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A NUMERICAL STUDY OF OSCILLATING SUB-BOUNDARY 

LAYER VORTEX GENERATORS APPLICATION  

 

ABSTRACT 

 

A numerical simulation for oscillating sub-boundary layer vortex generator 

(SBVG) with Co-rotating (Co) and Counter-Rotating (Co-R) configurations was carried 

out. The device was attached and tested on a flat plate with zero- pressure gradient 

condition. This three-dimensional (3D) simulation adopted a fully turbulent flow, having 

a Reynolds number of 1x10
6
. The Reynolds-averaged Navier-Stokes (RANS) equations 

with the SST k-  turbulence model were used to predict the flow field which employed 

hybrid mesh. The SBVG was oscillated in a sinusoidal motion between 18
0
 and -18

0
. 

The results show that the profile for Counter-Rotating (Co-R) SBVG was more 

dominant due to its strong vortices compared to co-rotating. 

A two-element high-lift configuration with oscillating SBVG attached at the 

leading edge of the flap was simulated based on the RANS equations with SST k-  

turbulence model. Four different reduced frequencies with Reynolds numbers of 8.4x10
5
 

were studied. The effect of oscillating SBVG motion in the range of 18
0
 and -18

0
 on 

aerodynamic coefficients was investigated. The results show that the vortex formation 

on the flap surface was almost invisible when the reduced frequency was increased. The 

oscillating SBVGs produce higher lift coefficient and drag coefficient, however the lift-

to-drag ratio was almost the same as the static SBVG.  
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SEBUAH KAJIAN BERANGKA MENGENAI APLIKASI AYUNAN 

PENJANA VORTEK DI DALAM LAPISAN SUB-SEMPADAN  

ABSTRAK 

Sebuah kajian mengenai ayunan sub-sempadan penjana vortek (SBVG) 

disimulasikan pada kedudukan sama sudut (Co) dan sudut bertentangan (Co-R) telah 

dijalankan. Peranti vortek dipasang dan diuji pada permukaan rata dengan 

kecenderungan sifar. Aliran olakan ini disimulasi pada tiga dimensi (3D) dengan  

bilangan Reynolds 1x10
6
. Aliran medan di dalam jejaring hidribdiramalkan dengan 

menggunakan persamaaan Reynolds-average Navier-Stokes (RANS) dengan model 

olakan SST k- . SBVG ini berayun  dalam gerakan bentuk sinul di antara sudut -18
0
 

hingga 18
0
. Kajian menunjukkan bahawa garisan susuk untuk SBVG yang bertentangan 

boleh menyebarkan dengan lebih jauh aliran pusaran jika dibandingkan dengan sudut 

yang sama. 

Kerajang udara dengan dua elemen dipasangkan dengan ayunan SBVG 

diletakkan pada permukaan sayap kibas dan disimulasikan berdasarkan persamaan 

RANS dengan model olakan SST k- . Empat jenis frekuensi penurunan dikaji dengan 

bilangan Reynolds 8.4x10
5
. Ayunan SBVG digerakkan di antara 18

0
 hingga -18

0
 untuk 

mengkaji pekali aerodinamik. Pembentukan pusaran pada permukaan sayap kibas 

hampir tidak kelihatan apabila frekuensi penurunan dikurangkan. Keputusan 

menunjukkan pekali daya angkat dan daya seretan meningkat bagi ayunan SBVG, tetapi 

menghasilkan keputusan yang hampir sama dengan SBVG pegun bagi nisbah diantara 

daya angkat terhadap daya seretan. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Overview  

Nowadays, flow control technique is the most popular research subject in the 

field of aerodynamics. This technology has the potential for improving the aircraft 

fuel consumption. It gains tremendous interest and application since 1960‟s in both 

military and civilian sectors [1].  

The manipulation of flow behavior in the boundary layer is the main 

technique in delaying transition from laminar to turbulent. Suppression of turbulence 

and prevention or postponement of separation, significantly reduce the pressure drag, 

enhance the lift, noise suppression and improves the performance of the aircraft. A 

simple and inexpensive small device is easy to build and has minimum problem. 

Initially, an array of small and passive devices is installed on the wall surface, 

especially on wing surfaces or high-lift airfoil such as flap. This small device is 

known as vortex generator. Although, these devices are simple, rugged and relatively 

low cost, there are also disadvantages such in multiple flight condition which passive 

devices cannot be controlled for landing/take-off and in the maneuvering flight 

envelope. Their passive configurations also add parasitic drag, in situation where 

control is not needed for steady cruise condition. 

