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Figure 4.60 TGA spectra of PDMS filled nsMWCNT. 
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KESAN RAWATAN PENGOKSIDAAN MWCNT KE ATAS SIFAT-SIFAT 
NANOKOMPOSIT PDMS 

 

ABSTRAK 

MWCNT mempunyai sifat elektrikal yang unik, kekonduksian terma yang 

lebih tinggi daripada berlian, and sifat mekanikal yang baik di mana kekuatan dan 

kekakuan melebihi bahan lain yang sedia ada. Walaubagaimanapun, kurangnya 

serakan dan pengikatan antaramuka antara MWCNT dan matrik polimer memberi 

satu cabaran dalam menghasilkan nanokomposit yang mempunyai sifat yang bagus. 

Rawatan pengoksidaan dilakukan ke atas MWCNT bagi menambahbaikkan serakan 

dan pengikatan antaramuka di antara nanotiub dengan PDMS. Kefungsian 

pengoksidaan MWCNT dihasilkan melalui pengoksidaan menggunakan sama ada 

asid tunggal (HNO3) atau gabungan asid (HNO3/H2SO4) pada nisbah 3:1. Rawatan 

ini dilakukan pada tempoh masa (3 dan 6 jam) dan suhu (80°C dan 140°C) rawatan 

yang berbeza. Analisa FTIR dan XPS menunjukkan kehadiran pelbagai kumpulan 

berfungsi oksigen seperti C-O, C=O dan COOH. Nisbah kandungan O/C meningkat 

dari 0.17 bagi MWCNT yang tidak dirawat, kepada 0.56 bagi MWCNT yang 

teroksida. Pentitratan asid bes menunjukkan peningkatan kandungan kumpulan asid 

sebanyak 159%. Kesan pengoksidaan memberi kesan yang lebih ketara apabila suhu 

rawatan ditingkatkan kepada 140°C selama 6 jam sehinggakan nisbah ID/IG didapati 

meningkat dari 0.19 kepada 0.83 serta terdapat penurunan dalam kestabilan terma. 

Kewujudan kumpulan berfungsi menyebabkan pembentukan lapisan elektrik 

berganda pada permukaan MWCNT, lalu menghasilkan serakan yang baik di dalam 

air. Lapisan ini juga mampu mengatasi daya tarikan van der Waals antara nanotiub, 

lalu menurunkan saiz gumpalan. Selain itu, kecacatan ke atas MWCNT dan 

kewujudan kumpulan pemangkin dapat dilihat melalui TEM. Bagi PDMS terisi 
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dengan MWCNT yang dirawat dengan HNO3 pada 80°C untuk 3 dan 6 jam, didapati 

kekuatan tensil meningkat kepada 5.06 MPa, manakala kekonduksian terma dan 

elektrik masing-masing meningkat sedikit kira-kira 24% dan 42% dibandingkan 

dengan nanokomposit MWCNT/PDMS yang tidak dirawat. Walaubagaimanapun 

bagi PDMS terisi dengan MWCNT yang dirawat pada suhu 80°C selama 6 jam di 

dalam gabungan asid, terdapat sedikit penurunan dalam sifat terma dan elektrikal, 

masing-masing kepada 0.19 W.mK dan -4.62 Log/Scm-1. Penurunan lebih ketara 

bagi PDMS terisi MWCNT yang dirawat pada suhu 140°C selama 6 jam kerana 

terdapat penurunan nilai Tg sebanyak 9°C berbanding PDMS terisi dengan MWCNT 

yang telah dioksidakan pada 80°C selama 6 jam. Pengoksidaan yang terlampau ke 

atas MWCNT mengurangkan keupayaannya untuk membentuk ikatan antaramuka 

yang baik dengan matrik PDMS. Oleh itu, MWCNT jenis ini sesuai digunakan untuk 

meningkatkan sifat keplastikan pada matrix polimer. 
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THE EFFECT OF OXIDATION TREATMENT OF MWCNT ON THE 
PROPERTIES OF PDMS NANOCOMPOSITE 

 

