCM and the proposed 

MPSDFCM algorithms for the second artificial dataset 

 

95 

4.1 Information for the benchmark microarray dataset used in the 

experimental simulations 

108 

4.2 Performance comparison of WNNs for Leukemia dataset 

(Accuracy) 

 

119 

4.3 Performance comparison of WNNs for Leukemia dataset 

(Sensitivity) 

119 

4.4 Performance comparison of WNNs for Leukemia dataset 

(Specificity) 

119 

4.5 Performance comparison of WNNs for SRBCT dataset 

(Accuracy) 

122 

4.6 Performance comparison of WNNs for SRBCT dataset 

(Sensitivity) 

 

122 

4.7 Performance comparison of WNNs for SRBCT dataset 

(Specificity) 

122 

4.8 Performance comparison of WNNs for GLO dataset (Accuracy) 123 

4.9 Performance comparison of WNNs for GLO dataset (Sensitivity) 124 

4.10 Performance comparison of WNNs for GLO dataset (Specificity) 124 

4.11 Performance comparison of WNNs for CNS dataset (Accuracy) 126 

4.12 Performance comparison of WNNs for CNS dataset (Sensitivity: 

MED) 

127 

4.13 Performance comparison of WNNs for CNS dataset (Specificity: 

MED) 

127 

 

 



x 
 

4.14 Performance comparison of WNNs for CNS dataset (Sensitivity: 

MG) 

127 

4.15 Performance comparison of WNNs for CNS dataset (Specificity: 

MG) 

128 

4.16 Performance comparison of WNNs for CNS dataset (Sensitivity: 

AT/RT) 

128 

4.17 Performance comparison of WNNs for CNS dataset (Specificity: 

AT/RT) 

128 

4.18 Performance comparison of WNNs for CNS dataset (Sensitivity: 

NC) 

129 

4.19 Performance comparison of WNNs for CNS dataset (Specificity: 

NC) 

129 

4.20 Performance comparison of WNNs for CNS dataset (Sensitivity: 

PNET) 

129 

4.21 Performance comparison of WNNs for CNS dataset (Specificity: 

PNET) 

130 

4.22 Performance comparison of the proposed improved WNNs based 

classifier with Lee’s work (Lee et al., 2005) 

137 

4.23 Performance comparison of the proposed improved WNNs based 

classifier with ensemble classifier 

138 

4.24 Performance comparison of the proposed improved WNNs based 

classifier with SVMs classifier 

139 

4.25 Performance comparison of the proposed improved WNNs based 

classifier with computational intelligence based classifier 

141 

4.26 Clinical and biomedical characteristics of male subjects with 

NGT, IGT and DM2 

146 

4.27 Performance comparison of WNNs for Diabetes dataset 

(Accuracy) 

148 

4.28 Performance comparison of WNNs for Diabetes dataset 

(Sensitivity: NGT) 

148 

4.29 Performance comparison of WNNs for Diabetes dataset 

(Specificity: NGT) 

148 



xi 
 

4.30 Performance comparison of WNNs for Diabetes dataset 

(Sensitivity: IGT) 

149 

4.31 Performance comparison of WNNs for Diabetes dataset 

(Specificity: IGT) 

149 

4.32 Performance comparison of WNNs for Diabetes dataset 

(Sensitivity: DM2) 

149 

4.33 Performance comparison of WNNs for Diabetes dataset 

(Specificity: DM2) 

150 

4.34 Performance comparison of MLPs, RBFNNs and WNNs for 

Diabetes dataset (Accuracy) 

152 

4.35 Performance comparison of MLPs, RBFNNs and WNNs for 

Diabetes dataset (Sensitivity) 

152 

4.36 Performance comparison of MLPs, RBFNNs and WNNs for 

Diabetes dataset (Specificity) 

152 

5.1 Prediction error in terms of MSE for RBFNNs and WNNs with 

different activation functions and initialization methods (Case 1) 

160 

5.2 Percentage of accuracy improvements for the proposed 

MPSDFCM algorithm as compared with other initialization 

methods (Case 1) 

164 

5.3 Prediction error in terms of MSE testing data for RBFNNs and 

WNNs with different activation functions and initialization 

methods (Case 2) 

167 

5.4 Percentage of accuracy improvements for the proposed 

MPSDFCM algorithm as compared with other initialization 

methods (Case 2) 

169 

5.5 Prediction error in terms of MSE for RBFNNs and WNNs with 

different activation functions and initialization methods (Case 3) 

170 

5.6 Percentage of accuracy improvements for the proposed 

MPSDFCM algorithm as compared with other initialization 

methods (Case 3) 

171 

5.7 Prediction error in terms of MSE for RBFNNs and WNNs with 

different activation functions and initialization methods (Case 4) 

173 

5.8 Percentage of accuracy improvements for the proposed 

MPSDFCM algorithm as compared with other initialization 

173 



xii 
 

methods (Case 4) 

5.9 (a) Prediction error for RBFNNs and WNNs with different activation 

functions and initialization methods (Case 5): MSE 

178 

5.9 (b) Prediction error for RBFNNs and WNNs with different activation 

functions and initialization methods (Case 5): ERR 

178 

5.10 Percentage of accuracy improvements for the proposed 

MPSDFCM algorithm as compared with other initialization 

methods (Case 5) 

185 

5.11 Performance comparison of the prediction capability of the 

proposed model with the results from other researchers in 

approximating the benchmark piecewise function 

186 

5.12 Detectable factors that influence the fluctuation of blood glucose 

level 

190 

5.13 Daily information for a patient to fill in 192 

5.14 Correlation coefficients between the blood glucose levels for four 

intervals 

193 

5.15 The 19 input variables used for predicting the blood glucose level 194 

5.16 Total variance for each interval 196 

5.17 Result on blood glucose concentration prediction (in terms of 

RMSE) using WNNs with different activation functions and 

initialization methods: Morning Interval 

197 

5.18 Result on blood glucose concentration prediction (in terms of 

RMSE) using WNNs with different activation functions and 

initialization methods: Afternoon Interval 

197 

5.19 Result on blood glucose concentration prediction (in terms of 

RMSE) using WNNs with different activation functions and 

initialization methods: Evening Interval 

198 

5.20 Result on blood glucose concentration prediction (in terms of 

RMSE) using WNNs with different activation functions and 

initialization methods: Night Interval  

198 

5.21 Percentage of accuracy improvements for the proposed 

MPSDFCM algorithm as compared with other initialization 

methods (Morning Interval) 

201 



xiii 
 

5.22 Percentage of accuracy improvements for the proposed 

MPSDFCM algorithm as compared with other initialization 

methods (Afternoon Interval) 

201 

5.23 Percentage of accuracy improvements for the proposed 

MPSDFCM algorithm as compared with other initialization 

methods (Evening Interval) 

202 

5.24 Percentage of accuracy improvements for the proposed 

MPSDFCM algorithm as compared with other initialization 

methods (Night Interval) 