Active flow control is a new approach to control boundary layer separation. 

This flow control devices required energy expenditure to manipulate fluid flow. One 

of the best active vortex generators is the vortex generator jets. Wallis is the first 

person who employed air-jet vortex generator (AJVG) [2]. The air-jets can be steady 

or pulse jets. Most of the vortex generator jets are applied to high speed flow and to 
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control shock-induced separation. For the vortex generator jets, the strength of the 

longitudinal vortices is controlled by the jet speed. Furthermore, a new and 

interesting approach is the reactive flow controls. One of the reactive control devices 

is the micro-electromechanical systems (MEMS). This technology used a micro-

sensor which send signal to flow control devices to react according to flow 

conditions. Reactive control is used to manipulate the coherent structure in turbulent 

shear flow and usually applied on surface perturbations, or dynamically to near-wall 

coherent events.  

In the present study, simulations of passive and active flow control devices 

are carried out. The objective of this project is to investigate the performance of 

active vortex generator on flat plate and flap surface of Eagle 150B airfoil. The 

oscillation is governed by harmonic motion controlled by the reduced frequency. 

 

1.2 Investigation Technique  

Most of the works related to the flow control has been carried out using 

experimental approach. Experiments develop the fundamental principles of flow of 

boundary layer. Experiments are reliable method to investigate and provide accuracy 

results. However, these investigations are very expensive and also needs to be 

repeated in order to get accurate results.  

Nowadays, Computational Fluid Dynamic (CFD) is one of the alternative 

ways to assist the experimental investigations. There are three elements in CFD such 

as pre-processing, solver and post-processing. Pre-processing is the definition and 

modelling of the geometry region. The computational domain will be split into a 

smaller number using grid generation and boundary conditions are specified to 

define the domain boundary. Solver is where the flow mathematical equations are 
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solved. Finally, in post-processor, the result can be visualized. CFD plays an 

important role in the study of fluid dynamic problems as it can give fast and 

inexpensive results thereby save cost and time. But, however, the reliability of CFD 

output is questionable, if physics involved in the fluid flow phenomenon like 

turbulence, material properties are not accurately modelled. In the next section, the 

available CFD methods and their advantages with different types of flow problem 

will be explained. 

 

1.3 Numerical Methods  

Most of the aerodynamic flows are considered and encountered turbulent 

flows.  The most popular available solver methods to simulate these flows are 

Reynolds-averaged Navier Stokes (RANS), Large-Eddy Simulations (LES) and 

Direct Numerical Simulation (DNS) method to perform simulations.  

The widely used numerical method nowadays is the RANS method. In 

RANS, all turbulence scales are modeled and only the mean flow properties are 

calculated directly. The coarser grids can be utilize in the RANS method compared 

to the other two methods, hence less computing resources are needed. RANS method 

has been accepted as a general purpose numerical tool by many researchers. 

However, the selection of turbulence model must be taken care of since the models 

tend to developed and calibrated for specific application. 

LES is a good compromise between the expensive DNS and less accurate in 

RANS procedures. When the large eddies are resolved, the smallest sub-grid-scale 

eddies are modeled. Based on the underlying physics that the largest eddies, directly 

affected by the freestream boundary condition, that carry most of the Reynolds 

stresses and must be resolved directly. Meanwhile small eddy is independent of the 
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freestream condition and can be accurately solved through modelling. LES also 

required highly accurate spatial and temporal discretization. Therefore to solve the 

mean flow properties together with the large scales of turbulence may still provide 

result with the same quality as the DNS method. This method also required large 

computing resources and therefore is still not being used as a general purpose tool. 

DNS is the most forward approach to the solution of turbulent flows. In other 

words, DNS directly simulated all the flow scales, from largest to the smallest scales 

of turbulent fluctuation. The governing equations are discretized and solved by 

accurate and higher order numerical schemes and extremely fine grids. The mesh 

should be fine enough to resolve the smallest scale of motion. DNS obtain accurate 

three dimensional, time-dependent solutions of the governing equations completely 

free of modeling assumption. But DNS has limitation. It use higher order numerical 

schemes which is difficult to construct and come with larger computational 

overhead. It also required a large number of grid point to resolve the turbulent scales 

correctly. A very large and powerful computer is required to achieve this simulation. 

