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Fabrikasi Dan Pencirian Komposit Kuprum Diperkuat Logam Peralihan Karbida 

Melalui Pengaloian Mekanikal 

 

ABSTRAK 

 

Dalam kajian ini, kempaan bebola bertenaga tinggi juga dikenali sebagai pengaloian 

mekanikal (PM) digunakan untuk mensintesis komposit in situ matrik kuprum. 

Campuran serbuk Cu, (M=W atau Ti) dan grafit dilakukan pengaloian mekanikal selama 

beberapa masa kempaan di dalam kempa planetari. Komposisi nominal adalah Cu-

28.72wt%W-1.87wt%C dan Cu-9.67wt%Ti-2.42wt%C berdasarkan kepada komposisi 

Cu-20vol%WC dan Cu-20vol%TiC. Berdasarkan komposisi dan masa kempaan yang 

hampir sama, campuran komposit ex situ bagi kuprum diperkuat WC dan TiC dikempa 

menggunakan kempaan bebola bertenaga rendah. Serbuk bagi komposit in situ dan ex 

situ ditekan pada 200 hingga 400 MPa dan disinter di dalam relau vakum pada suhu 

900˚C. Keputusan pembelauan sinar-X, mikroskop imbasan elektron dan penyerakan 

tenaga sinar-X menunjukkan bahawa pembentukan tungsten karbida (fasa W2C dan WC) 

berlaku selepas pensinteran Cu-W-C komposit manakala TiC termendak di dalam serbuk 

Cu-Ti-C komposit selepas 5 jam dan semakin amorfus dengan peningkatan masa 

kempaan. Mekanisma PM menjelaskan tentang kejadian kimpalan sejuk dan pemecahan 

yang berlaku semasa kempaan. Sistem Cu-W-C menunjukkan bahawa prosess 

pemecahan adalah lebih dominan pada peringkat awal kempaan dan partikel W masih 

wujud walaupun selepas kempaan selama 60 jam. Manakala dalam system Cu-Ti-C, 

kimpalan sejuk adalah lebih dominan dan semua partikel Ti terlarut ke dalam matrik Cu. 

Fenomena ini telah meningkatkan sifat kekerasan bagi kedua-dua Cu-W-C dan Cu-Ti-C 

komposit dan penurunan dalam sifat kekonduksian elektrik. Kekerasan yang lebih tinggi 

dan kekonduksian elektrik yang lebih rendah didapati dalam komposit in situ berbanding 

komposit ex situ disebabkan oleh kesan PM dan pemendakan serbuk penguatan karbida 

yang halus.  
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Fabrication and Characterisation of Copper Composites Reinforced with 

Transition Metal Carbides via Mechanical Alloying 

 

ABSTRACT 

 

In this study, high-energy ball milling also called mechanical alloying (MA) was applied 

to synthesis in situ copper based composite. Cu, M (M=W or Ti) and graphite powder 

mixture were mechanically alloyed for various milling time in a planetary ball mill. The 

nominal composition was Cu-28.72wt%W-1.87wt%C and Cu-9.67wt%Ti-2.42wt%C 

which corresponds to Cu-20vol%WC and Cu-20vol%TiC, respectively. With similar 

composition and milling time, the ex situ WC and TiC reinforced copper composite was 

also mixed by ball milling. Then the as-milled powder for both in situ and ex situ 

composites were compacted at 200 to 400 MPa and sintered in vacuum furnace at 900ºC. 

The results of X-ray diffraction, scanning electron microscopy and energy dispersive 

spectroscopy analysis showed that formation of tungsten carbide (W2C and WC phases) 

observed after sintering of Cu-W-C composite while TiC precipitated in as-milled 

powder of Cu-Ti-C composite after 5 h and become amorphous with longer milling. 

Mechanism of MA explained the cold welding and fracturing event during milling. Cu-

W-C system shows fracturing event is more dominant at early stage of milling and W 

particle still existed after milling up to 60 h. While in Cu-Ti-C system, cold welding is 

more dominant and all Ti particles dissolved into Cu matrix. These phenomena results in 

increased the microhardness properties of both in situ Cu-W-C and Cu-Ti-C composite 

and decreased in electrical conductivity by increasing the milling time. Higher 

microhardness and lower electrical conductivity are obtained in both in situ composite 

compared to ex situ composite due to the effect of MA and the fine carbides particles 

precipitation. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Introduction  

Copper provides the best electrical and thermal conductivity among the 

common base metals (Marques et al., 2005). It is used extensively as an electrical 

conductor and suitable for thermal management application (Chawla and Chawla, 

2006). However, copper presents as a very low strength metal. It must be strengthened 

to perform adequately and precipitation or solid solution hardening usually 

compromises the electrical conductivity. Dispersion strengthening of copper (Groza 

and Gibeling, 1993) has been considered as a promising method to produce good high 

temperature strength of copper to help in maintaining good electrical conductivity. 