202 

5.25 Performance comparison of the proposed WNNs with other 

models 

204 

6.1 Quantitative evaluations on microarray spot segmentation results 240 

6.2 Quantitative evaluations on microarray spot segmentation results 

with other segmentation approaches 

244 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiv 
 

LIST OF FIGURES 

  Page 

1.1 Schematic diagram of a neuron 3 

1.2 Connection between the synapses and the dendrites of other 

neurons 

4 

1.3 McColluch and Pitts model 5 

1.4 Schematic diagram of an ANN 7 

2.1 (a) A schematic diagram of a wavelet 20 

2.1 (b) A schematic diagram of a wave (sinusoid) 20 

2.2 Plot of a stationary signal 26 

2.3 Fourier Transform of a stationary signal 27 

2.4 Plot of a non-stationary signal 27 

2.5 Fourier Transform of a non-stationary signal 28 

2.6 Visualization of time-frequency representation of a non-

stationary signal in FT, WFT and WT 

31 

2.7 A three-level wavelet decomposition tree 35 

2.8 A three-level wavelet reconstruction tree 36 

2.9 A single layer feed-forward neural network  42 

2.10 The architecture of a wavelet neural network 46 

2.11 Flowchart of the wavelet neural networks learning algorithm 51 

3.1 Flowchart of the KM clustering algorithm 61 

3.2 Flowchart of the FCM clustering algorithm 63 

3.3 Example of PSD 65 

3.4 (a) The dataset contains a combination of ring-shaped, compact and 

linear clusters 

69 

3.4 (b) The clustering result achieved by KM 69 



xv 
 

3.4 (c) The clustering result achieved by PSDKM clustering algorithm 69 

3.5 Flowchart of the PSDKM clustering algorithm  70 

3.6 (a) The dataset contains a combination of ring-shaped, rectangular 

compact and linear clusters 

73 

3.6 (b) The clustering result achieved by FCM 73 

3.6 (c) The clustering result achieved by PSDFCM clustering algorithm 73 

3.7 Flowchart of the PSDFCM clustering algorithm 74 

3.8 An example to illustrate the problem of lacking the distance 

difference symmetry property for the PSD 

75 

3.9 An example to illustrate the inefficiency of PSD 77 

3.10 An example to illustrate the distance difference symmetry 

property 

79 

3.11 An example to illustrate the inefficiency of SSL’ 81 

3.12 (a) The dataset consists of two compact circles and two crossed 

ellipsoidal shells 

88 

3.12 (b) The clustering result achieved by the PSDKM 88 

3.12 (c) The clustering result achieved by the MPSDKM 88 

3.13 Flowchart of the MPSDKM clustering algorithm 89 

3.14  The dataset consists of three compact circles 93 

3.15 The clustering result achieved by the FCM algorithm 93 

3.16 The clustering result achieved by the PSDFCM algorithm 94 

3.17 The clustering result achieved by the proposed MPSDFCM 

algorithm 

94 

3.18 The artificial dataset consists of two compact circles and two 

ellipsoidal shells 

95 

3.19 The clustering result achieved by the FCM algorithm 95 

3.20 The clustering result achieved by the PSDFCM algorithm 96 



xvi 
 

3.21 The clustering result achieved by the proposed MPSDFCM 

algorithm 

96 

3.22 Flowchart of the proposed MPSDFCM clustering algorithm 99 

4.1 A RGB microarray image 102 

4.2 An example of a gene expression matrix 103 

4.3 The pipeline of a microarray experiment 104 

4.4 (a) Box-plot of the Leukemia dataset without preprocessing 110 

4.4 (b) Box-plot of the Leukemia dataset after the logarithmic 

transformation and quantile normalization 

110 

4.5 (a) Schematic diagram for the wavelet: Mexican Hat  115 

4.5 (b) Schematic diagram for the wavelet: Gaussian wavelet 115 

4.5 (c) Schematic diagram for the wavelet: Morlet 115 

4.6 Performance comparison of wavelet neural network models for 

LEU dataset 

120 

4.7 Performance comparison of wavelet neural network models for 

GLO dataset 

123 

4.8 Performance comparison of wavelet neural network models for 

CNS dataset 

126 

4.9 Performance comparison of wavelet neural network models for 

diabetes dataset 

147 

5.1 Case 1-Simulation results of RBFNNs with Gaussian activation 

function 

161 

5.2 Case 1-Simulation results of WNNs with Mexican Hat activation 

function 

161 

5.3 Case 1-Simulation results of WNNs with Gaussian wavelet 

activation function 

162 

5.4 Case 1-Simulation results of WNNs with Morlet activation 

function 

162 

5.5 Case 2-Simulation results of RBFNNs with Gaussian activation 

function 

165 



xvii 
 

5.6 Case 2-Simulation results of WNNs with Mexican Hat activation 

function 

165 

5.7 Case 2-Simulation results of WNNs with Gaussian wavelet 

activation function 

166 

5.8 Case 2-Simulation results of WNNs with Morlet activation 

function 

166 

5.9 Approximation error of RBFNNs and WNNs with different 

activation functions and initialization approaches 

168 

5.10 The original piecewise function in Case 5 179 

5.11 Case 5: Simulation results of RBFNNs with Gaussian activation 

function 

180 

5.12 Case 5: Simulation results of WNNs with Mexican Hat activation 

function 

180 

5.13 Case 5: Simulation results of WNNs with Gaussian wavelet 

activation function 

181 

5.14 Case 5: Simulation results of WNNs with Morlet activation 

function 

181 

5.15 Case 5: Simulation results of RBFNNs -Zoom-In 182 

5.16 Case 5: Simulation results of WNNs (Mexican Hat) -Zoom-In 182 

5.17 Case 5: Simulation results of WNNs (Gaussian wavelet) -Zoom-

In 

183 

5.18 Case 5: Simulation results of WNNs (Morlet) -Zoom-In 183 

5.19 Case 5: Simulation results of RBFNNs and WNNs with 

MPSDFCM algorithm 

184 

5.20 Case 5: Simulation results of RBFNNs and WNNs with 

MPSDFCM algorithm (Zoom-In) 