 

1.4 Problem Statement 

Over the past several decades, numerous experimental and numerical 

investigations have been carried out to develop an effective flow control system over 

single airfoils. It was found that airjet (synthetic jet and pulsed jets) [3] was more 

effective in drag reduction and lift enhancement when compared to steady blowing 

[4]. In case of deployable vortex generator, it led to the elimination separation zone 

over the static vortex generator [5]. 

Wing need to generate enormous amount of lift force in order to reduce the 

ground speed and runaway length during take-off and landing. A complex and 
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heavy, multi-element high-lift device is already being employed in modern 

commercial aircraft. The two-element high-lift devices such as flaps can be applied 

only when flow separation on the flap at high flap angles can be controlled. 

Experimental investigations by Petz and Nistche [6] have shown that massive flow 

separation can be reduced by blowing jet near the flap leading edge. Osborn [7] 

stated that the deployable vortex generator on the flap leading edge is very effective 

to enhance the momentum mixing and energizing the boundary layer which helps 

delay the flow separation. 

Generally, active flow control device such as airjets and MEMS are very 

complex and expensive and therefore needs more utilization of mechanical system. 

In the present study, the author offers a much simple device which uses a single 

mechanism system hidden inside the wing during cruise condition. This current 

study is motivated by the lack of numerical work using movable vortex generator on 

the wing‟s flap.  

In addition to that, numerical works is more fast, cheap and simple to utilize 

compared to the experimental work. Previously, Ahmad [8] conducted this numerical 

works of oscillating SBVG on diffuser. The current work will be focused on the 

oscillating vortex generator and the response of the flowfield over a wing‟s flap for 

the development of the high performance aircraft. 
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1.5 Aims and Objectives 

The aim of the current study is to perform a numerical investigation on the 

performance of oscillating SBVG on a wing‟s flap. The objectives are as follow: 

 To analyze the interaction between a turbulent boundary layer and embedded 

longitudinal vortices produced by oscillating vortex generator 

 To simulate interaction between turbulent boundary layer and unsteady 

vortices induced by oscillating SBVG on wing‟s flap 

 To investigate the parameter involved in this flow interaction such as reduced 

frequency and oscillation amplitude. 

 

1.6 Thesis Organisation  

This thesis consists of six chapters. An introduction is presented in Chapter 

One which provides the introduction of flow control, problem statement and the 

objectives of the project. Chapter Two presents the literature review. This section 

will include the discussion of types of active vortex generators devices and 

numerical studies. Chapter Three consists of methodology used for the simulation of 

current work. The details of computational methods used to model an oscillating 

SBVG on a flat plate are described. Chapter Four discussed the results from the CFD 

simulation of the oscillating SBVG on a flat plate.  The oscillating SBVG has been 

applied on Eagle 150B wing‟s flap, the setting and results are presented in Chapter 

Five. Finally, conclusions and future work are stated in Chapter Six.  
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CHAPTER 2  

LITERATURE REVIEW 

 

In this chapter, a brief review of the previous works related to the current 

study is presented. Studies pertaining to flow separation control, types of active flow 

control devices, pre-processing and solver setting for numerical investigation of the 

active flow control devices are also included. The conclusion from these studies is 

discussed in the last section of this chapter. 

 

2.1 Flow Separation Control 

Basically, the flow separation control devices are used to postpone flow 

separation so that form drag is reduced, stall is delayed, lift is enhanced, and pressure 

recovery is improved. The utilization of flow separation control devices are 

prominently used in the performance of space, land and marines, heat exchanger [9], 

turbo- machineries [10], and a variety of other technologically important systems 

involving fluid flow. The advantages of separation control includes effective low-

Reynolds-number airfoils [11-13]; increased CLmax for increased payload [14, 15]; 

reduced drag missiles, automobile, ship and helicopter [16, 17]; super-

maneuverability; efficient and effective stall or spin control [18-22]; and numerous 

other applications in fluid dynamics. For example, an increase of 46% in the aircraft 

maximum lift coefficient results in a larger payload for a fixed approach speed [23-

25]. Similarly, an increase in the take-off lift-to-drag ratio (L/D) results in a larger 

payload or a longer range. Also, a gain in the lift coefficient at a constant angle of 

attack reduces the approach attitude, allowing for a shortened landing gear with a 

corresponding reduction in aircraft weight [26]. On the civil transport, this separation 
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control devices also correspond to the total drag reduction over 11% accompanied 

with 6% to 10% reduction in fuel consumption [27-29]. Moreover, by using Micro-

Electro-Mechanical-Devices (MEMs), the high shear-stress streaks within the 

boundary layer reduce over 8% of local skin friction [28, 30].  