Carbide reinforcement of copper has been considered as an ideal method for preparing 

materials with good high-temperature strength and high conductivity (Marques et al., 

2005). Several transition element carbides have been synthesised in situ in copper 

matrix using mechanical alloying such as Cu-NbC (Marques et al., 2008) and Cu-TiC 

(Shen et al., 2000). 

 

In this study, copper reinforced by WC and TiC was chosen because both 

carbides have high melting point and microhardness values. Previous study conducted 

by Takahashi and Hashimoto (1992) was limited to the fabrication of copper 

composites reinforced by several types of transition metal carbides but did not include 

tungsten carbide (WC) as reinforcement. They also studied Cu-Ti-C system with 

various volume fraction of TiC reinforcement; that were 2.5vol%, 4.15vol%, 10 vol%, 
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and 30 vol% of TiC. It was confirmed that the very fine transition metal carbide 

particles began to precipitate in Cu-30vol%TiC by mechanical alloying for about 20 h. 

Their research was focused on microstructure of composite powder not include 

consolidation and sintering process to relate with properties of copper composite. For 

these reasons, further investigation on the synthesis and characterisation of 20vol% WC 

and 20vol% TiC reinforced copper matrix composite by in situ method especially their 

bulk properties become the focus of the present work.  

 

The strengthening effect of copper matrix by reinforcement particles depends on 

inter-particle distance, distribution and particle size of the reinforcement material 

(Rajkovic et al., 2008). The most widely used method in producing metal matrix 

composite reinforced with dispersion particles is based on casting and powder 

metallurgy (PM) techniques (Hussain and Kit, 2008). In PM, two mixing methods can 

be used to incorporate the dispersed particle in the matrix, namely ball milling and 

mechanical alloying. Ball milling (BM), a low energy process, is relatively simple but 

does not ensure a uniform distribution of the dispersed particles since the produced fine 

powder often agglomerates. This process, which is also referred as ex situ processing, 

normally generates problem of contaminated interface in the composite and it is also 

difficult to produce strong interfacial bonding.  

 

The second process for incorporating the fine dispersoid particles is high energy 

milling or mechanical alloying (MA) (Benjamin and Volin, 1974; Benjamin and John, 

1992), which has been employed widely in developing composite material because it 

has the capability to incorporate reinforcement particle into the metal matrix at a close 

distance. This technique generally involves the in situ generation of the reinforcing 
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phase which has emerged as a preferred synthesis route for these materials. In situ 

techniques of MMC relate to a method that involves a chemical reaction resulting in the 

formation of a very fine and thermodynamically stable ceramic phase within a metal 

matrix. As a result, the reinforcement surfaces are likely to be free from gas absorption, 

oxidation or other detrimental surface reaction contamination, and the interface 

between the matrices, and therefore, the reinforcement bond tends to be stronger (Wang 

and Wang, 2007).  

 

The deformation structures of materials under MA were rarely reported, and 

such are very important for one to get a better understanding of the mechanisms 

governing the MA process, since it is still not well understood. It has been shown that 

enhanced reaction rates can be achieved and dynamically maintained during milling as 

a result of microstructural refinement (Khitouni et al., 2009) and mixing processes 

accompanying repeated fracture, deformation and welding of particles during collision 

events (Suryanarayana, 2003).  

 

In order to get direct formation of reinforcement in metal matrix additional heat 

treatment at appropriate temperature after MA sometimes is needed. In previous studies 

for Cu-W-C system, WC and W2C phases are observed after MA with heat treatment at 

940 ˚C for 5 hours. This is because long milling time (exceeding 50 min) led to Fe 

contamination due to collision of ball and jar (Baikalova and Lomovsky, 2000).  

 

Wang and Wang (2007) have succeeded in producing in situ Fe-TiC by powder 

metallurgy and MA. They give a particular attention on reaction path of Fe-Ti-C system 

and microstructure of the final product. The microstructure observation of Fe-TiC 
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composite shows the TiC particles are uniformly dispersed in iron matrix. The reaction 

path results showed that allotropic change Feα→Feγ at 765.6 °C , formation of the 

compound Fe2Ti at 1078.4 °C is because of the eutectic reaction between Ti and Fe, 

reaction between carbon and melted Fe2Ti causing the formation of TiC at 1138.2 °C 

and formation of Fe3C due to the eutectic reaction between remnants C and Fe at 

1146.4 °C.  

 

Another research on in situ composite processing was reported by Zuhailawati 

and Mahani (2009) who studied the effect of milling time on hardness and electrical 

conductivity of in situ Cu-NbC composite by MA was found that NbC particles was 

precipitated in the Cu-Nb-C after sintering process. The precipitated NbC particles 

improved the hardness properties of the in situ composite but low of electrical 

conductivity was obtained in in situ composite as a result of electron scattering by fine 

NbC particle and copper grain. 