ABSTRACT 

MWCNT have a unique electrical properties, thermal conductivity which is 

higher than diamond and a good mechanical properties where strength and stiffness 

exceed any other current materials However, poor dispersibility and interfacial 

adhesion of MWCNT in polymer matrix presents a considerable challenge in 

developing nanocomposite with good properties. Oxidation treatment was done on 

MWCNT as to improve the dispersion and interfacial adhesion between the 

nanotubes and PDMS. The oxidation treatments of MWCNT were carried out by 

oxidizing using either single acid (HNO3) or mixture of acids (HNO3/H2SO4) at 3:1 

ratio. The treatments were done for different period of time (3 and 6 hours) and 

temperature (80°C and 140°C). FTIR and XPS analysis showed the presence of 

various functional groups such as C-O, C=O and COOH. The O/C ratio increased 

from 0.17 for untreated MWCNT to 0.56 for oxidized MWCNT. Acid bes titration 

showed increase in concentration of acid groups about 159%. The oxidation affects 

the tubes more significantly when the temperature and time increased to 140°C and 6 

hours respectively as the ID/IG ratio increased from 0.19 to 0.83 and reduction in 

thermal stability. The presence of functional groups formed electrical double layer on 

the MWCNT surface and thus, gave good dispersibility in water. This layer also 

overcome the strong van der Waals force within the nanotubes and reduced 

agglomeration. The presence of defects and catalysts were also observed by TEM. 

For PDMS filled with MWCNT oxidized in HNO3 at 80°C for 3 and 6 hours, the 

tensile strength increased to 5.06 MPa, while thermal and electrical conductivity 

slightly increased for approximately to 24% and 42%, respectively over the untreated 
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MWCNT/PDMS nanocomposites. However, for PDMS filled with MWCNT 

oxidized at 80°C for 6 hours in acid mixture, the thermal and electrical conductivities 

were slightly decreased to 0.19 W/mK and -4.62 Log/Scm-1. Decrease in properties 

was more significant for PDMS filled with MWCNT oxidized at 140°C for 6 hours 

as the Tg value decreased for 9°C  compared PDMS reinforced with MWCNT 

oxidized at 80°C for 6 hours, in which its Tg was approximately -35°C. Aggressive 

oxidation treatment reduces the capability of MWCNT to form good interfacial 

interaction with the PDMS matrix. However, this type of MCWNT was suitable to be 

used to increase the plasticity of the polymer matrix. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background of the Study  

Nanostructured materials play an important role in the past decade due to 

their wide range of potential applications in many areas such as in the field of 

aerospace (Taczak, 2006), actuators (Ashrafi et al., 2006), biomedical (Ji et al., 

2010), electronics (Wang et al., 2010), etc. One of the promising nanostructured 

materials is Multi-walled Carbon Nanotube (MWCNT) which can be utilized in 

various applications as reinforcing fillers especially in the field of polymer-based 

composites. High aspect ratio (l/d, where l is length and d is diameter) of CNT 

facilitates it to form network like structure in the composite. Moreover, its unique 

electronic properties, high structural flexibility and high mechanical strength make it 

stiffer and stronger materials than other potential materials such as graphene, 

diamond, carbon black, etc. Thus, various types of polymer have been embedded 

with CNT with a desire to fabricate new advanced materials as to enhance the 

composite properties.  

Few reviews focusing on elastomer nanocomposites have been reported in 

recent years. Likozar and Major (2010), overviewed the distribution of MWCNT in 

the elastomer rubber matrix and found out that the presence of MWCNT improved 

the performance of the nanocomposites. In addition, degree of dispersibility and high 

aspect ratio of CNT affects the thermal conductivity of the elastomer filled MWCNT 

as investigated by Hong et al. (2010). Hikage et al., (2007) analyze elastomer 

containing different fillers in order to develop a lightweight human phantom with 
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specific gravity below 1.0. While Bokobza and Kolodziej (2006), examined different 

level of reinforcement for elastomer contained different fillers.  

 

Polydimethylsiloxane (PDMS) is one of the high performance silicone rubber 

elastomer with combination of high flexibility of –[Si-O]x- chain segments with 

inherent strength of (Si-O) siloxane bonds, excellent thermal stability with slow heat 

release rates, low viscosity, low surface free energy, low toxicity and less chemical 

reactivity (Hamdani et al. (2009), Chaudhry and Billingham (2001), Mark (2004), 

Esteves et al. (2010)). Due to the high performance of PDMS material it may 

suitable to be combined with the versatile filler such as MWCNT.  As we know, the 

CNT price in the market is too high. Thus, limit the use and exploration of CNT in 

research study. However, the CNT price has dropped dramatically over the past 

several years due to the efforts that focused on realizing mass production of CNT and 

its application in many field of industries.  

 

Recent articles review on four requirements systems for effective 

reinforcement as mentioned by Coleman et al. (2006). These systems are (i) a large 

aspect ratio to maximize the load transfer to CNT, (ii) good dispersibility of 

individual CNT throughout the polymer matrix, (ii) randomness and alignment of 

CNT, and (iv) interfacial load transfer so as to achieve an efficient load transfer to 

the CNT network. 