 

2.2 Types of Active Vortex Generators 

Active flow control techniques require energy expenditure, to manipulate 

fluid flow. Several studies have been carried out such as the air jet vortex generators 

[4, 31-51], movable vortex generators [7, 52-59], and plasma actuator [60-66]. Air 

jet vortex generators could be steady or pulsed jet. Airjet devices are based on active 

blowing in form of jets from the wall and have skewed and pitch angles to the 

freestream; mechanical systems is used to generate motion for vortex generator that 

can be tuned parallel to boundary layer while plasma actuator used dielectric 

materials and voltage to modify the velocity. All the techniques are used to induce 

large coherent vertical structure that convects downstream and introduces high 

momentum into the boundary layer. Active flow control (AFC) have been focused 

mainly on two areas namely, air jets [4, 31-51] and structural vibration [7, 52-59, 60-

66]. A brief explanation of these two categories is presented in the following 

subsections. 

 

2.2.1 Air Jets 

2.2.1(a) Synthetic Jets 

One successful and popular actuator in this new decade is the zero-net-mass-

flux (ZNMF) which used a membrane in a small cavity and produce blowing and 

suction known as “Synthetic Jets”[ 4, 31-51]. This small device of synthetic jet 

actuator is made-up by a cavity with a movable membrane connected to an orifice. 
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The movable membrane is capable of modifying the flow in the cavity of the 

synthetic jet actuator, and influences the boundary layer. In some of these 

experiments [4, 31-51], a small slot across the entire span connected to a cavity 

inside the airfoil is employed to produce oscillatory synthetic jets. 

A synthetic jet simulation has been performed by several researchers [4, 31-

34] on the airfoil at low Reynolds number, considering the airfoil chord length, 

freestream velocity and the angles of attack from 10
0
 to 20

0
 (see Figure 2.1). For 

each angle of attack, the velocity amplitude, the frequency and the angle with 

reference to the wall were optimized to increase the time averaged lift. Simulation 

results have been compared with the experimental data, and qualitative and 

quantitative agreement has been obtained for both uncontrolled and controlled cases 

in terms of mean pressure coefficient and streamwise velocity profiles. The results 

showed that the surface suction could increase the lift coefficient; the injection 

resulted in decreasing the skin friction [4]. The synthetic jet device was identified as 

the most effective in terms of drag reduction and less power requirement. The main 

reason for reduction in drag was the removal of the low momentum fluid by the jet 

during the suction of the cycle followed by energizing of the flow during the blowing 

phase.  It also confirms that synthetic jet actuation effectively delays the onset of 

flow separation and causes a significant increase in the lift coefficient. 
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            (a)                                                           (b) 

Figure 2.1: (a) Diagram of synthetic jets on NACA0015; (b) Mesh close to jet [31] 

 

The utilization concept of AFC has been applied to the aerodynamic flow 

configuration in order to delay the separation of the flow and to increase the lift [30-

43]. The periodic blowing and suction [33] and co-flow jet (CFJ) [34] effectively 

reduce the massive separation at the flap (see Figure 2.2). This CFJ inject a high 

energy near the leading edge tangentially and the same amount of mass flow was 

sucked away near the trailing edge. At low angle of attack with moderate jet 

coefficient, the co-flow jet airfoil would not only enhance the lift, but also reduce the 

drag or even generate the negative drag (thrust). The co-flow jet could control the 

pressure drag by filling the wake and generate negative pressure greater than the 

friction drag, which allows the aircraft to cruise with very high aerodynamic 

efficiency. At high angle of attack, both lift and the drag were higher compared to 

the airfoil with no flow control, which might enhance the performance of take-off or 

landing within short distance. 
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(a)                                                                  (b) 

Figure 2.2: (a) Mesh around the airfoil with co-flow slot; (b) Baseline airfoil 

NACA2415 with co-flow jet slot [34] 

 

Another blowing jet study applied on a flap was conducted by Petz and 

Nitsche [6] and Rhee et al [35]. The aim was to enhance the aerodynamic quality of 

the complete configuration by suppressing the flow separation on the flap as a result 

of the severe adverse pressure gradient. The flow was excited using a pulsed wall jet 

emanated from the upper surface near the flap‟s leading edge through a small 

spanwise-oriented slot (see Figure 2.3). The massive flow separation at large 

deflection angles was prevented, increasing the flap deflection angle by up to 10
0
. 