 

1.2 Problem Statement 

Literature shows that in situ copper composites provide better properties such as 

high strength (Yih and Chung, 1997), and high electrical conductivity (Tu et al., 2002). 

Potential alloying element that has been widely used as particle strengthening is 

transition metal carbides such as CrC, WC, TaC, NbC, MoC, VC (Botcharova et al., 

2003). Among other ceramic particles, this compound is a superior choice as a 

reinforcement particle for metal matrix composite. 

 

Mechanical alloying is the promising route for the development of in situ 

composite. Most of the literatures reported synthesis of in situ composites with one 
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single mixture such as synthesis of Cu-TiB (Tu et al., 2002), Cu-WC (Naiqin Zhao and 

Yang, 2004) and Cu-NbC (Hussain et al., 2010). The mechanism of carbide formation 

depends on the powder mixture because properties of element influence the fracturing 

and cold welding of powder during mechanical alloying. Properties of the composite 

also depend on fabrication process such as pressing and sintering. Morphology of the 

milled powder affects the consolidation during sintering and pressing. Hence, the aim 

of this project is to study the mechanism of MA for two mixtures which are copper- 

tungsten-graphite (Cu-W-C) and copper- titanium-graphite (Cu-Ti-C) and to investigate 

the properties of these two composites that had been fabricated almost under similar 

condition. 

 

1.3 Objectives 

The objectives of this research work are: 

i. To explain the mechanism of carbide formation in copper matrix during 

mechanical alloying and sintering process for Cu-W-C and Cu-Ti-C 

mixtures. 

ii. To compare the structure, hardness and electrical conductivity properties 

of in situ copper composite reinforced by tungsten carbide and titanium 

carbide particles prepared by powder metallurgy.  

iii. To compare the structure, hardness and electrical conductivity properties 

of the in situ tungsten and titanium carbides reinforced copper 

composite with the ex situ prepared composites. 
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1.4 Scopes of Study 

In this work, an in situ technique is developed for the fabrication of WC and 

TiC particle-reinforced Cu matrix composite. The technique called mechanical alloying 

(MA) was used to disperse both carbides in copper matrix using the elemental powders 

of copper, tungsten, titanium and graphite. The effect of milling time on the 

microstructure and properties of the milled composite powders and as-consolidated 

composite was revealed in this study. The properties of copper composite are depend 

on the mechanism of carbide formation, morphology of as-milled powder and 

consolidation and sintering process. Hence, this study was aim to explain the formation 

of carbide dispersion in Cu matrix with 20vol%WC and 20vol%TiC. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1      Introduction 

  The most interesting properties of copper composites are the high mechanical 

properties and moderate electrical conductivity. This chapter discusses topics that are 

related to the development of copper composites. 

2.2      Metal Matrix Composites (MMC) 

Metal matrix composite (MMC) is a type of composite that is reinforced with 

another material to improve its strength, wear or some other characteristics. It consists 

of a metallic matrix combined with a ceramic (such as oxides and carbides) or metallic 

dispersed phase (such as tungsten and molybdenum). Over the last 45 years or so, metal 

matrix composites have merged as an important class of materials. During this period, 

very substantial research efforts have been directed towards an improved understanding 

of their potential and limitations, invoking principles of physical metallurgy, stress 

analysis and processing science (Clyne and Withers, 1995). The properties of 

composites are a function of the properties of the constituent phases, their relative 

amounts and the geometry of the dispersed phase. “Dispersed phase geometry” in this 

context means the shape of the particles and the particle sizes, distribution and 

orientation. These characteristics are represented in Fig. 2.1. 
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Figure 2.1: Various geometrical and spatial characteristics of particles of the dispersed 

phase that may influence the properties of composites: (a) concentration, (b) size, (c) 

shape, (d) distribution and (e) orientation (Callister, 2003). 

 

The physical and mechanical properties that can be obtained with MMCs have 

made them attractive candidate materials for aerospace, automotive and numerous 

others applications. More recently, particulate reinforced MMCs have attracted 

considerable attention as a result of their relatively low costs and characteristic 

isotropic properties. Reinforcement materials include carbides, nitrides and oxides. In 

an effort to optimise the structure and properties of particulate reinforced MMCs 

various processing techniques have evolved over the last 40 years. The processing 

method utilised to manufacture particulate reinforced MMCs can be grouped depending 

on the temperature of the metallic matrix during processing (Ibrahim et al., 1991).  

 

The classification of composite materials can be categorised into three main 

groups, namely particle-reinforced, fibre-reinforced, and structural composites with at 

least two subdivisions for each. Fig. 2.2 shows the classification scheme for the various 

composites types (Callister, 2003).   
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Figure 2.2: A classification scheme for the various composites types. 