 

However, the as manufactured CNT exists as agglomerates of several 

hundred micrometers due to extremely high surface energy combined with impurities 

contamination create an obstacle to most applications. The tube surface not only 
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attracted to each other by van der Waals force but also due to their extremely high 

aspect ratio and high flexibilities increase the possibility of entanglements. Highly 

entangled CNT are difficult to disperse uniformly throughout the matrix. Moreover, 

agglomeration of CNT could not provide three-dimensional networks which are 

important in transport properties such as electrical and thermal conductivity. Poor 

interfacial strength of CNT and matrix in composite may cancel the uniformity of 

stress distributions and increase the stress concentration in the composite. The stress 

transfer occurred between matrix and nanotube at interface critically control the 

mechanical properties of the composites. Therefore, it is necessary to break the van 

der Waals force so as to get rid the CNT entanglements by shortening the CNT 

length. Apart from breaking the CNT entanglements, the impurities that might 

present in the as-prepared CNT were metal catalyst particles, amorphous carbon and 

other carbonaceous species. Monodispersity and high purity of CNT are essential for 

it to function as a reinforcing material.    

 

However, there is still huge contrast between the promising potential and 

reality of using CNT in practical applications on a widespread scale. Up to date, 

there has not been a study that examine on the effect of different oxidation treatment 

of MWCNT in PDMS. The main goals of this work were first to functionalize the 

MWCNT with either HNO3 or mixture of HNO3/H2SO4 acids and investigated the 

outcome from the oxidation process. Both HNO3 and HNO3/H2SO4 acids are choose 

because they function as strong oxidizing agent and can provide more oxygen 

functional groups on the nanotube surface. Subsequently, the properties of the PDMS 

filled with oxidative MWCNT are determined. 
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1.2 Problem Statement 

Due to the strong van der Waals force, high aspect ratio and high flexibility 

of CNTs, they tends to agglomerates and entangles among the tubes. This led to poor 

interfacial bonding between CNT and matrix. Therefore, it is necessary to break 

down the van der Waals force among CNT in order to reduce the entanglement/or 

agglomerations of the CNT in matrix. The CNT surface can be functionalized either 

by chemical (Datsyuk et al., 2008) or physical (Wang et al., 2003) treatments. 

Physical dispersion methods include ball milling, ultrasonication in selected solvent, 

grinding, and high speed shearing. These methods may disrupt the CNT structure by 

inducing severe damage on the tube walls. In chemical modification method, the 

CNT can be functionalized by covalent (Verdejo et al., 2007) or non-covalent 

treatment (Wang et al., 2008b). Covalent treatment is functionalizing the CNT 

surface with functional groups, while non-covalent treatment is surrounding or 

wrapping the CNT with polymer chain. These chemicals method also may give rise 

to CNT being damaged due to the strong acid treatment. Therefore, as stated above, 

combination of cutting and functionalization of CNT are good ways to have good 

dispersion of CNT in polymer matrix. In addition, the oxidation process can create 

defects on the CNT surface with abundance of functional groups on top of it. Thus, 

both CNT and matrix can have better interfacial bonding. 

 

In order to improve the processability of CNT in polymer matrix, the CNT 

length need to be loosen and shorten. At the same time the CNT need to be oxidized 

as well so as to improve the CNT dispersibility and formed strong interfacial bonding 

between CNT and polymer matrix. The oxidation process also led to reduction in 

length of the CNT and affect the size distribution as well. 
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The raw (as produced) CNT contained many impurities such as metal catalyst 

and amorphous carbon. Presence of these unwanted materials might reduce the 

properties of the composite as well. Oxidation process might help in diminish or 

reduce these unwanted materials. 

 

It is evident from many studies that the presence of oxygenated functional 

groups on the CNT serves as starting point for binding with the polymer matrix. 

Besides that, defects created on the CNT surface during the oxidation process can 

tailor the CNT surface for desired applications. The CNT is more reactive at their 

tips and on the defects walls, thus enhanced the chemical reactivity.    

 

The oxidation process on CNT need to be controlled in order to obtain CNT 

with adequate functional groups and optimum CNT length that is sufficient for 

composite applications to be realized. Datsyuk et al. (2008), reviewed on the 

different chemical oxidation treatment on MWCNT. Hong et al. (2007), examined 

the effects of different oxidative conditions on the properties of MWCNT in PP 

nanocomposites. Different mechanical and oxidative treatment on CNT in epoxy 

nanocomposites have been investigated by Li et al. (2007). Thus, it can be said that 

controlling the oxidation process may affect the intrinsic properties of the CNT, as 

well as the nanocomposite.  
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1.3 Objectives of the Study 

The functionalization of MCWNT is accomplished by oxidative acid 

treatment. The PDMS was reinforced with oxidized MWCNT. The objectives of this 

work are: 

a) To prepare and investigate the effects of different oxidative acid treatment on 

MWCNT at different time and temperature treatment.  

b) To study different properties between as-received MWCNT and 

functionalized MWCNT. 

c) To compare the properties of the unmodified MWCNT/PDMS 

nanocomposite with oxidative MWCNT/PDMS nanocomposite.  

d) To investigates the interactions between the oxidized MWCNT and PDMS 

matrix. 