The lift was increased by up to 12% while the drag was reduced by the same amount. 

This enhanced the lift-to-drag ratio by 20-25%. The overall maximum lift was 

improved by as much as 5% [6]. CFD studies carried out by Rhee at al [35] has 

shown that this device is more efficient at smaller angle of attack ( ) and momentum 

coefficient ( C ) especially for low-speed maneuvering. 
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Figure 2.3: Data for an unexcited and excited flow [6] 

 

The capability of synthetic jet from microactuators to interact within the 

turbulent boundary layer for a complex actuator cycle has been demonstrated 

numerically by Kitsios et al [36], Iaccarino et al [37],Lin et al [38], Weiqi et al [39], 

Mello et al [40], and Monokrousos et al [41](see Figure 2.4).  The motion of 

movable membrane plate was treated as the moving boundary by prescribing the 

displacement on the plate surface [36-38, 40]. The simulation result illustrated the 

time evolution of the substantial vertical structure originating from the jet orifice and 

its successive interaction with the crossflow to change the flow structure inside the 

boundary layer during discharge stage. In the suction stage, the vertical velocity was 

continually reduced, causing shrinkage and eventually collapse the counter rotating 

vortex pairs [38].  
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(a)                                                     (b) 

Figure 2.4: (a) Diagrams of a Synthetic Jet Actuator (SJA) in crossflow;                 

(b) Numerical grids of SJA [38] 

 

Synthetic jet also contributed to an increase of streamwise velocity 

component ∂u/∂y near the wall (see Figure 2.5). Mello et al [40] had carried out 

numerical study of synthetic jet actuators on the flow of the boundary layer 

developed on a flat plate and hypothetical airfoil. Three parameters namely slot 

length (d), frequency ( ) and amplitude (A) of the synthetic jet are used to delay the 

fluid flow separation. The results with different parametric studies were inspected 

through a temporal Fourier analysis. The performance of the synthetic jets provided 

an increase in the value of ∂u/∂y which was more than the double the value in 

relation to the flow profile without the synthetic jet. The flow oscillation introduced 

by the synthetic jet caused acceleration of the flow close to the surface of the flat 

plate. The increase of ∂u/∂y in the case of airfoil was higher when compared to the 

result obtained in the flow simulations on a flat plate. The idea of the synthetic jet is 

to avoid separation and increase ∂u/∂y near the wall.  
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(a)                                                   (b) 

Figure 2.5: Temporal Fourier analysis with variation of oscillation amplitude for     

 = 17 and d = 0.225 for (a) flat plate; (b) airfoil [40] 

 

Jet and Vortex Actuators (JaVA) are zero-net mass flux systems which 

provide negligible drag when the system is not actuated yet requires no external 

plumbing, allows reduced vehicle mass and design simplicity. Compared with other 

zero-net mass flux system, synthetic jet uses the interaction with an external flow to 

generate vorticity. According to Lachowicz et al [42], JaVA does not rely on 

external flow to generate vorticity and generate over a range of amplitudes and 

frequencies, potentially allowing control over different flight regimes. The JaVA 

consists of a cavity with a lightweight rigid body which serves as the actuation 

surface. The plate is oscillated in the vertical direction such that the plate motion is 

uniform along its length and width and driven using a mechanical oscillator as shown 

in Figure 2.6(a). The plate acts like a piston pumping air out of the cavity on the 

down-stroke and sucking air into the cavity on the upstroke. This system will 

generate a helical vortex that has potential in delaying separation by energizing the 

boundary layer on wing surface with high-momentum fluid from the outer boundary 

layer.  
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Computational simulation of JaVA has been performed by Kandil et al [43]
 
(see 

Figure 2.6(b)). The computed results showed good agreement with the experimental 

data. 