184 

5.21 WNNs (Gaussian wavelet and MPSDFCM algorithm in 

predicting the blood glucose level at morning interval 

199 

6.1 (a) The scanned microarray image: RGB  211 

6.1 (b) The scanned microarray image: Grayscale 211 



xviii 
 

6.1 (c) The scanned microarray image: Gridded 211 

6.2 (a) Sum of pixel intensities: Across the row  212 

6.2 (b) Sum of pixel intensities: Across the column 212 

6.3 Principal steps in microarray image processing 213 

6.4 An ideal microarray image 214 

6.5 Fixed circle spot segmentation using ScanAlyze software  216 

6.6 An example of pixel intensities for a spot within the mask  219 

6.7 Edge detection of original Lenna image 229 

6.8 Edge detection of Lenna image with Gaussian noise 229 

6.9 Two-level wavelet decomposition on the benchmark Lenna 

image 

231 

6.10 Block diagram for wavClust algorithm 232 

6.11 (a) Perfect spot segmentation: Original image  236 

6.11 (b) Perfect spot segmentation: WT 236 

6.11 (c) Perfect spot segmentation: WT/KM 236 

6.11 (d) Perfect spot segmentation: WT/FCM 236 

6.11 (e) Perfect spot segmentation: WT/PSDKM 236 

6.11 (f) Perfect spot segmentation: WT/PSDFCM 236 

6.11 (g) Perfect spot segmentation: WT/MPSDKM 236 

6.11 (h) Perfect spot segmentation: WT/MPSDFCM 236 

6.12 (a) Irregular spot segmentation: Original image  236 

6.12 (b) Irregular spot segmentation: WT 236 

6.12 (c) Irregular spot segmentation: WT/KM 236 

6.12 (d) Irregular spot segmentation: WT/FCM 236 

6.12 (e) Irregular spot segmentation: WT/PSDKM 236 



xix 
 

6.12 (f) Irregular spot segmentation: WT/PSDFCM 236 

6.12 (g) Irregular spot segmentation: WT/MPSDKM 236 

6.12 (h) Irregular spot segmentation: WT/MPSDFCM 236 

6.13 (a) Weak spot segmentation: Original image  237 

6.13 (b) Weak spot segmentation: WT 237 

6.13 (c) Weak spot segmentation: WT/KM 237 

6.13 (d) Weak spot segmentation: WT/FCM 237 

6.13 (e) Weak spot segmentation: WT/PSDKM 237 

6.13 (f) Weak spot segmentation: WT/PSDFCM 237 

6.13 (g) Weak spot segmentation: WT/MPSDKM 237 

6.13 (h) Weak spot segmentation: WT/MPSDFCM 237 

6.14 (a) Sickle-shaped spot segmentation: Original image 237 

6.14 (b) Sickle-shaped spot segmentation: WT 237 

6.14 (c) Sickle-shaped spot segmentation: WT/KM 237 

6.14 (d) Sickle-shaped spot segmentation: WT/FCM 237 

6.14 (e) Sickle-shaped spot segmentation: WT/PSDKM 237 

6.14 (f) Sickle-shaped spot segmentation: WT/PSDFCM 237 

6.14 (g) Sickle-shaped spot segmentation: WT/MPSDKM 237 

6.14 (h) Sickle-shaped spot segmentation: WT/MPSDFCM 237 

6.15 (a) Scratched-shaped spot segmentation: Original image 239 

6.15 (b) Scratched -shaped spot segmentation: WT 239 

6.15 (c) Scratched -shaped spot segmentation: WT/KM 239 

6.15 (d) Scratched -shaped spot segmentation: WT/FCM 239 

6.15 (e) Scratched -shaped spot segmentation: WT/PSDKM 239 

6.15 (f) Scratched -shaped spot segmentation: WT/PSDFCM 239 



xx 
 

6.15 (g) Scratched -shaped spot segmentation: WT/MPSDKM 239 

6.15 (h) Scratched -shaped spot segmentation: WT/MPSDFCM 239 

6.16 (a) Artifact spot segmentation: Original image  239 

6.16 (b) Artifact spot segmentation: WT 239 

6.16 (c) Artifact spot segmentation: WT/KM 239 

6.16 (d) Artifact spot segmentation: WT/FCM 239 

6.16 (e) Artifact spot segmentation: WT/PSDKM 239 

6.16 (f) Artifact spot segmentation: WT/PSDFCM 239 

6.16 (g) Artifact spot segmentation: WT/MPSDKM 239 

6.16 (h) Artifact spot segmentation: WT/MPSDFCM 239 

6.17 (a) Donut spot segmentation: Original image  240 

6.17 (b) Donut spot segmentation: WT 240 

6.17 (c) Donut spot segmentation: WT/KM 240 

6.17 (d) Donut spot segmentation: WT/FCM 240 

6.17 (e) Donut spot segmentation: WT/PSDKM 240 

6.17 (f) Donut spot segmentation: WT/PSDFCM 240 

6.17 (g) Donut spot segmentation: WT/MPSDKM 240 

6.17 (h) Donut spot segmentation: WT/MPSDFCM 240 

6.18 Comparative results of the proposed method with other existing 

spot segmentation approaches 

242 

 

 

 

 

 

 



xxi 
 

LIST OF ABBREVIATION 

 

AB   After Breakfast 

AD   After Dinner  

AL   After Lunch  

ALL   Acute Lymphocytic Leukemia 

AML   Acute Myelocytic Leukemia 

ANNs   Artificial Neural Networks 

AT/RT   Atypical Teratoid/Rhabdoid Tumours 

BB   Before Breakfast 

BD   Before Dinner 

BL   Before Lunch 

BLY   Burkitt’s Lymphoma 

BP   Back-Propagation 

BS   Before Sleep 

cDNA   Complementary DNA 

CG   Classic Glioma 

CNS   Central Nervous System Embryonal Tumour 

CT   Conditional T-Test Statistic 

CWT   Continuous Wavelet Transform 

DM   Diabetes Mellitus  

DM1   Diabetes Mellitus Type 1 

DM2   Diabetes Mellitus Type 2 

DSL   Distance Similarity Level 

DWT   Discrete Wavelet Transform 

ECG   Electrocardiogram 

EEG   Electroencephalogram 

EWS   Ewing’s Sarcoma 

ERR   Error Criterion Function 

FCM   Fuzzy C-Means 

FGMM                 Fuzzy Gaussian Mixture Model 

FWT   Fast Wavelet Transform 



xxii 
 

FT   Fourier Transform 

GAs   Genetic Algorithms 

GLO   Glioma 

IGT   Impaired Glucose Tolerance 

KM   K-Means 

LEU   Leukemia 

MED   Medulloblastoma 

MG   Malignant Glioma 

MLPs   Multilayer Perceptrons 

MPSDFCM  Modified Point Symmetry-Based Fuzzy C-Means 

MPSDKM  Modified Point Symmetry-Based K-Means 

MSE   Mean Squared Error 

NB   Neuroblastoma 

NC   Normal Cerebellum 

NG   Non-classic Glioma 

NGT   Normal Glucose Tolerance 

NNs   Neural Networks 

NT   Night 

OGTT   Oral Glucose Tolerance Test 

OSL   Orientation Similarity Level 

PC   Principal Component 

PCA   Principal Component Analysis 

PNET   Primitive Neuroectodermal 

PSD   Point Symmetry Distance 

PSDFCM  Point Symmetry-based Fuzzy C-Means 

PSDKM  Point Symmetry-based K-Means 

RBFNNs  Radial Basis Function Neural Networks 

RMS   Rhabdomyosarcoma 

RMSE   Root Mean Squared Error 

SRBCT  Small Round Blue Cell Tumours 

SSL   Symmetry Similarity Level 

SVMs   Support Vector Machines 

VPC   Bezdek’s Partition Coefficient  



xxiii 
 

wavClust  The Proposed Edge Detection Method 

WFT   Windowed Fourier Transform 

WHO   World Health Organization 

WNNs   Wavelet Neural Networks 

WRBF   Weighted Radial Basis Functions 

WT   Wavelet Transform 
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SUATU RANGKAIAN NEURAL WAVELET YANG DITAMBAH BAIK 

UNTUK PENGELASAN DAN PENGHAMPIRAN FUNGSI 

ABSTRAK 

Mereka bentuk rangkaian neural wavelet (RNW) dengan sebaiknya adalah penting 

untuk mencapai prestasi pengitlakan yang optimum. Dalam tesis ini, dua pendekatan 

yang berbeza dicadangkan untuk meningkatkan kemampuan peramalan RNW.  Pertama, 

jenis fungsi pengaktifan yang digunakan dalam lapisan tersembunyi RNW adalah 

dipelbagaikan. Kedua, algoritma pengklusteran c-min kabur diperteguh yang 

dicadangkan—khususnya, algoritma c-min kabur berasaskan simetri titik terubah suai  

—digunakan dalam memilih lokasi vektor anjakan RNW. Kemudiannya, RNW terubah 

suai diaplikasikan dalam bidang pengelasan dan penghampiran fungsi.  Dalam konteks 

pengelasan, RNW terubah suai dilaksanakan pada kanser heterogen dan pengelasan 

diabetes dengan menggunakan lima set data mikrosusunan yang berbeza. Keputusan 

eksperimen perbandingan menunjukkan bahawa metodologi yang dicadangkan 

mencapai hampir 100% ketepatan pengelasan dalam ramalan multikelas, yang 

mendorong pada prestasi superior dengan merujuk kepada algoritma pengklusteran lain. 