 

1.4 Project Overview 

In achieving the objectives, four main experiments were conducted. First and 

second experiment involved oxidized acid treatment on the MWCNT by HNO3 or 

HNO3/H2SO4 at 80°C with different treatment time and constant treatment time with 

different oxidized processing temperature, respectively. In this experiment, the 

outcome of the resulting oxidized MWCNT product were characterized so as to 

understand the effects of the different oxidative treatments. Density, dispersibility of 

CNT in distilled water, stability and quality of the CNT suspension, electrophoretic 

mobility of CNT, structural integrity of CNT, thermal stability, functional groups 

analysis, acid base titration analysis, and morphological analysis of the MWCNT was 

further investigated using characterization techniques mentioned in chapter three. 
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Moreover, properties between the as-received MWCNT and oxidized MWCNT were 

also evaluated.  

 

Next, third and fourth experiments were conducted by embedding the 

resultant of the oxidized MWCNT from experiment one and three, respectively, in 

PDMS matrix. The mechanical, thermal, electrical, morphology and swelling 

properties of the cured unmodified MWCNT/PDMS and oxidative MWCNT/PDMS 

nanocomposites were identified.  Moreover, selected nanocomposite were sent for 

XPS analysis so as to investigate presence of bonding between the oxidized 

MWCNT and PDMS matrix. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Introduction 

In this chapter, the review is focus on oxidation process of MWCNT since the 

aim of this study is to understand the effects of oxidized MWCNT on the PDMS 

nanocomposites. The purpose on the oxidation study is to understand the effect of 

functionalization on the nanotubes in hoping that the properties of the treated 

nanotubes is better than untreated nanotubes.  The review focus more on oxidation 

treatment of MWCNT. Various effects on the oxidation process such as opening the 

end capped tubes, promoting the functional groups on the tubes surface, cutting the 

tube length, removal of catalyst in the tubes in or near the end tubes and thermal 

stability of the oxidative tubes were discussed.   

 

Finally, the review focus on the silicone rubber filled with oxidized 

MWCNT, on mechanical, thermal and electrical properties of the nanocomposites. 

Overall, this chapter discussed on oxidation treatment used in this work and its effect 

on the properties of the MWCNT/ polymer composite. 

 

2.2 Carbon in General 

Carbon (C) was the sixth most abundant element exist in the universe. It 

provides the framework for all living creatures. The element can be found in the form 

of amorphous carbon, graphite, diamond, carbon 60, carbon nanotubes, 

buckminsterfullerenes and many more. Moreover, compound of carbon with other 

elements were also very common.  
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Carbon is also known to have four electrons in its valence shell. The core 

electrons is 1s2 which is strongly bonded while the other four valence electrons are 

weakly bonded.  Thus, each carbon atom can share electrons up to four different 

atoms and combine with another carbon atom or other elements. Owing to this fact, 

carbon can be in the form of various multi-atomic structures with different molecular 

configurations called allotropes. The allotropes involve hybridization process. 

Hybridization determined the chemical, physical and configurational properties of 

the carbon materials.  

 

Figure 2.1 shows the carbon materials with different types of hybridization. 

sp hybridization can be observed in carbyne, sp2 hybridization is observed in graphite 

and sp3 hybridization is found in diamond (Popov, 2006). There were sp, sp2 and sp3 

hybridization as shown in Figure 2.1 which related to the carbon atom forming small 

organic molecules such as adamatane, ovalene and cumulene. Diversification from 

the organic molecules leads to the formation of the carbon nanofillers such as 

nanodiamond, fullerene, nanotubes and graphene. More complex unit of carbon can 

be form such as carbon onions, nanotubes (NT) ropes, MWNT, nanocarbon diamond 

(NCD) films, carbon fibers and carbon black with bigger structure size of the carbon 

nanofillers. Carbon nanofillers are defined as a material that built at nanometer scale 

ranging from fullerenes, carbon nanotubes to nanoporous materials (Endo et al., 

2004).  
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Figure 2.1 Carbon nanoworld based on the different types of hybridization, 
utilizing the bottom up approach (Popov, 2006). 