 

   

                                 (a)                                                       (b) 

Figure 2.6: (a) JaVA Actuator [42]; (b) Multi-block grid [43] 

 

2.2.1(b) Pulsed Jets 

Some investigators namely Sun and Sheikh [44], Coiro et al [45],Vadillo et 

al [46], Deng et al [47], Ekaterinaris et al [48],  Yueping Guo [49], Tilmann et al 

[50] and Magill et al [51] used different techniques of blowing. They used both 

steady and unsteady-blowing technique as tools for turbulent separation control 

which was applied on airfoil surface. This pulsed blowing jet depends on four 

parameters namely reduced frequency ( k ), momentum coefficient ( C ), chord 

Reynolds number ( cRe ) and the velocity ratio (VR). The numerical simulation of a 

pulsed-blowing system was conducted to highlight how aerodynamic performance 

depended on geometrical parameters to drive the design of the experimental test (see 

Figure 2.7). The results showed that this technique was very effective to delay or 

suppress separation on a single component airfoil in the prestall area, focusing on 

cruising conditions [44]. They also found that the length of separation bubble was 



16 
 

reduced (almost removed) after unsteady blowing was applied. Pitching and skewing 

angle also obtained the best efficiency based on the increase of lift over drag and 

decrease of blowing mass flow. 

 

 

Figure 2.7: Schematic of pulsed vortex generators jet flow control on the flap 

surface [51] 

 

The effectiveness of pulsed vortex generator jets (PVGJ) is quantified based 

on its path, strength, persistence of the generated vortices and their influence in the 

boundary layer and was examined experimentally and numerically by Tillman et al 

[50] (see Figure 2.8). Blow harder (at higher velocity) or modulate (pulse) the flow 

are the two methods to increase the power of the steady jets. Results showed the path 

of the primary vortices appears to be primarily a function of the maximum pulse 

velocity, or the velocity ratio. Blow too little of jet velocity gives an appreciable 

effect, but if too high, the vortices will be force out of the boundary layer, resulting 

in great losses in effectiveness. Persistence in the circulation requires vortex to 
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remain in the boundary layer. If the vortex pulses leave the confines of the boundary 

layer, they are quickly overcome by the freestream momentum and dissipated. A 

function of the time-average mass flow rate is essentially depends on strength of the 

primary vortex. The effective way to produce persistent vortices while greatly 

reduces mass flow by using pulsing.  Pulsing jet at 50% duty cycle resulted twice the 

mean circulation in the primary vortex as steady blowing at the same average mass 

flow rate. When the duty cycle was reduced to 25% at the same pulse velocity, the 

primary vortex still stronger than the steady jet, was more persistent, and required 

half the mass flow rate.  

 

 

Figure 2.8: Grid features for numerical simulations [50] 
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2.2.2 Structural Vibrations 

Another type of active flow control device was structural vibrations. Some 

examples are movable vortex generator [5,7,52-55], trailing edge deflector and 

vortex generator [56], self-activated movable flap [57], miniature trailing edge 

effectors [58,59], and plasma actuator [60-65]. Normally, these devices use 

mechanical system to generate periodic vortices. Most of the researchers used a test 

bed that has an adverse pressure gradient effect such as airfoil. For example, an 

experimental work by Osborn et al [7] found that high frequency deployable micro 

vortex generator system (HiMVG) oscillated between 30 to 70 Hz was very effective 

in mitigating flow separation on the upper surface of a deflected flap. Then, an ideal 

technique in numerical simulation of the time-dependent response of boundary-layer 

flow to active vortex generator (AVG) is immersed boundary method was 

investigated by Shan [5]. These vortex generators are used to generate streamwise 

vortices which are transported to downstream and affect the boundary-layer flow in 

control region (see Figure 2.9(a)). The AVG can be deployed and retracted from the 

surface of the flat plate with the pitch ranging from 0
0
 to 30.96

0
. In numerical 

approach, it shown that the discrete direct forcing is very effective with curvilinear 

mesh combination. Subsequently, these works was carried out on a NACA 0012 

airfoil [52] (refer Figure 2.9(b)). They found that this new type of device is able to 

suppress flow separation. Both passive and active vortex generators were 

investigated. The results showed that passive vortex generator can eliminate the 

separation by reattaching the separated shear layer and reduce the size of the 

separation zone by more than 80%. The active vortex generators are more effective 

because the separation is not visible in the mean flow. The flow behind the AVG was 
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compared to the experimental data. A fairly close agreement was obtained in 

between the experiment and numerical methods. 

 

  

                                 (a)                                                         (b) 

Figure 2.9: Grids in computational domain on the (a) flat plate [51]; (b) upper 

surface of the airfoil and in x-z plane [52] 

 

Another model that has an adverse pressure gradient is a diffuser ramp. 