Perbandingan prestasi dengan pengelas lain juga dijalankan.  Analisis penilaian 

menunjukkan bahawa pendekatan yang dicadangkan ini mengatasi prestasi kebanyakan 

pengelas lain. Dalam konteks penghampiran fungsi, RNW terubah suai diaplikasikan 

dalam penghampiran lima fungsi yang berbeza. Perbandingan prestasi menunjukkan 

penambahbaikan yang signifikan dalam ketepatan penghampiran melalui RNW yang 

dicadangkan. Seterusnya, perbandingan prestasi dengan kaedah lain dalam 

penghampiran fungsi sesecebis tanda aras yang sama juga dijalankan. Penilaian 
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menunjukkan kesuperioran pendekatan yang dicadangkan apabila dibandingkan dengan 

kaedah lain. Suatu kajian RNW yang dicadangkan dalam aplikasi dunia sebenar, iaitu 

dalam peramalan tahap glukosa darah bagi pesakit diabetes juga dikaji. 

Suatu algoritma hibrid baru bagi pengesanan pinggir dibentangkan dalam tesis 

ini. Algoritma yang terhasil, yang dinamakan, wavClust, kemudiannya diaplikasikan 

dalam pensegmenan titik imej mikrosusunan. Perbandingan dengan kaedah 

pensegmenan titik klasik juga dijalankan. Jika dibandingkan dengan kaedah klasik, 

analisis penilaian menunjukkan bahawa algoritma wavClust yang dicadangkan mampu 

mensegmen dengan tepat semua bintik berbentuk donut, bintik tak sekata dan bintik 

dengan keamatan yang pelbagai dan  jenis hingar yang berbeza. 
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AN IMPROVED WAVELET NEURAL NETWORK FOR CLASSIFICATION 

AND FUNCTION APPROXIMATION 

ABSTRACT 

Properly designing a wavelet neural network (WNN) is crucial for achieving the 

optimal generalization performance.  In this thesis, two different approaches were 

proposed for improving the predictive capability of WNNs. First, the types of activation 

functions used in the hidden layer of the WNN were varied. Second, the proposed 

enhanced fuzzy c-means clustering algorithm—specifically, the modified point 

symmetry-based fuzzy c-means (MPSDFCM) algorithm—was employed in selecting 

the locations of the translation vectors of the WNN. The modified WNN was then 

applied in the areas of classification and function approximation. In the context of 

classification, the modified WNN was implemented to heterogeneous cancer and 

diabetes classification using five different microarray datasets. The comparative 

experimental results showed that the proposed methodology achieved an almost 100% 

classification accuracy in multiclass prediction, leading to superior performance with 

respect to other clustering algorithms. Performance comparisons with other classifiers 

were made. An assessment analysis showed that this proposed approach outperformed 

most of the other classifiers. In the context of function approximation, the modified 

WNN was applied in approximating five different functions. Performance comparisons 

indicated significant improvement in the approximation accuracy was accomplished by 

the proposed WNN. Subsequently, performance comparisons with other methods in 

approximating the same benchmark piecewise function were made. Evaluation 

demonstrated the superiority of the proposed approach when compared with other 
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methods. A study of the proposed WNN in a real-world application, i.e. prediction of 

blood glucose level for diabetics was also investigated.  

 A novel hybrid algorithm for edge detection was presented in this thesis. The 

resulting algorithm, namely, wavClust, was then applied in the microarray image spot 

segmentation. Comparisons with the classical spot segmentation methods were made. 

Assessment analysis showed that the proposed wavClust algorithm was able to segment 

all the donut-shaped spot, irregular spot and spots with intensity variations and different 

noise types accurately, compared to the classical methods. 
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CHAPTER 1 

INTRODUCTION 

1.1 PRELIMINARIES 

The invention of the abacus 2000 years ago is the starting point of the evolution of the 

computer. Simply using a wooden rack holding two horizontal strings with beads strung 

on them, basic arithmetic problems can be solved by moving the beads around, 

following the simple programming rules memorized by the user. A few centuries later, 

through further innovations and improvement, we have the invention of another 

wonderful machine: the computer. Life has never been the same since. 

 The advent of the computer is a blessing to the emergence of the artificial neural 

networks (ANNs). The study of the human brain dates back several centuries, inspired 

by the ways of how humans and living creatures struggle to survive in a challenging 

environment. The human brain possesses incredible characteristics. It is robust and 

fault-tolerant; able to adaptively adjust to new environments through learning; capable 

in dealing with diffused information; and able to process multiple sets of parallel 

information at the same time. Indeed, the human brain is amazing. It can recognize 

different faces, discern noise from music and differentiate various types of shapes. Thus, 

it is not surprising that the members of the scientific community endeavor to unlock its 

mystery. Although researches on the human brain have been ongoing for a long time, 

scientists have only recently been able to successfully simulate the thinking process of 

the human brain after the invention of the computer.  
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 The aspiration of scientists to emulate the complex functions of the human brain 

has resulted in a new challenging research area, namely Artificial Intelligence, where 

ANNs are merely one of the facets of this interesting field. Attempting to preserve the 

desirable features of the human brain, mimicking its structures and understanding how 

it operates constitute the core development of ANNs. 

An extensive understanding of the constituents and the manners in which the 

human brain processes information is crucial and necessary before constructing the 

building blocks of ANNs. Yet, the struggle to understand the exact workings of the 

human brain is not an easy task. The human brain is the most complex organism, made 

up of a biological nervous system of organized assembly of cells interconnected through 

synapses. Fortunately, in 1911, Ramón y Cajǎl came up with the idea of introducing 

“neurons” as the elementary structural components of the brain. His contribution has 

helped scientists better understand the secrets of the human brain (López et al., 2006). 

 It is believed that the human brain is composed of approximately 10 billion 

neurons. Each neuron can connect directly with up to 200,000 other neurons (though 

1,000 to 10,000 is typical) (Gopal, 2009). The ability to think intellectually, to 

remember, to learn, and to experience sensations is attributed to the enormous number 

of neurons and the vast interconnections between them.   

 Basically, a biological neuron consists of four main components, namely, 

dendrites, soma, axon and the synapse. Soma forms the main body of a neuron.  The 

dendrites of a neuron are hair-like filaments, which branch out from the soma. An axon 

is a long, slender projection that connects the soma with the terminal branches of the 
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axon. There are a number of synapses at the end of the terminal branches, which usually 

connect to the dendrites of the other neurons. The structure of a typical biological 

neuron is illustrated in Figure 1.1. 