 

2.2.1 Carbon Nanotube (CNT) 

Carbon Nanotubes (CNTs) were first discovered by Japanese electron 

microscopist Sumio Ijima in 1991 (Ijima S, 1991). He found a graphitic structure 

including nanoparticles and nanotubes that had never been observed before (Arben, 

2006). Figure 2.2 shows the schematic of individual sheet of graphene and rolled 

graphene to form CNT. CNT can be thought as a single graphite layer that is rolled 

up to make a seamless hollow cylinder (Endo et al., 2004). It consists of a variety of 

diameter in nanosized with many microns in length. CNTs with only one carbon 

sheet are named single-walled carbon nanotubes (SWCNTs) while CNT with multi 

layer of graphene rolls are known as Multi-Walled Carbon Nanotubes (MWCNT). 

Jeykumari and Narayanan (2009) noted that MWCNT usually have diameter of 2 to 

100 nm with 2 to 10 nm in internal diameter, while SWCNT have about 0.2 to 2 nm 
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in diameter. Hayashi et al. (2003), shows that the as-produced CNT usually have 

closed cap and catalyst that may exist at the end cap of the tube where the growth 

occurs as illustrate in Figure 2.3. 

 

Figure 2.2 Schematic of individual sheet of graphene and rolled graphene in 
order to form a carbon nanotube (Endo et al., 2004). 

 

Figure 2.3 Schematic images on the growth of the carbon nanotube. Blue cages 
indicate the carbon nanotubes. Red balls indicate catalytic particles 
(Hayashi et al., 2003). 

2.2.1.1 Multi-walled Carbon Nanotube (MWCNT) 

Figure 2.4 shows that Multi-walled carbon nanotubes (MWCNTs) have 

several coaxial graphene (Merkoçi, 2006). The early structure was multiwall 

morphology consist of coaxial cylinders arranged in a “Russian doll” configuration. 



12 
 

Shanmugam and Gedanken (2006) have successfully created MWCNT with different 

shaped such as bamboo-shaped, straight and twisted MWCNT by pyrolysis process. 

 

Figure 2.4 Multi walled carbon nanotubes (MWCNT) (Merkoçi, 2006).  

According to Meyyapan (2005), when the graphene rolled over to form a 

CNT, the electrons get confined in particular direction, which insist on the formation 

of rehybridization. In rehybridization, three σ-bonds went slightly out of plane and 

the π-bond becomes more delocalized outside of the nanotubes. The three σ-bonds 

are responsible for the mechanical strength of the CNT while π-bond is accountable 

to the electronic and thermal properties of the CNT. The π-bonds are also responsible 

for the interaction between the layers in MWCNT and between SWCNTs in SWCNT 

bundle (Ruoff et al., 2003). 

 

2.3 CNT Chirality 

CNT also was uniquely different from other types of filler. Despite its long 

tubular structure with hole in the middle, it has different tube chirality (Figure 2.5). 

According to Harris (2004), the ‘zigzag’ and ‘armchair’ refer to the arrangement of 

the hexagons around the circumference. As for the chiral structure, the hexagons are 

arranged helically around the tube axis. 
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Figure 2.5 Chirality of carbon nanotube (a) armchair (n, m) - (5, 5); (b) zigzag (n, 
m) – (9, 0); and (c) (n, m) – (10, 5) (Harris, 2004). 
 

2.4 CNT Production 

The CNT is manufactured in many different ways and the CNT are produced 

along with different amount of catalyst impurities and amorphous carbon. There are 

three main methods used in the synthesis of CNT which are arc-discharge, laser 

ablation and chemical vapor deposition (CVD) as described by Eichhorn and Stolle 

(2008).  

 

In arc discharge methods, the MWCNT is produced through arc-vaporization 

of two graphite rod placed end to end as represented in Figure 2.6. The chamber is 

filled with inert gas such as helium or argon at low pressure. Arc discharge 

techniques give the highest amount of catalyst particles while CVD technique was 

the least (Chaturvedi et al., 2008). Thus this explained the drawback in using arc-

discharge method which is more expensive because the need to remove the unwanted 

(a) 

(b) 

(c) 
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metal catalyst and non-nanotube carbon from the as produced CNT. The presence of 

impurities and amorphous carbon will affect the mechanical properties of the 

composites (Schulte et al., 2005). 

 
Figure 2.6 CNT production by arc discharge (Eichhorn and Stolle, 2008). 

 

Figure 2.7 shows the production of CNT by laser ablation technique. The 

laserbeam was directed straight to the graphite target and vaporize it. The vaporized 

carbon particles move to copper collect vessel with aid by argon flow. This technique 

produces 70% of CNT by weight and mainly producing CNT with high tubes quality. 

The disadvantage with this technique is the high cost of operation due to demand of 

having high-powered laser.   

 

 
Figure 2.7 CNT production by laser ablation (Eichhorn and Stolle, 2008). 
 