Ahmad et al [53] used oscillated vortex generator in a simple harmonic motion in the 

range of 0
0
 to 15

0 
 where the frequency corresponded to the frequency of the largest 

eddies in the boundary layer. This preliminary result showed that frequency of 

rotation was to suppress the flow separation. Hattori et al [54] studied the effect of 

the vortex configurations on phase averaged circulation to examine strength of 

vortex pairs and development of the vortex core region on zero pressure gradient test 

bed. They also paid attention on the production of the Reynolds shear stress ( uv ,

uw ). The VG was oscillated in the range of 18
0
 to -18

0
 using two stepping motors. 

In this paper, the vortices interaction between common-flow-up, common-flow-

down, co-rotating and single VG had been described. 

In transonic conditions of a civil aircraft, the shock wave/turbulent boundary 

layer interaction and the flow separation on the upper wing surfaces induce flow 

instabilities, “buffet” and then structural vibration, “buffeting”. Buffeting greatly 
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affects aerodynamic behaviour and it appears when the aircraft Mach number or 

angle of attack increases. To overcome this problems, Caruana et al [56] installed the 

vortex generator (VG) upstream of the shock location and Trailing Edge Deflector 

(TED) at the trailing edge of the wing (refer Figure 2.10). TED is an active actuators 

be driven by dynamic movements up to 250 Hz. TED increased the wing‟s 

aerodynamics and delayed the onset of buffet. The separated flows were greatly 

reduced using VG and the buffet was totally controlled even for strong instabilities. 

 

     

                                  (a)                                                     (b) 

Figure 2.10: (a) Trailing edge deflector (TED); (b)
 
vortex generator [56] 

 

New types of AFC method using self-activated movable flap to provide the 

flow physic on airfoil (see Figure 2.11) has been investigated by Meyer et al [57]. 

The self-adjusting flap is closed at low angle of attack and pops up automatically at 

higher angle. This simple and cost-effective flow control tool resulted in lift 

enhancement more than 10%. The blockage of the reverse flow of the flap from the 

trailing edge region to the suction peak is the main effect in a delayed flow 

separation.  
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Figure 2.11: Computational mesh that represents the clean HQ17 airfoil as well as a 

configuration of airfoil and flap [57] 

 

Miniature trailing edge effectors (MiTEs) are small flap (typically 1% to 5% 

chord) actuated with deflection angles of up to 90
0
. The flap was attached at the 

sharp and blunt trailing edge airfoils was investigated
 
by Lee and Kroo [58,59]. The 

sliding rectangular plate behind the trailing edge is to store a flap (see Figure 2.12). 

Time history of lift and moment coefficient is then computed with the flap sliding up 

and down in a harmonic motion over a range of frequencies. Steady state 

computations show that the lift increases as the flap height increase, but the 

efficiency decrease. The experimental result showed drag reduction of as much as 

28%. On the contrary the drag reduction obtained from the computational is less than 

5%. Then, the frequency response where used to present the dynamics of the 

miniature flap. At high reduced frequency, the vortex shedding is clearly observed 

when the flap is up or down position where the velocity of the flap is close to zero. 

This device is the guideline in designing vibration control system. 
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(a)                                                            (b)    

Figure 2.12: (a) Three zone overset grid used for moving flap computation;            

(b) Enlarged view of the overset grid near the trailing edge [58] 

 

Another study was performed experimentally by Jolibois et al [60] on
 
airfoil 

and numerically by [61-65] using dielectric barrier discharge (DBD) plasma 

tangentially to the wall, in order to modify velocity in the boundary layer (see Figure 

2.13).  This type of action was able to fully reattach an airflow naturally separated, 

for angles of incidence up to 17
0
. Moreover, it was clear that the electrical power 

consumption could be highly reduced while acting close to the separation point, and 

by using a non-stationary actuation with minimum duty cycle. 

 

     

                                      (a)                                                         (b)  

Figure 2.13: (a) Schematic side view of a single DBD actuator with probes [60];           

(b) Computed electric contours and streamlines of the electrodes [63, 64] 
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2.3 Numerical setting and configurations 

In pre-processing stage, there are two types of grid system available 

including structured and unstructured. Structured grid is the grid to generate and 

allows convenient construction of high order discretization schemes at interior 

points. But, it causes a greater complexity and possibly loss of accuracy in the 

treatment of boundary condition at curved surface.  Unstructured grids have the 

advantage of the lack restriction on where points can be placed. This freedom allows 

a high degree of automation of generation and sub division of cells which is required 

for increased accuracy [68-70].  