 The nerve impulse transmission of a neuron starts at the dendrites. Dendrites, the 

receptive zone, collect signals from the other neurons. The signals are converted into 

electrical impulses and propagated away from the soma via the axon, the transmission 

line, until it reaches the synapses. At the synapses, communication with the other 

neurons occur (Figure 1.2). 

At the synapses, the nerve impulse will be converted into electrical effects that 

cause either excitation or inhibition in the neuron which is connected to it. When a 

neuron sends an excitatory signal to the neuron it is connected to, this signal will be 

summed up with all the other inputs of that neuron. If it exceeds a given threshold, the 

target neuron will fire an action potential. If it is lower than the threshold, no action 

potential takes place.  

 

Figure 1.1: Schematic diagram of a neuron  
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 Figure 1.2: Connection between the synapses and the dendrites of other neurons 

 

In short, a biological neuron receives signals from other cells, perceives it and 

makes appropriate decisions. It combines the received signals in some way, performs a 

generally non-linear operation on the result of combination, and then outputs the final 

result to the other neurons.  

An artificial neuron, which is the core processing element of an ANN, is a 

mathematical function that imitates how the biological neurons operate. The first 

artificial neuron model, developed by McCulloch and Pitts (1943) in 1943, is shown in 

Figure 1.3.   

The flows of the neuron in the McColluch and Pitts model are similar to the 

processes involved in the biological neurons. The inputs received by the artificial 

neuron from the other neurons (representing the nerve impulses received by the 

dendrites) are weighted in order to modulate the strength of the input. The sum of the 

weighted inputs is then fed through a transfer function to generate an output signal, 

which is then fed into the other neurons. The transfer functions could be in the form of 

sigmoid functions, piecewise linear functions or step functions.  
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Figure 1.3: McColluch and Pitts model 

Following McColluch and Pitts’s pioneering work, a series of great advances 

has arisen in the improvement of ANNs over the past few decades. The timeline for the 

brief history of the major development in ANNs is summarized in Table 1.1 (Haykin, 

1999; Iyengar, 2002). 

 

 Table 1.1: Development of ANNs over the past few decades 

Year Researchers Findings 

1943 McColluch and Pitts The first artificial neuron was developed. 

1949 Donald Hebb When a human learns a different task, the 

connectivity of the brain is changed continually. 

Based on the ways of how a human learns, the 

learning rule of the synaptic modification was 

proposed. It describes how the neural pathways are 

strengthened each time they are used, which is a 

concept identical to the learning process in the 

human brain. 

1954 Marvin Minsky A classical paper entitled “Steps Toward Artificial 

Intelligence” was published, where a large section in 

this paper is now termed as neural network.   

1958 Frank Rosenblatt A novel supervised learning method, named as 

perceptron convergence theorem was introduced.   

 

 

Weights Input 
Sum Threshold 

Output   
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Table 1.1: Continued 

Year Researchers Findings 

1960 Widrow and Hoff The least mean-square algorithm was formulated 

in the models of ADALINE and MADELINE. 

1969 Minsky and Papert The declaration of the limitation of single layer 

perceptrons was made, where it led to the inactive 

research period of ANNs. 

1982 Hopfield The Hopfield model, which is a recurrent network 

with symmetric synaptic connections, was 

introduced. 

1982 Kohonen A novel structure of ANNs, namely, self-

organizing maps which uses a one or two 

dimensional lattice structure was proposed.  

1986 Rumelhart, Hinton and 

Williams 

The development of the back-propagation learning 

algorithm was reported. 

1988 Broomhead and Lowe A single hidden layer of radial basis function 

neural network was developed. 

1992 Vapnik  The first support vector machine was invented. 

1992 Zhang and Benveniste Wavelet neural networks (WNNs) are reported. 

Today  With the dawn of the advances in the technology 

today, the researches in ANNs are studied widely 

all around the world.  

 

The following section provides an introduction to ANNs, and how the problems 

encountered in the typical ANNs inspire the formulation of WNNs. Next, the 

motivations for developing an improved WNN in this research are presented. This is 

followed by the research objectives, research scope and lastly, an overview of the 

organization of this thesis is given. 
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1.2 INTRODUCTION TO ARTIFICIAL NEURAL NETWORKS 

An ANN, or normally just referred as neural networks (NNs), is made up of 

interconnecting artificial neurons, which uses mathematical or computational models 

for information processing. A schematic diagram of an ANN with two hidden layers is 

given in Figure 1.4.  

The basic component of an ANN is the artificial neuron. The combination of the 

artificial neurons forms a layer, namely, the input layer, the hidden layer and the output 

layer. As shown in Figure 1.4, every artificial neuron is connected to the succeeding 

layer, where there is a synaptic weight associated with each neuron. 

  Two important attention-grabbing characteristics of ANNs are (Haykin, 1999): 

 It possesses self-learning ability, and 

 It uses simple computational operations in reaching the solution for a highly 

complex, mathematically ill-defined and non-linear problems 

  

Figure 1.4: Schematic diagram of an ANN 
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 Distinct from the computer systems which are only capable in doing the precised 

programmed instructions, the ANNs are able to classify the objects that it has never 

seen before into classes or even predict the future based on past experience. These 

fascinating characteristics are attributed to the learning ability of ANNs. Much like how 

humans learn from experience, ANNs also learn from examples. The learning of ANNs 

involves the adjustment of the synaptic weight connections that exist between neurons. 

It changes its network structure adaptively based on external and internal information 

that flows through the network during the learning phase.   

 For example, in the supervised learning method, a collection of samples are fed 

into the ANNs with predefined target output. After the learning phase, the output 

achieved from the ANNs is compared with the predefined target output. If the undesired 

output is obtained, the altering to the synaptic connection weight is made, such that the 

error within the network results and the target output is minimized.  

 It is not surprising that the ANNs with the property of massive parallel 

distributed structure and the ability to generalize reasonable output for the unseen data 

during the learning phase make it a suitable tool for solving large-scale problems where 

the physical processes are highly complex and ill-defined. Furthermore, there are 

difficulties in solving the problems that do not have an algorithm solution or the 

solution is too complex to obtain by using the conventional methods. This is where the 

ANNs play its role.      

 ANNs outshine other conventional approaches due to its adaptive learning 

capability. During the learning phase, an ANN learns the underlying relationship 
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between the input and output data. It has been found that, an ANN provides correct 

solutions even though the input data is contaminated by noise, when properly trained 

(Juang et al., 2009). ANNs perform excellently in pattern recognition and classification 

problems where correct decisions are being made when the imprecise input data are 

present. 

Due to its fascinating features of robustness, fault tolerance, adaptively learning 

and highly parallel capabilities, ANNs have been implemented extensively in our daily 

life (Adeli and Panakkat, 2009; Adjeroh et al., 2006; Balasubramanian et al., 2009; 

Crone and Kourentzes, 2010; Du, 2010; Ebrahimzadeh and Ranaee, 2010; Emili et al., 

2008; Huang and Wu, 2008; Jiao, 2010; Juan and Julian, 2006; Kim and Cho, 2006; Lee, 

2008; Lee and Ko, 2009; Li et al., 2009; Lin and Hsieh, 2009; Lu, 2010; Melin et al., 

2008; Pajares et al., 2010; Suk et al., 2010; Sun and Tien, 2008; Übeyli, 2008; Übeyli, 

2009; Wang et al., 2009).  