 

There are two types of particle-reinforced in metal matrix composite. The first 

one is large-particle reinforcement. One of the familiar large-particle composite is 

concrete, being composed of cement (matrix) and sand and gravel (particulates). The 

particles in these composite are larger than in dispersion-strengthened composites. The 

particle diameter is typically on the order of a few microns. In this case, the particles 

carry a major portion of the load. The particles are used to increase the modulus and 

decrease the ductility of the matrix. Fig. 2.3 shows a photomicrograph of WC-Co 

cemented carbide. 

 

Figure 2.3: Photomicrograph of a WC-Co cemented carbide. Light areas are the cobalt 

matrix while dark regions are the particles of tungsten carbides (Callister, 2003). 
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According to Zhang et al. (1995), transition load increase with increasing the 

particle volume fraction but for the given average particle size, the higher the particle 

volume fraction, the higher the hardness of the composite. Therefore, particle size 

influences the transition load more pronouncedly then particle volume fraction. They 

studied the wear mechanisms in SiC or Al2O3 particles reinforced aluminium matrix 

composites with volume fractions of 10% and 20%, respectively. It is observed that a 

transition of mild wear to severe wear occurs when the applied normal load reaches a 

certain critical value. The transition behaviour is both load and microstructure-

dependent.  

 

Particulate reinforced composites, which contain hard particles dispersed 

homogeneously in a ductile matrix, have the potential as engineering materials because 

of their good formability and machinability as well as improved mechanical properties. 

The technique has been applied to metal matrix and polymer matrix composites. These 

composites have enhanced performance on the basis of the Young’s modulus, yield 

strength, fatigue strength, and resistance to wear, while they generally exhibit poor 

ductility, low fracture toughness and strong dependency on processing (Tohgo and 

Weng, 1994).  

 

The second is dispersion strengthened composites. In dispersion strengthened 

composites, small particles on the order of 10-5 mm to 2.5 x 10-4 mm in diameter are 

added to the matrix material. The strengthening mechanism involves interactions 

between the particles and dislocations within the matrix, as with precipitation hardening 

but dispersion strengthening effect is not as pronounced as with precipitation 

hardening. It is because the strengthening is retained at elevated temperature and for 
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extended time periods because the dispersed particles are chosen to be unreactive with 

the matrix phase. While for precipitation hardening alloys, the increase in strength may 

disappear upon heat treatment as a consequence of precipitate growth or dissolution of 

the precipitate phase (Callister, 2003). Traditionally, dispersion strengthening of copper 

has produced by several processing route such as powder metallurgy, spray deposition, 

mechanical alloying and casting techniques (Zuhailawati et al., 2008).  

 

2.2.1 Fabrication methods of MMC  

There are various methods employed in fabricating MMC. These are solid state, 

liquid state, in situ and semi-solid processing. Solid state commonly involves bringing 

the particles or foil into close contact with the reinforcement. Sometimes, solid phase 

processes yield better mechanical properties. Although there are a lot of problems 

concerning the distribution of the reinforcement and in obtaining a uniform matrix 

microstructure, it is necessary to use certain blending routes in order to get a 

homogenous distribution of reinforcement. For example, the study by Baikalova and 

Lomovsky (2000) on solid state synthesis of tungsten carbide in an inert copper matrix 

showed the uniformly distributed grains of tungsten carbide in the copper matrix.  

 

Liquid state methods included electroplating, stir casting, squeezed casting, 

spray deposition and reactive processing. A majority of the commercially viable 

applications are now produced by liquid state processing because of inherent 

advantages of this processing technique over solid state techniques. Using liquid metal, 

the composite material can be produced in a wide variety of shapes and generally less 

expensive and easier to handle than the powders. 
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2.3  Copper Matrix Composites 

Copper composites are widely used where high electrical or thermal 

conductivity is required. It is used extensively as an electrical and thermal conductor 

(Hussain and Mahani, 2009). Copper is a soft metal and have good thermal 

conductivity near to 0.55 W/mK at low temperature. In addition, at temperature of 

around 263 ˚C, the electrical conductivity of copper was about 150 x 106 (ohm.cm)-1 

(Berman and MacDonald, 1952). However, the mechanical properties of such materials 

are relatively low, especially at temperatures above 200˚C. Several investigations have 

been carried out related to strengthening by the dispersion of particles in copper alloys, 

essentially with ceramics (Ellis et al., 1990; Groza and Gibeling 1993).  

 

A copper matrix composite with high strength and high electrical conductivity 

is very useful for the lead frame in semiconductor, conductive coil in hybrid magnet for 

nuclear fusion furnace, or a spot welding electrode and the like. Moreover, demand for 

its mechanical and electrical properties is increasing by the year.  