Both arc discharge and laser ablation techniques, are limited in volume 

sample and relatively high cost in producing the CNT. Thus, the limitations have 

motivated the the development of gas phase technique in producing CNT such as 

Chemical Vapor Deposition (CVD). In the CVD method (Figure 2.8), methane gases 
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was utilize as a source for carbon atoms combined with metal catalyst particles as 

seeds to support the growth of the nanotubes at relatively low temperatures (500-

1000°C). The production of CNT can be up to 100% by weight. The advantage of 

CVD technique is, simple and favorable technique since the processing technique is 

cheap with less impurities on CNT.  

 

Figure 2.8 CNT production by CVD (Eichhorn and Stolle, 2008). 
 

2.5 Comparisons in Output Analysis between MWCNT and SWCNT 

The structure of the MWCNT and SWCNT can be differentiated by 

observation under electron microscopy and Raman analysis (Valcárcel et al., 2007). 

Figure 2.9 shows that SWCNT consist of only single wall layer while MWCNT have 

multiple layers of wall. From electron microscopy, it can be seen that strong 

interaction between neighboring SWCNT is due to the van der Waals force, which 

make the SWCNT packed into thick bundle or ropes.  

 

In Raman spectrum, both SWCNT and MWCNT have D and G bands. The D 

band associates to the disorder graphite while G band refer to the degree of 

graphitization of the CNT. The difference between SWCNT and MWCNT in Raman 

analysis lies on the third mode named radial breathing mode (RBM). The intensity of 

RBM is dependent on the diameter of CNT (Eichhorn and Stolle, 2008). This RBM 

band which is significantly appear in SWCNT while for MWCNT, the RBM band 
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appears only if the MWCNT have small diameter in few nanometers (Ando et al., 

1999). The RBM signals was near 100-300cm-1 which indicate changes in diameter 

distribution (Seifi et al., 2007).  

 
Figure 2.9 Comparison of structures, microscopy images and Raman spectrum 

between SWCNT and MWCNT (Valcárcel et al., 2007). 
 

2.5.1 MWCNT as Preferred  Filler in Composite 

There are few reasons on selecting MWCNT as filler in composite rather than 

SWCNT. It is not only due to the low cost of production but also due to the physical 

properties of the MWCNT itself. The MWCNT are more rigid than SWCNT because 

they consist of several rolls of graphene sheet that make it more stable than SWCNT. 

MWCNT also can act as carbon micro- or nanoparticles. In addition, only low 

loading of MWCNT is needed in order to achieve percolation threshold. Thus, 

MWCNT can exhibit excellent mechanical, thermal and electrical properties. 

Moreover their aspect ratio is as high as 1000, which can induce better interfacial 

interaction with the polymer matrix (Bikiaris et al., 2008). In order to improve 

interaction between filler and matrix, CNT might be required to be treated and 
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functionalized. The SWCNT is not suitable for oxidative treatment. This is because 

those SWCNTs are so small and hence not protected by outer layers. By creating 

defects on the SWCNT surface, the tubes will collapse spontaneously due to their 

instability during the process (Ago and Yamabe, 1999). 

 

2.6 General Properties of CNT 

CNT have been intensively studied by most researchers due to the low 

density of the tubes and offer better mechanical, thermal and electrical properties as 

reinforcing filler in the composite. The diameter of the tubes can be as small as 

0.4nm. The aspect ratio can be very large which are greater than 104. CNT have sp2 

bonding which consists of one σ-orbital and two π-orbital are hybridized and take 

part in covalent bonding. The sp2 bonds can make the nanotubes stiff and strong in 

nature. Nanotubes exhibit a remarkable electronic and mechanical characteristic, as 

summarized by Hoenlein et al. (2003) in Table 2.1. 

 

Table 2.1 Electrical and mechanical characteristics of carbon nanotubes 
(Hoenlein et al., 2003). 

Electrical Conductivity Metallic or semiconducting 
Electrical Transport Ballistic, no scattering 
Maximum current density ~1010 A/cm2 
Maximum strain 0.11% at 1 kV 
Thermal Conductivity 6000 W/mK 
Diameter 1 to 100 nm 
Length Up to millimeters 
Gravimetric surface >1500 m2/g 
E-modulus 1000 GPa 
 

2.6.1 Bending of CNT with Respect to Mechanical Properties 

The strong covalent carbon-carbon bond on the tube structure, initiate the 

strength tube property which make it stronger than steel (Endo et al., 2004). Noted 

that the mechanical properties of the nanotubes itself is a challenge to experimentally 
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study due to the difficulty in obtaining pure CNTs which is free from amorphous, 

graphitic, and polyhedral carbon particles (Ruoff and Lorents, 1996). 