However, the computational time and cost for unstructured mesh 

computations are generally higher than the structured mesh approach. In military 

aircraft problem which entails large-scale changes in the geometry problem has led 

to development of Chimera grid system. In Chimera system, structured grids are 

allowed to overlap, with information being passed between them through 

interpolation. For store release the grid associated with the store can be allowed to 

slide over a background grid associated with the aircraft [68]. 

 

2.3.1 Two-dimensional (2D) simulations 

2D simulations were carried out by a number of researchers [4, 6, 31-37, 40, 

41, 44-46, 48, 49, 57-59, 65]. Two main types of mesh that were used structured and 

hybrid mesh. 

 

2.3.1(a) Structured Mesh 

Fully structured mesh for 2D used by the investigators consisted of grid cells 

between 10 000 to 50 000 for baseline case. The refinement of grid cells increased 
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between 50 000 to 500 000 because of the slots for air jets. The region of the slot for 

the airjet, which has a step size, is discretized with a high grid density. Almost 

uniform grid resolution with approximately 80 points was used for the slot [48]. Fine 

grid resolution was used adjacent to the wall boundaries to resolve the boundary-

layer flow [71]. In the direction normal to the airfoil surface, a large number of grid 

points were used to provide the resolution needed for the high Reynolds number 

turbulent flow and the interaction of the airjet with the turbulent boundary layer [4, 

48]. The computational domain for the upstream airfoil was approximately at 5 chord 

lengths away from the leading edge of the airfoil. The upper and lower boundaries 

were about 5 chord length from the solid surface. The outflow boundary was 10 

chord lengths downstream of the trailing edge to minimize the disturbing effects    

[4, 6, 31, 32, 33-35, 44-49, 57-59]. To correctly capture the flow behavior, the 

maximum aspect ratio of the cells near the surface was kept below 100, normally 

y
+
≈1 and the first cell height approximately at 3.26x10

-6
m. 

Vadillo and Agarwal [46] showed that the grid requirement was very 

sensitive to the flow condition. To maintain y
+
<2, a different computational grid was 

required for both M∞=0.8 and 0.9.  For all the computations reported in this paper, 

the grid refinement study was performed to ensure that the computed solutions are 

grid-independent. The uncertainty such as size of the computational domain, grid, 

numerical algorithm and boundary condition in the computed solution was 

minimized. 

The flat plate with synthetic jet actuator used a total of 300 and 200 nodes in 

the streamwise and wall normal direction respectively and the total mesh was 

increased to 20x10
6 

after grid adaptation. This mesh is reported to have sufficient 
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resolution to capture the features of flow fields over the hump utilize by plasma 

actuator [5, 7, 50-53] and synthetic jet [17]. 

Meanwhile, Lee and Kroo [58] used 2D structured mesh which is divided 

into three-zone overset grid for the moving grid computations (see Figure 2.12). 

These three-zones are called multi faces. Zone I is a C-grid surrounding only the 

airfoil without the wake. Zone II is a rectangular region downstream of the trailing 

edge and contains the flap where the grid points on the flap surface are specified as 

solid wall boundaries and the point inside the flap are blanked out using iblank. Zone 

III is small rectangular grid needed to define the solid wall for the blunt trailing edge. 

The interfaces between Zone I and III are solid wall boundaries and these two small 

taps block the flow between the trailing edge and the flap.  Zone II slides up and 

down as rigid body translation according to the motion of the flap. Grids are 

generated at each time step as well as the interface file that gives the information for 

updating the boundaries. 

 

2.3.1(b) Hybrid Mesh 

The hybrid mesh consists of structured and unstructured grids. The 

computational mesh obtained by Rhee et al [35] consists of approximately 2 million 

quadrilateral and triangle cells. The first cell height approximately equal to one in 

terms of wall y
+
. Circular sub-domain around the hydrofoil is generated and 

triangular cells fill the remaining region of the sub-domain. The region outside the 

circular sub-domain is also filled with appropriately growing triangular cells.  

In the study carried out by Duvigneau and Visonneau [31], 2D unstructured 

grid with approximately 90 000 cells was used for the calculation. This grid consists 

of a fine mesh with quadrangular cells close to the wall and the near wake region, in 
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