  

The search for new uses of copper has justified the development and study of 

new copper-based alloys via powder metallurgy and mechanical alloying using ceramic 

as strengtheners. As a way to improve the mechanical properties at low temperatures, 

the matrix must be strengthened with very low-solubility particles, which have a low 

diffusivity in copper, by means of mechanical alloying maintaining equilibrium with 

the electrical properties obtained. These particles must be stable and if they form a 

phase with Cu, they should not be brittle nor alter the electrical conductivity.  
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 Copper matrix reinforced with various sizes and amount of Al2O3 was produced 

by Rajkovic et al. (2008) by internal oxidation and high energy ball milling. In their 

study, milling of Cu-1wt% Al pre-alloyed powder promoted formation of fine 

dispersed particles (1.9wt% Al2O3, approximately 100 nm in size) by internal 

oxidation. While milling of Cu-3wt% commercial Al2O3 powder gives a uniform 

distribution of commercial Al2O3 particles in Cu matrix. Cu-1wt% Al2O3 has higher 

microhardness value compared to Cu-3wt% Al2O3 due to the nano-sized Al2O3 

particles that have stronger reinforcement. However, electrical conductivity of Cu-

3wt% Al2O3 is higher than Cu-1wt% Al2O3 because nano-sized Al2O3 particles reduce 

the conductivity of Cu more than larger Al2O3 particles due to the higher electron 

scatter caused by nano-sized particles. 

 

In another work, Marques et al. (2005) synthesised in situ and at room 

temperature a composite material consisting of 5, 10 and 20 vol% of nanocrystalline 

NbC particles dispersed in a nanostructured copper matrix. The strengthening was 

observed in Cu by increase the volume percent of NbC and reflecting the thermal 

stability of the synthesised nanocomposites up to 600 ˚C without major coarsening of 

both Cu and NbC crystallite. The microhardness of Cu-20 vol% NbC powders increase 

to 4.8 GPa after annealing at 600 ˚C due to the completion of the reaction between C 

and Nb.  

 

Formation of Cu–5 vol.% TiC alloy synthesized by reaction mechanical 

alloying in a high-energy mill and consolidated by hot extrusion was reported by Palma 

et al. (2005).  The better performance of Cu–5 vol.% TiC than that of electrolytic Cu 
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electrodes is explained by considering the homogeneous distribution of nanometric TiC 

dispersoids in the alloy Cu matrix. 

 

Liang et al. (2008) reported the evolution process of the synthesis of TiC in the 

Cu-Ti-C system using differential thermal analysis (DTA) and x-ray diffraction (XRD). 

The results shows that the TixCuy compounds (Ti2Cu, TiCu, Ti3Cu4 and TiCu4) formed 

initially via solid-state diffusion reactions between Cu and Ti particles; and then Ti2Cu 

and TiCu formed a Cu–Ti eutectic liquids at about 1233 K. The unreacted Ti and C 

particles were dissolved into the Cu–Ti liquids and led to the formation of Cu–Ti–C 

ternary liquids; subsequently, TiC particulates precipitated out of the saturated liquids. 

At the same time, the formation of Ti2Cu occurred at the interface between the Cu–Ti 

liquids and the unreacted Ti particles. As the temperature increased further, the Ti2Cu 

melted and more Cu–Ti liquids were formed; and then C particles continuously were 

dissolved into the Cu–Ti–C liquids and TiC particulates gradually precipitated out of 

the saturated liquids. The finding obtained has been explained to understanding the 

mechanism of self-propagating high-temperature synthesis (SHS) process in the Cu–

Ti–C system.  

 

2.4  Copper Based Composite Properties 

2.4.1  Microhardness 

 Hardness is the measure of a material’s resistance to localised plastic 

deformation. Hardness of copper composite can be measured either in macro-, micro- 

or nano- scale according to the forces applied and the displacement obtained. 

Microhardness may be determined by forcing an indenter such as a Vickers or Knoop 

indenter into the surface of the material.  
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Introducing the reinforcement promotes an increase in hardness, stiffness, 

resistance to scratching, abrasion and cutting. Such properties are achieved because the 

reinforcement phases usually are hard and have high melting point that overcome the 

soft and low melting point of metal matrix. Generally, the reinforcement with 25%vol 

satisfies other properties such as ductile strength and electrical conductivity. Hardness 

is an easily measurable property that has a strong correlation with tensile properties. 

For example the presence of fine dispersion of Al2O3 particles in a copper matrix 

improves the hardness of this material at room and at higher temperatures. 

 

2.4.2  Electrical conductivity 

 Particulate copper matrix composite offers high electrical conductivity due to 

copper itself as it shows excellent performance in electrical application. The addition of 

reinforcement such as ceramic particles somehow increased mechanical properties of 

the composite. Furthermore, the incorporation of particulates is not associated with 

severe deterioration of thermal and electrical conductivity of copper, which the copper 

alloys do. The excellent advantages exhibited by particulate copper-based composite 

can extend the application of copper markedly. Almost all metals have extremely good 

electrical conductivity. The term electrical conductivity, σ, commonly used to 

characterise the electrical properties of particular material as shown in Eq. 2.1: 

 

ρ
σ 1
=                (Equation 2.1)          

where ρ  is presented as resistivity, the unit measurement of σ is reciprocal ohm-meters 