 The applications of the ANNs fall within the following broad categories: 

a. Function approximation and regression analysis, including the time series 

prediction and modeling 

b. Classification, including pattern recognition and decision making 

c. Data processing, including data compression, filtering and clustering 

 The implementations of ANNs in the real-world problems can be discriminated 

further into more detailed areas of application. Some examples of the specific paradigm 

are given for each area:       
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a. Finance and Commerce 

 Forecasting of stock price index 

 Forecasting the exchange rate  

b. Medical 

 Classification of heterogeneous cancer subtypes 

 Denoising and compression of medical image 

 Classification of EEG signals 

c. Environment 

 Prediction of the pollutant concentrations 

 Forecasting of the storm surge at the costal line 

d. Pattern Recognition 

 Face recognition 

 Handwriting recognition 

 Fingerprint recognition  

e. Engineering 

 Fault detection and diagnosis 

 Control system 

 

1.3 PROBLEM STATEMENT 

Accuracy is seen as important by everyone, in every aspect, in view of the fact that it is 

always correlated with the decision-making. For example, when the heterogeneity of 

cancer could not be differentiated through its morphological appearance, classification 

of the heterogeneous cancer accurately is tremendously crucial, since a correct 
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classification enables the maximizing of efficacy and minimizing of toxicity in the 

therapy. Since numerous application problems are highly dependent on the accuracy of 

the ANNs, improving the prediction and approximation accuracy of the ANNs is the 

main concern of this thesis.   

 To date, multilayer perceptrons (MLPs) (Ghate and Dudul, 2010; Haykin, 1999; 

Hornik et al., 1989; Zainuddin and Ong, 2007), support vector machines (SVMs) 

(Huang and Wu, 2008; Peng et al., 2003; Polat et al., 2008; Shim et al, 2009; Xian and 

Zeng, 2009; Xu et al., 2009; Zhang et al., 2006), radial basis function neural networks 

(RBFNNs) (Balasubramanian et al., 2009; Broomhead and Lowe, 1900; Lee and Ko, 

2009; Moody and Darken, 1989) and fuzzy neural networks (Dazzi et al., 2001; Juang 

et al., 2009; Othman and Yao, 2007; Polat and Günes, 2007;) are some of the popular 

ANNs that have been implemented successfully in a vast variety of applications. Even 

though MLPs along with the backpropagation learning algorithm are the most popular 

type of ANNs for practical situations, the deficiencies of a MLP’s multilayer structure 

and its use of a global activation function and a slow learning algorithm have limited its 

use in practice. Specifically, MLPs have difficulties reaching the global minimum in a 

complex search space, are time-consuming and fail to converge when high 

nonlinearities exist; these issues have deteriorated their generalization capability to 

achieve superior accuracy (Lin and Tsai, 2008; Yao et al., 1996; Zainuddin and Ong, 

2010). Apart from that, there are issues that remain unresolved in selecting the 

appropriate centers for RBFNNs (Liao, 2010; Staiano et al., 2006; Zainuddin and Lye, 

2010), membership function for fuzzy neural networks (Hsu et al., 2008) and kernels for 

SVMs (Chen et al., 2007; Ju at al., 2009; Kazuhiri, 2008; Wu, 2010).   
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 WNNs, as one of the facets of ANNs research filed, had been introduced by 

Zhang and Benveniste as a vital alternative to MLPs that overcome their shortcomings 

(Zhang, 1997; Zhang and Benveniste, 1992) where it differs from other ANNs with the 

constitution of the wavelet activation function in the hidden nodes. They had proven 

that the proposed WNNs possess the eye-catching uniqueness of (Zhang and 

Benveniste, 1992): 

 It preserves the universal approximator property 

 Explicit link exists between the network coefficients and wavelet transform 

 It achieves the same quality of approximation with a network of reduced size 

  Due to the advantages of WNNs as universal approximators, the fact that they 

have more compact topology than other neural networks and their fast learning speed 

owing to the constitution of the localized wavelet activation function in the hidden 

layer, WNNs had received much attention from other researchers and have been used 

extensively to solve numerous real world problems such as face recognition, time-series 

prediction, pattern classification and system identification (Alan et al., 2006; Avci, 

2007; Becerra et al., 2005; Biswal et al., 2009; Cao et al., 2010; Chaohan et al., 2009; 

Cui et al., 2005; Gutés et al., 2006; Kumar et al., 2008; Lin, 2009; Pan et al., 2008; 

Subasi, 2005; Zainuddin and Ong, 2010).  

 Various issues have been addressed in the WNNs studies, which include 

adjusting the connection weights by employing different learning algorithms for 

accelerating the convergence of WNNs (Chen et al., 2006; Lin and Tsai, 2008; Yao et 

al., 1996; Zhang, 2007), making alterations in the network architecture (Wan et al., 
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2004), introducing variation in the types of activation functions used in the hidden layer 

(Mohd Idris et al., 2009; Wajdi et al., 2005, Zainuddin and Ong, 2007), and modifying 

the wavelet function parameters, a process that involves proper initialization of the 

translation and dilation vectors (Lin, 2009; Oussar and Dreyfus, 2000; Zhang et al., 

2006). In this thesis, optimizing the convergence characteristic and improving the 

generalization ability of WNNs by emphasizing the choice of a proper wavelet family 

as the activation functions in the WNNs hidden layer and proper initialization of 

translation vectors are the main concern. 

 There is heightened understanding that selecting the appropriate activation 

function in hidden layer is as crucial as the neural network architecture and learning 

algorithm (Dutch and Jankowski , 1999; Gougam et al., 2008). Being the first proposed 

activation function, it had been proven in the universal approximation theorem that a 

single hidden layer feedforward neural network with sigmoid activation functions can 

approximate any continuous, multivariate function to any desired degree of accuracy 

with a finite number of neurons (Cybenko, 1989). However, the main limitation of 

sigmoid functions is that they span over the whole input space. The alteration of the 

weight vectors and other parameters involves all the activation functions, and thus its 

training is time-consuming, and unavoidably, it achieves much more exploration errors. 

As opposed to the popular sigmoid activation functions, wavelets in hidden layer 

respond only to a local region of the space of input values. Due to its fast-decaying 

characteristic in a short finite length interval, fewer non-negligible coefficients are 

generated. Thus, modification on the weight vectors involves only a small number of 

parameters and as a result it leads to fast convergence characteristic and generalization 
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capability (Oysal et al., 2005).     

 Systematic investigation on the suitability of employing various wavelets as the 

activation functions (for example, B-spline wavelet, Gabor wavelet, Gaussian wavelet, 

Mexican Hat, Morlet and Shannon wavelet (Banakar and Azeem, 2008; Chaohan et al., 

2009; Cui et al., 2005; Esen at al., 2009; Krüger and Sommer, 2002; Lin et al., 2008; 

Wang et al., 2005;)) for WNNs in the literature showed its feasibility and validity. 