 

Poncharal et al. (1999) has demonstrated that nanotubes can bend to a certain 

degree when stress is applied and return to its original form after the stress is 

released. This behavior makes nanotubes special compared to other type of filler due 

to the susceptibility towards fracture when the tubes are subjected to stress beyond 

the elastic limit. Moreover, CNT offer ease of processing in composites especially 

due to the lack of breakdown during processing. This is in contrast with carbon fibers 

in which the fiber breakdown occurs during composite processing (Schadler et al., 

1998). 

 

2.6.2 Electronic Structure and Electron Transport in CNT 

The electronic structure of carbon nanotubes can be either metallic or 

semiconducting depending on the diameter and helicity of the tubes (Saito et al., 

1992; Kang et al., 2006). The helicity introduces significant changes in electronic 

density states which show the electronic character for the nanotubes. The enhanced 

electronic property enables ballistic transport over more than 100 nm occurs 

(Bernholc et al., 2002). 

 

Figure 2.10 shows the schematic image on the electron transfer in metal, 

semiconductor and graphite by Collins and Avouris (2000). As can be seen in Figure 

2.10, there are two separate phases that is red and light blue. Red phase indicate the 

collection of energy states that are pack with electrons, while the light blue phase 

indicate the empty space for the electron to move in. For metals, the electron can 
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simply be transferred from the filled energy states (red) to the empty energy states 

(blue) because there were many electrons that can directly move to the adjacent 

conduction states. As for semiconductors, additional energy is needed in order to 

jump across the gaps to the first available conduction states (from red to blue). 

Finally graphite materials, usually have semimetallic conducting behavior that 

conduct through minimal point. Applying external boost allowing more electron to 

access the narrow path to the conduction state.  

 

Figure 2.10 Schematic images on electron transfer in metal, semiconductor and 
graphite in order to determine the electrical properties of the materials 
(Collins and Avouris, 2000). 

 

Figure 2.11 illustrates the semiconducting and metallic behavior of the 

straight and twisted nanotubes by Collins and Avouris (2000). For the straight 

nanotubes (Figure 2.11a), it looks like the graphite sheet (left) was rolled into the 

center of the tube. The nanotubes geometry limits the electron transfer and makes 

two thirds of nanotubes metallic while the rest one third is semiconducting. The point 

at which there is close contact that joins the electron with conduction states is known 

as Fermi point. For twisted nanotubes (Figure 2.11b), the graphite sheets were rolled 

into twisted dimension. The twisted nanotube allowed energy states for the electron 
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to have an incision at an angle resulted in one third of the nanotubes is metallic while 

the rest is semiconducting.  

 
Figure 2.11 Schematic drawing on metallic and semiconducting of (a) straight 

nanotubes and (b) twisted nanotubes (Collins and Avouris, 2000). 
 

Few facts need to be consider with regard to electron transport in MWCNT, 

i.e: 

a) the semimetallic behavior, which have drastic effect on the band structure and on 

the scattering mechanism. 

b)  the effect of reduced dimensionality. 

c)  impact on weak disorder due to the quantum aspects of conduction. 

(a) 

(b) 
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d)  possibility of walls intercalation and its effects.  

 

The MWCNT also can behave as an ultimate fiber while SWCNT can behave 

as pure quantum wires. It is known, MWCNT has more than one carrier, which were 

electrons and positive holes. The contribution of each type of carrier is important and 

should be taken into account (Issi and Charlier, 1999). Due to the one-dimensional 

electronic structure, the electronic transport in CNT occurs ballistically over the 

length of the tube which enabling them to carry high currents with essentially no 

heating (Baughman et al., 2002). The electronic properties of the MWCNT are 

almost similar to those perfect SWCNT.  

 

2.6.3 Thermal Conductivity Behavior of CNT 

Thermal conductivity of MWCNT is~3000W/mK while SWCNT 

is~6000W/mK. These indicate that CNT have very good thermal conductivity which 

is greater than diamond and even graphite (~2000W/mK). There are two possible 

physical mechanisms that contribute to the high thermal conduction of the CNT; i) 

electron-phonon interactions. This interaction mainly depends on the electronic band 

structure and the electron scattering process and ii) phonon-phonon interactions. This 

interaction depends on the vibrational modes of the lattice. At room temperature for 

semiconductor CNT, the phonon-phonon interaction dominate the thermal 

conductivity and the electron-phonon interactions only give small contribution due to 

the large band gap and low density of the free charge carriers. Moreover, thermal 

conductivity of the nanotube is more sensitive to the states with highest band velocity 

and the largest mean free path. The thermal conductivity along the tube axis has at 

least two orders of magnitude larger than normal to the tube axis. Therefore, the 
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thermal conductivity of SWCNT bundle or isolated MWCNT should be close to their 

constituents tubes, with some inter-tube thermal conduction that could occur (Sinnott 

and Aluru, 2006).  