((Ωm)-1). Since conductivity is reciprocal of resistivity, it is necessary to provide 

enough information regarding the resistance behaviour. Increasing the number of 

crystal defect actually raised the resistivity values. Total resistivity of a metal is given 
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as the sum of thermal vibrations, impurities, and plastic deformation. This may be 

presented in mathematical form (Eq. 2.2) as: 

    dit ρρρρ ++=             (Equation 2.2)            

where tρ , iρ and dρ are individual thermal, impurity, and deformation resistivity 

contributions, respectively. Thermal vibration and lattice irregularities are generated 

due to increase in temperature in the particular metal. The atoms are not in its 

equilibrium and spread the electrons. As the mean path decreases, the mobility of the 

electrons also decreases while the resistivity is increased. The temperature dependence 

on resistivity is shown in Eq. 2.3: 

              Ta∆+= 0ρρ                    (Equation 2.3)          

where 0ρ  and a are constants for a particular metal. The influence of impurity is 

commonly related to concentration Ci in terms of atom fraction (Eq. 2.4):  

            )1( iii CAC −=ρ                        (Equation 2.4)                 

The volume fraction of reinforcement needs to be controlled as they may increase the 

resistivity value of metal composite (Callister, 2003).  

 

2.5    Copper Composites Reinforced by Transition Metal Compound 

Applications such as spot welding electrode, high performance switch, rotating 

source neutron target, combustion chamber liners and nozzle liners demand materials 

with high strength, good wear and long term thermal stability. Composite reinforced by 

transition metal carbides are prime candidates for applications as above.  

 

Transition metal compounds of the type of MX, where M denotes a transition 

metal element and X denotes one of the non-metallic elements C, N or O, are generally 

very hard materials and they often crystallise in the rock salt (NaCl) structure. These 
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compounds have great scientific and technological interest. The titanium, tungsten and 

iron compounds belong to the class of the so-called refractory metal compounds. 

Furthermore, they have high melting points and extreme hardness, properties which are 

typically found in covalent crystals. It is interesting that properties associated with 

covalent bonding are found in a set of systems that display a crystal structure normally 

associated with ionic bonding (Ahuja, 1995). 

 

In transition metal compounds, chemical bond and cohesion energy relate to 

mechanical properties, like Young’s modulus and hardness. High cohesion energy and 

high hardness values normally correlate with a covalent character of the bonding. For 

example, in several transition metal carbides and nitrides group IV and V, maximum 

hardness value are found at an ‘average number of valence electron’ (ANVE) (anion s, 

p+cation s, p, d) of 4.1 - 4.3. Electron band structure schemes provide a more 

quantitative understanding of the cohesive and bonding properties, which depend on 

the distribution of valence electrons in the bonding state (Levy et al., 1999). 

 

Tungsten carbide (WC) and titanium carbide (TiC) are most commonly used for 

fabrication as ‘cemented carbide’ tools for cutting steel, in which the carbide is bonded 

in a metal matrix, usually cobalt or nickel. However, in the case of carbide particle 

reinforcements, little information is available in the literature concerning the fabrication 

and properties of WC and TiC particles reinforced copper-base composites. In the 

present work, synthesis of WC and TiC particles reinforced copper using elemental 

tungsten or titanium and graphite in copper matrix by mechanical alloying technique 

for high electrical conductivity and strength properties was produced. 
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2.6 Fabrication of In situ WC and TiC Reinforced Copper Composite  

 In situ MMC means the reinforcements are synthesised in a metallic matrix by 

chemical reactions between elements or between element and compound during 

composite fabrication (Hussain et al., 2008). In in situ processing, however, 

reinforcement of metallic matrix by a chemical reaction during mixing and subsequent 

processing can be achieved. For the chemical reaction to occur, a minimum amount of 

energy must be introduced such as hot isostatic pressing with thermal energy, after 

extrusion with thermal treatment or high kinetic energy by mechanical alloying (MA) 

(Zuhailawati and Mahani, 2009). As a result, uniform distribution of fine particle and 

thermodynamically stable phase of reinforcement of the composite is produced (Wang 

et al., 1997). The advantage of in situ processing is that it has the ability to develop 

nanostructured materials. Such materials have recently attracted a great deal of 

attention due to their unique properties as compared to bulk materials. Baikalova and 

Lomovsky (2000) have succeeded in producing Cu-W-C composite by mechanical 

alloying with annealing at 940 ˚C for 5 h. They reported that, a decrease of tungsten 

content in mixture up to Cu94W3C3 led to the significant enhancement of WC synthesis. 