However, there is no a priori explanation on why they should be the most favorable in 

all situations. Simulation results are highly relied on the network architecture, learning 

algorithm, parameter initialization, and also on the dataset used. Unfortunately usually 

the essential attributes of the dataset is unknown and vary for different problems, a 

wavelet activation function that is well-suited for all the cases does not exist. The 

choice of the wavelet families is problem-dependent (Mohd Idris et al., 2009; Zainuddin 

and Ong, 2007, Zainuddin and Ong, 2010). Since there is no established rule of thumb 

in determining which particular wavelet to be employed as the activation function, this 

research hopes to make some suggestions.  

 WNNs update their connection weights and parameters iteratively through 

learning. During the learning process of a WNN, the selection of the numbers and the 

locations of the translation vectors are particularly crucial. An appropriate initialization 

of the translation parameter will do a good job of reflecting the essential attributes of 

the input samples, which is important for finding an optimal solution. Increasing the 

number of hidden nodes leads to over-fitting and computational complexity. Thus, 

assigning an appropriate number of hidden nodes simplifies the process.  
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 Several approaches have been suggested in choosing the appropriate WNNs 

translation vector, including using an explicit expression (Cao and Lin, 2008; Cao et al., 

2010; Cui et al., 2005; Gutés et al., 2006; Gutiérrez et al., 2008; Lin, 2009; Oussar and 

Dreyfus, 2000; Srivastava et al., 2005; Zhang et al., 2004), hierarchical clustering (Wei 

et al., 2004), SVMs (Zhang et al., 2006), genetic algorithms (GAs) (Kim et al., 2002) 

and k-means clustering (Hwang et al., 2000). Although such improvements are certainly 

noteworthy, initializing the translation vector is always an open question. Therefore, a 

novel clustering algorithm—the modified point symmetry-based fuzzy c-means 

(MPSDFCM) was proposed in this study—as an alternative to the existing WNNs 

translation parameter initialization approaches. 

 

1.4 OBJECTIVES OF THESIS 

The main thrust of this research is geared towards an improved WNN model, 

incorporating the MPSDFCM algorithm and different wavelet activation functions, for 

prediction purposes as well as pattern classification.  

The objectives of this thesis are as follows: 

 To implement different types of activation functions in WNNs for the purpose of 

improving its generalization ability 

 To develop and apply a novel method in the parameter initialization of WNNs 

for the purpose of optimizing its generalization ability 

 To assess the potential benefits of the proposed enhanced WNNs in 

heterogeneous cancer detection and blood glucose concentration prediction 
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 To develop and implement a new scheme in edge detection based on the 

hybridization of wavelet transform and clustering algorithm 

 

1.5 SCOPE AND ORGANIZATION OF THESIS 

The scope of this research studies the development of an improved WNN model. 

Particular focus is placed on the translation parameter initialization using MPSDFCM 

algorithm, and the choice of wavelet activation function in the hidden nodes. The 

effectiveness of the proposed WNNs with MPSDFCM initialization method in the 

context of function approximation and classification is examined through empirical 

approaches, with simulated as well as real-world dataset. The applicability of the 

proposed WNNs is extended to practical applications in bioinformatics, which include 

the real-world medical diagnosis, in the domain of heterogeneous cancer classification 

and the prediction of blood glucose concentration for a diabetic.   

 The thesis will begin with Chapter 1 with an introduction to the evolvement of 

ANNs and its development history. The characteristics of the ANNs are explored and 

examples on its implementation in real-world applications are given. The objectives, 

scope and organization of this thesis are then described.   

 Chapter 2 will provide a review of WNNs, which begins with an introduction to 

wavelet and wavelet transform. The preface for architecture, learning algorithm and 

parameter initialization of WNNs are given. Its competence is briefly touched on. The 

characteristics of the WNNs are reviewed and the need to enhance the WNNs from 

different aspects is then explored. Implementation of WNNs in the real-world 

applications is then given. 
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 A review of the cluster analysis is given in Chapter 3. It begins with the 

introduction to the classical clustering algorithms, and this is followed by the 

exploration of their pro and cons. The concept of point symmetry distance (PSD) is 

introduced, and its improvement over the conventional clustering algorithm is then 

explored. The merit of a novel operator, i.e. symmetry similarity level (SSL) operator is 

then described.  Motivated by the SSL operator, a novel clustering algorithm- 

specifically, the modified point symmetry-based fuzzy c-means (MPSDFCM) algorithm 

is proposed. The description and the implementation of the proposed MPSDFCM, 

which is the core of this thesis is then given. 

 Chapter 4 will begin with an overview of the microarray experiment. The 

research background is then provided, and it will lead to the need of developing an 

enhanced classifier to address the problems in multiclass cancer classification.  Its 

implementation in the heterogeneous cancer classification using benchmark microarray 

dataset was studied. Assessment analysis of the proposed enhanced classifier with other 

well-developed classifiers is then presented. It will be shown that the modification on 

the WNNs improves its prediction capability effectively and significantly. 

 The enhancement of the WNNs approximation capability sets the tone for 

Chapter 5. The proposed WNNs are applied in function approximation problems, where 

different types of functions are studied. Evaluations by varying types of activation 

function and initialization approach in terms of mean squared error are made. A real 

world application, i.e. prediction of blood glucose level for diabetics is then explored. 

The capability of the proposed WNNs in approximating the blood concentration at the 
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end of interval is assessed further, by comparing its prediction accuracy with other 

popular ANNs.  

 Edge detection is one of the main concerns in image analysis. The image quality 

issue in the microarray experiment needs more improvement. Chapter 6 will begin with 

an introduction for microarray image analysis. It is followed by a brief review on the 

edge detection based on the wavelet approach. A new scheme of edge detection with 

hybridization on the wavelet and clustering algorithm is then proposed. Its 

implementation in microarray spot segmentation is studied. Comparison of the 

segmentation results with other existing segmentation method will round up this chapter.  

 Finally, refinements on WNNs and edge detection are proposed for future 

research direction. A brief elucidation on recommendations for further research and 

conclusions of this research work will conclude the thesis. Further details and images 

are provided as Appendices.  
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CHAPTER 2 

WAVELET AND WAVELET NEURAL NETWORKS 

2.1 INTRODUCTION 

Wavelet analysis has been studied rigorously in a number of disciplines in mathematics, 

quantum physics and electrical engineering over the past few decades. These active 

researches have led to the emergence of wavelet as one of the fastest growing fields 

with vast new applications, ranging from image compression, voice recognition to 

earthquake prediction. Owing to its fascinating characteristics such as fast-decaying, 

compact support, smooth and regular, wavelet has been substituted as the activation 

function in the WNNs, which greatly overcomes the shortcomings in MLPs.  

 In this chapter, the fundamental aspects of wavelet analysis and WNNs will be 

reviewed in a number of sections. Specifically, this chapter begins with an overview of 

the wavelet. The ideas behind discrete wavelet transform (DWT), with the discussion on 

its improvements over the Fourier transform (FT), windowed Fourier transform (WFT) 

and continuous wavelet transform (CWT) is presented. Next, we proceed to the brief 

review of the DWT in a vast variety of practical applications. In the second section, an 

overview of the theory of WNNs, which includes the architecture design, learning 

process and parameter initialization of a WNN, is given. Finally, a literature study on 

the implementation of WNNs in numerous real-world problems is presented at the end 

of this chapter.        
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2.2 INTRODUCTION TO WAVELET 

The word wavelet, originates from French word ondelette which means “small wave”, 

was introduced by Morlet and Grossman in 1980. The term “small” here refers to the 

condition that the wavelet function is of finite length, which means compactly 

supported, whereas the term “wave” implies that the function is oscillatory.  