 

Even though Ijima predicted that CNT have very high thermal conductivity 

among all of carbon materials, the thermal conductivity of the CNT reinforced in 

polymer composite was low. The individual measurements of MWCNT at room 

temperature is approximately 3000 W/mK. However, this value was far smaller when 

the CNT embedded in the polymer matrix due to the interface scattering or defects 

present on the tube surface (Kumar et al., 2007a; Huxtable et al., 2003).  

 

2.6.3.1 Effects of Different Tube Length and Tubes Chirality on Thermal 
Conductivity of CNT 

Sinnott and Aluru (2006) reviewed effect of tube length variation on the 

thermal conductivity of the tubes (Figure 2.12). The thermal conductivity of the short 

tube that is less than few micrometers have ballistic transport features compared to 

the infinitely long tube. The finite size restricts the phonon motion and causes the 

thermal conductivity to vary with the nanotube length. In addition, tube with 

difference chirality and diameter, can have different thermal conductivity properties. 

They also reported that nanotubes with smaller diameter have radial and azimuthal 

components that are larger than those tubes with large diameter. For armchair and 

chiral SWCNT, the σ-bond along the circumferences are strongly strained compared 

to the zigzag nanotube which could limit the phonon mean free path due to the 

scattering effect and lower the thermal conductivity. For armchair and zigzag 

nanotubes, the atom chains are parallel to the tube axis while for chiral nanotubes, 

the atom chains are in helix position. Therefore, in chiral nanotube position, it is easy 
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to transfer the momentum in radial direction since axial direction would lower the 

thermal conductivity of the nanotubes. 

 
Figure 2.12 Thermal conductivity versus tube length (Sinnott and Aluru, 2006). 
 

2.7 Surface Treatment on CNT 

2.7.1 Why Surface Treatment is Important on CNT ? 

The as-produced CNT has smooth tube structure. The smooth atomically tube 

surface with sp2 hybridized carbon structure has limited ability to form strong 

bonding with surrounding matrix (Barber et al., 2004). Moreover, the π-π 

interactions, long and entangled CNT tends to aggregate strongly in bundles. In 

addition, the tube aggregates together because of their high surface energy and van 

der Waals attraction between the neighboring tubes. Their long tube length make the 

processing become hard to control. Thus, CNTs behave as a large macromolecules 

and making the processing of CNTs in solvent become difficult. In fact, it is an 

obstacle during preparing CNT nanocomposites and furthermore, it will affect the 

properties of the nanocomposites produced.  
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Oxidation treatment on CNT surface creates some functional groups on the 

tube surface and cause strong interaction with matrix (Lee et al., 2005). This allows 

the modified CNT to interact with the surrounding matrix via defects create on the 

nanotube surface or polymer chains wrapping around the nanotube itself. There are 

many evidences reported by researchers that indicate the presence of functional 

groups can serves as starting point for binding chemical molecules on the nanotube 

surfaces with surrounding matrix (Philip et al., 2004; Zhang et al., 2004; Zhu et al., 

2005; Cervini et al., 2008; Ma et al., 2010a).  

 

2.7.2 Types of Surface Treatment on CNT 

There are two main approaches to CNT surface modification. One is covalent 

attachment while the other is non-covalent attachment. For noncovalent attachment, 

the CNT was surrounded or wrapped by polymer chain. The advantage in this type of 

attachment is the nature of the CNT is not altered. The disadvantage of the 

noncovalent attachment is the interfacial adhesion between CNT and the wrapping 

polymer molecule might be weak, thus stress transfer efficiency might be low. Figure 

2.13 shows the example of non-covalent treatment on CNT by wrapping the 

hydrolyzed poly(styrene-co-maleic anhydride) (HSMA) on the CNT surface.   
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Figure 2.13 Non-covalent treatment of hydrolyzed poly(styrene-co-maleic 
anhydride) (HSMA) with CNT (Xue et al., 2008). 

 

In comparison the covalent attachment, the functional groups is created on 

the CNT surface, which can improve the interfacial adhesion between the CNT 

surfaces and surround matrix. Moreover, the stress transfer is greatly enhanced due 

to the good bonding between CNT and polymer. By functionalizing the CNT 

surfaces, the individual tubes can be separated from the tubes bundle and allow tubes 

to disperse freely in solvent or polymer. Covalent functionalization can be on either 

the tube end or sidewall of the nanotubes. Oxidation treatment by strong acids can 

create defects or functional groups either on the sidewall or at the end of the 

nanotubes (Figure 2.14).  

HSMA 