Tungsten content highly affects the content of WC and W2C formation. Lu et al. (2000) 

studied the in situ formation of TiC in copper matrix by mechanical alloyed Cu-Ti-C 

for 2 h, and then used the powder mixture in the selective laser melting (SLM). X-ray 

diffraction results showed formation of in situ TiC ceramic after SLM process. In situ 

Cu-based composites can be synthesised via the reaction between elemental Ti and C 

powders in Cu by using a CO2 laser. Cu can be melted with the help of Ti and the 

reaction heat of formation of TiC.  
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2.7 Powder Metallurgy 

Powder metallurgy (PM) is the most widely used technique in solid state 

processing. It requires blending, compacting and sintering (Lenel, 1980). In powder 

metallurgy, metal powder; metals in finely divided form rather than molten metal, are 

the starting material. The powders are consolidated into products with a given shape. 

The basic steps in powder metallurgy are, therefore, powder production and powder 

consolidation. The most common sequence in powder consolidation is pressing the 

powder in a die into a compact and sintering the compact, which means heating it to a 

temperature below the melting point of the metal or alloy to give it to the desired 

physical, mechanical and chemical properties. Moustafa et al. (2002) investigated the 

copper composite reinforced with SiC or Al2O3 by powder metallurgy technique. It was 

shown that copper composite fabricated by coated powders of SiC or Al2O3 gave higher 

shrinkage rate during sintering. 

  

The advantage of powder metallurgy compared to casting technique is cost 

consumption. The cost of producing a part of a given shape to the required dimensional 

tolerances by powder metallurgy is considered low for reactive and refractory metals 

which melting is not practical (Moustafa et al., 2002). Powder metallurgy technique are 

attractive since all of the processing can be performed in the solid state. 

  

Many applications also rely on the economical production of complex parts. 

Component for the automotive industry represent good examples of this area and their 

production is a large PM activity. Within the area of economical parts production come 

concerns with productivity, tolerances and automation. Both the precision and cost are 

very attractive, while with casting there are problems associated with segregation, 
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machining and maintaining final tolerances. Prealloyed powders allow fabrication 

below the melting temperature. This eliminates segregation and other defects associated 

with casting (Randall, 1984).    

 

There are many applications based on the unusual properties of the materials 

obtained by powder metallurgy. They range from fabricating metals with high melting 

points to applications where high wear resistance is needed, to porous materials, to 

products with special frictional, magnetic and electrical properties and many others.  

 

2.7.1 Metal powder production  

 General classification of the approaches to produce metal powders to powder 

metallurgy application may be divided into three categories; physical methods, 

chemical methods and mechanical methods.  

 

 Physical method of powder production is designated by the rather misleading 

term “atomisation”. In mist atomising process a stream of liquid, usually water, or of 

gas impinges upon the liquid metal stream to break it into droplets. A stream of molten 

metal is broken up into droplets which freeze into metal powder particles (Lawley, 

1977).  

 

 Chemical methods of powder production are those in which a metal powder is 

produced by chemical decomposition of a compound of the metal. This includes the 

large group of reduction reactions. Oxides in the form of finely divided solid powder 

particles may be reduced, as in the reduction of tungsten oxide to tungsten powder and 
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of copper oxide to copper powder with hydrogen or of iron powder with carbon 

monoxide.   

 

 Certain powders may be produced by mechanical comminution process 

generally used for brittle materials, such as ores. The comminution plays only a minor 

role in metal powder production because comminuted brittle powder cannot be cold 

compacted as such (Lenel, 1980). Mechanical alloying (Suryanarayana, 2004) is the 

most common process to produce powder metal via mechanical methods. 

 

2.7.2 Powder consolidation  

 Consolidation of metal powders at room temperature by application of pressure 

is a necessary step in the fabrication of the majority of powder metallurgy products. It 

is most often done in rigid dies made of tool steel or cemented carbides. Pressures in 

the range from 70-700 MPa are used. The compacts so produced, called “green 

compacts”, are strong enough so that they can be ejected from the die and handled. The 

green compacts are porous and have a lower density than cast and wrought parts of the 

same metal. When powders are pressed into compacts at room temperature, or are 

shaped by powder rolling or extrusion, the resultant products have insufficient strength 

and ductility for most applications. In order to make them useful they have to be 

sintered.  

 

 The processes occurring when a column of loose powder is compacted in a die 

have been described qualitatively by Seelig and Wulff (1946), who postulated a series 

of stages. The first stage is restacking of the powder particles in the column, so called 

packing, in which the bridging that always occurs in a randomly arranged stack of 
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particles is at least partially eliminated. The second stage involves elastic and plastic 

deformation of the particles. Elastic deformation plays only a minor role, while plastic 

deformation depends on the ductility of the metal and may be of minor significance in 

very hard powders such as tungsten or tungsten carbide. In most metals, plastic 

deformation causes work hardening, which diminishes the amount of further 

deformation under stress. It may eventually lead to the third stage in which the particles 

fracture under the applied load and form smaller fragments. This third stage is more 

important during compacting of non-metallic powders. Lubricant must be provided 

when parts are pressed in rigid dies to reduce friction between the compact and the die 

wall (Lenel, 1980). 