A wavelet is a kind of mathematical function that satisfies certain requirements, 

such as integrates to zero, oscillates and well localized in time. It is used to represent 

other functions by cutting it into different frequency components, and then study each 

component with a resolution that matches its scale. Thus, it has the ability to allow the 

time and frequency analysis simultaneously, which makes it a suitable tool for studying 

the transient, non-stationary and time-varying signals.  

A wavelet is not identical to a wave. A wave is an oscillating function of time 

and it is periodic. In contrast, wavelets are localized waves. An example of a wavelet 

and a wave (sinusoid) is shown in Figure 2.1.  

 

(a)                                                   (b) 

Figure 2.1: A schematic diagram of (a) a wavelet; and (b) a wave (sinusoid) 
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It can be observed that a wavelet has the oscillating wave-like characteristic like 

a wave (sinusoid). Waves are smooth and regular, but wavelets are irregular and might 

be asymmetric in shape. Unlike sinusoid which oscillates with equal amplitude from 

minus to plus infinity, wavelet has a finite length and it decays quickly toward zero 

when their limits approach minus to plus infinity. Therefore, wavelets have finite 

energy which concentrates around a point.  

Wavelets are generated from a finite-length or fast-decaying oscillating mother 

wavelet     , with an average value of zero 

                                                              
 

  
                                                       (2.1) 

 The family of functions can be obtained by shifting and scaling of this mother wavelet 

as  

                                         
 

  
  

   

 
                                                  (2.2) 

where   and b are scaling and translation parameters,  
 

  
 is energy normalization so that 

the transformed signal will have the same energy across the scales. The mother wavelet 

gets its term “mother”, since the functions with different support regions in the 

transformation process are generated from it. Thus, mother wavelet is the prototype for 

deriving other window functions, with different values of scaling and translation 

parameters. 

A wavelet function      must satisfy the admissibility condition in order for it 

to be the mother wavelet. A wavelet function      is said to be admissible if its Fourier 

Transform, namely 



22 
 

                                                         
 

  
                                                  (2.3) 

satisfies the admissibility condition 

                                            
       

 
  

 

 
                                                    (2.4) 

 

2.3 PROPERTIES OF WAVELETS 

There are some important properties of wavelets that make it a useful tool in real world 

applications. 

Vanishing Moment: A wavelet function      is said to have p vanishing moments, if 

                                                      
  

  
                                               (2.5) 

If a wavelet function       has larger vanishing moments, the wavelet coefficients of a 

function      are much smaller on a larger scale j, where this wavelet is said will have 

more compressive power. 

Regularity: The regularity of a wavelet function       is related to the vanishing 

moments. To have regularity more than n,       must has at least n+1 vanishing 

moments. Hence, the more regularity of a wavelet, the more vanishing moments it has, 

and the smoother it is. 

Smoothness: The smoothness of a wavelet function      is determined by the number 

of vanishing moments, where the smoother a wavelet function is, it has a better 

reconstruction property. A smoother wavelet function       will have fewer non- 

negligible wavelet coefficients, which means that it produces a large number of wavelet 
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coefficients that are close to zero, which is essential for noise removal and image 

compression. 

Compact Support: The compact support of a wavelet function       is the maximal 

interval of which the wavelet function vanishes outside of this finite interval. If the size 

of the compact support is smaller, there are fewer of the high amplitude wavelet 

coefficients. 

Symmetry: Symmetry is also called as linear phase in the language if engineering, 

which is an important characteristic in image processing, where a wavelet which is 

symmetric in shape produces less visual artifacts than an asymmetric wavelet. The 

absence of this property can lead to a phase distortion. 

 

2.4 A BRIEF HISTORICAL PERSPECTIVE OF WAVELETS 

 Pre-1930 

Notable contribution to the development of wavelet analysis first originated from 

Alfred Haar’s work in the early of 20th century, where the Haar wavelet function 

was first mentioned. Haar wavelet has compact support; however it is not 

continuously differentiable, where this shortcoming somewhat limits its applications 

(Burrus, 1998; Eugenio, 1996; Holschneider, 1995).  

 The 1930s 

After Haar’s contribution to wavelets, Paul Levy (1930) discovered that a Haar 

basis function is a better tool than Fourier basis functions when dealing with the 

small details in Brownian motion.  
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 Post 1980 

The next major advancement of wavelets comes from Jean Morlet and Alex 

Grossman in the year 1981. They found that a signal can be transformed into 

wavelet forms and then be reverted back into its original signal without loss of 

information. This property contributes greatly in data compression, where making a 

small change in the wavelets will cause a small change in the original signal. 

 Stephane Mallat (Mallat, 1989) continued the work on wavelet analysis by 

discovering the relationships between the quadrature mirror filters and pyramid 

algorithms, laying the foundation to the fast wavelet transform (FWT).  

 The idea of multiresolution analysis of wavelets which was a big jump in the 

research of wavelet analysis comes from Yves Meyer and Stephane Mallat (Mallat, 

1989). The idea of looking at a signal at different scales of resolution is beneficial to 

the next important discovery by Ingrid Daubechies. The final great salvo in wavelet 

analysis happened at around 1988, where Ingrid Daubechies created a new family of 

wavelets, called Daubechies wavelets, by using the idea of multiresolution analysis. 

Daubechies wavelet families are both continuously differentiable and have compact 

support. These properties have made it the keystone in wavelet applications today.   

The development of wavelet analysis is highly related to the Fourier transform 

(FT). Before the emergence of wavelet analysis, there are vast applications of FT in 

signal analysis. However, there are certain shortcomings in FT in addressing the non-

stationary signals. To overcome these drawbacks in FT, development of wavelet 

analysis which takes hints from Fourier analysis appeared as a better resolution than FT 

in signal processing.   
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2.5 FROM FOURIER TO WAVELET ANALYSIS 

Signal analysis has benefited from mathematical transformation, such as FT and the 

more recently wavelet transform (WT). Mathematical transformations are always 

applied to raw signals in order to obtain the hidden information that is unavailable in 

raw signals. 

 

2.5.1 FOURIER TRANSFORM 

It is best to describe the wavelets by starting with FT. Among all the mathematical 

transformation methods, FT is the most popular. Since the early of 1800, Joseph Fourier 

had discovered that any periodic functions can be expressed as the superposition of sine 

and cosine functions. Any    periodic function      is the sum of 

                                                                   
                                      (2.6)                  

of its Fourier series, where  

     
 

  
       

  

 
,    

 

 
               

  

 
,    

 

 
               

  

 
       (2.7) 

 Since most of the real-world functions are not in the type of periodic functions, 

such as the sound of a motor that speeds up, the spoken word and the melody of a song, 

many years after this remarkable property of periodic functions were discovered, 

Fourier’s idea was extended to analyze the non-periodic functions that have great 

changes over the time. 

 However, FT struggles to reproduce the transient signals or signals with abrupt 

changes due to its frequency-amplitude representation of the signal, which is 
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