 

 The most important commercial application of powder metallurgy is to control 

dimensions of structural parts closely. Methods of consolidating metal powders include 

cold isostatic pressing, powder rolling, extrusion, injection moulding. 

 

2.7.3 Sintering 

 Sintering is a bonding process to improve strength and other engineering 

properties of the compacted material. This process involves consolidation of powder 

grains by heating the compacted materials to a high temperature below the melting 

point of the ‘green’ compact. The effects of temperature and soaking time to 

mechanical and physical properties have to be considered during sintering processing. 

Liang et al. (2008) studied the evolution process of the synthesis of TiC in the Cu-Ti-C 

system by using differential thermal analysis (DTA). The result shows that the initial 

temperature of the reaction of TiC formation was at about 960 ˚C in the 20wt% Cu-Ti-

C system.  
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 Another research (Upadhyaya et al., 1995) reported on the effect of sintering of 

copper-alumina composite by blending and mechanical alloying and powder metallurgy 

routes. Densification kinetics was faster for mechanical alloyed powder compacts 

compared to blend compacts. Dong et al. (2002) indicated that a crystallite of size less 

than 50 nm could be attainable for ceria and YSZ at sintering temperatures below 900 

˚C. The grain size in YSZ and ceria film increased slowly with temperature at or below 

900 ˚C. However, they showed that the grain size increased abruptly at temperatures in 

the range of 1000 -1200 ˚C. 

 

Syed Nasimul Alam (2006) reported that the as-milled elemental W and W-

10wt%Cu showed almost no growth in crystallite size during heat treatment. Due to the 

high impacts during milling a large amount of dislocation is introduced in the tungsten 

lattice and this hinders the growth of tungsten crystallite during heat treatment. Similar 

kind of results indicating slow grain growth in the nanocrystalline ferrite region was 

observed instead of recrystallisation in the annealing behaviour of nanocrystalline 

ferrite in Fe-0.89C spheroidite steel produced by ball milling (Xu et al., 2002). 

 

There are three types of sintering methods available, namely solid state, liquid 

state and hot consolidation metal powder which combining compacting and sintering. 

 

2.7.3.1 Solid state sintering 

Sintering forms solid bonds between particles when they are heated. It is 

possible to reduce pore volume which leads to compact shrinkage with extended 

heating, although in many sintering systems dimensional change is undesirable. 

Maneshian et al. (2008), in their research reported the effect of solid state sintering of 
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W-20 wt.% Cu mixture powder by mechanical alloying. At constant sintering 

temperature, higher density is achieved when more prolonged milling time is afforded. 

It was also shown that the high density of W-Cu composite synthesised by mechanical 

alloying and solid state sintering gave high conductivity and hardness values.  

 

Zheng and Reed (2005) conducted work on alumina compacts fabricated with 

different green densities and different pores size distributions. They characterised and 

studied the changes of the pore characteristics during solid state sintering. A critical 

ratio of pore size to mean particle size for pore shrinkage was determined. They 

classified porosity in the compact into two classes: the first class contains pores smaller 

than the critical ratio, and the second class contains pores larger than the critical ratio. 

According to them, pores belonging to a different class of porosity behaved differently 

during sintering. Pores larger than the critical ratio were not totally eliminated during 

sintering. The first class of porosity controlled the ultimate sintering shrinkage, and the 

second class of porosity controlled the final sintered density.  

 

2.7.3.2 Mechanism of sintering process 

There are three basics stages in sintering process that refer to geometric 

categories. The geometrical changes are of concern primarily in the study of 

mechanism of sintering rather than changes in physical and mechanical properties.  

 

 The first stage is the expansion of small contact area (necks) between powder 

particles. This also involves changes in shape of the pores that become rounded. 

Simultaneously, the powder aggregate begins to densify, where there is a decrease in 

total void volume and a decrease in the centre to centre distance between particles. In 
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spite of neck growth and initial shrinkage the particles in the original powder aggregate 

are still distinguishable. Fig. 2.4 shows a chain of three spherical copper particles 

approximately 50 µm in diameter sintered for 1 min, 2 h and 50 h near the copper 

melting point. During the sintering, the chain of particles stretched and the angle 

between the lines connecting the centre of the particles became larger. 

  

In the second or intermediate stage, the pore channels in the powder aggregate 

gradually pinch off and close, which means the particles can no longer be 

distinguished. In this stage migration of the grain boundaries between the original 

particles by grain growth becomes possible. On the other hand, the pores continue to 

form a more or less connected continuous phase throughout the aggregate (Lenel, 

1980). In the third stage, the pores become isolated and are no longer interconnected. 

The angle between the particles, initially larger than 90 ˚C, increase with increasing 

sintering time.  

 

Fig. 2.5 shows the change in angle effect the planar array of spherical copper 

powder particle when it was sintered for 2 to 12 h at 1020 ˚C. It can be seen that the 

area of small pore decrease but the large pore grows steadily. This shrinkage is partially 

compensated by the opening of large pores. 
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