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PENGHASILAN ASID HYALURONIK OLEH STREPTOCOCCUS 

ZOOEPIDEMICUS ATCC 39920 

 

ABSTRAK 

 

Memandangkan permintaan yang semakin meningkat bagi produk asid 

hyaluronik (HA) sebagai bahan permulaan bagi penyediaan polimer bioserasi dan 

biopenurunan baru yang telah digunakan dalam kebanyakan industri perubatan dan 

kosmetik, kajian fermentasi mikrob bagi penghasilan HA oleh S. zooepidemicus 

ATCC 39920 telah dijalankan dalam sistem kelompok dan suapan selanjar. 

Pengoptimuman keadaan fermentasi menggunakan teknik “satu-faktor-pada-satu-

masa” telah dijalankan di dalam kultur kelalang goncang supaya julat dan keadaan 

yang sesuai untuk digunakan dalam kajian ini boleh dianggarkan. Saiz inokulum 

10% (v/v), pH 7.0, suhu 37
o
C dan kelajuan pengaduk 300 rpm menunjukkan kadar 

pertumbuhan spesifik yang maksimum, biojisim dan penghasilan HA yang tinggi 

pada 0.72 j
-1

, 1.96 gl
-1

 and 0.82 gl
-1

, masing-masing.  

 

Untuk mempertingkatkan penghasilan sel dan produk, pengoptimuman bagi 

parameter untuk proses ini telah dijalankan secara mendalam di dalam kultur 

kelalang goncang dengan menggunakan kaedah sambutan permukaan (RSM) 

bersama dengan rekabentuk komposit berpusat (CCD). Keadaan optimum yang 

diperolehi adalah seperti berikut: suhu 37
o
C, pH 6.96 and kelajuan pengaduk 300 

rpm, dengan penghasilan HA per glukosa yang digunakan (YHA/glukosa) sebanyak 0.11 

gHA gglukosa
-1

 dan penghasilan biojisim per glukosa yang digunakan (YX/glukosa) 

sebanyak 0.19 gbiojisim gglukosa
-1

. Suhu dan pH menunjukkan kesan positif terhadap 

pengumpulan Hydrogen peroksida (H2O2), tetapi tidak sensitif terhadap kelajuan 
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pengaduk. H2O2 membantu pertumbuhan dan penghasilan HA pada kadar yang 

terhad (< 10 mM), meskipun H2O2  dirembeskan oleh sel-selnya sendiri. 

 

Bagi kajian di dalam bioreaktor, rekabentuk komposit berpusat (CCD) telah 

digunakan untuk mengkaji keadaan yang optimum bagi pengudaraan, kelajuan 

pengaduk dan kepekatan awal glukosa supaya penghasilan HA oleh S. zooepidemicus 

dapat dipertingkatkan. Faktor-faktor ini telah memberi pengaruh yang kuat terhadap 

penghasilan sel dan HA. Keadaan kultur yang optimum bagi pengkulturan tersebut 

adalah seperti berikut: pengudaraan 4.5 lmin
-1

, kelajuan pengaduk 330 rpm dan 

kepekatan awal glukosa 45.0 gl
-1

. Pada keadaan optimum ini, kadar pertumbuhan 

spesifik yang maksimum (µmaks) adalah 1.18 j
-1

, penghasilan HA dan biojisim per 

glukosa digunakan 0.218 gHA gglukosa
-1

 dan 0.37 gbiojisim gglukosa
-1

, pekali isipadu 

pemindahan jisim kLa dan kepekatan H2O2 adalah 0.0323 s
-1

 and 6.94 mM, masing-

masing. 

 

Model kinetik tidak berstruktur dikenali sebagai Logistik, persamaan Logistik 

digabungkan bersama Leudeking-Piret dan Logistik digabungkan bersama 

persamaan Leudeking-Piret dengan masa lengah, ∆t telah dicadang dan disahkan, 

dan keputusan menunjukkan ketiga-tiga model yang digunakan ini sesuai untuk 

menerangkan pertumbuhan sel, penggunaan glukosa dan penghasilan HA pada setiap 

kepekatan awal glukosa yang berbeza di dalam keadaan berkelompok. Kerencatan 

bagi substrat terhadap pertumbuhan sel bagi strain ini turut juga dikaji menggunakan 

pelbagai jenis model. Model Hans dan Levenspiel dan Teissier menunjukkan 

padanan yang sesuai bagi semua sistem yang dikaji dengan R
2
=0.997 dan 0.985, 

masing-masing. 



 xxiii 

S. zooepidemicus dikenali sebagai perangsang negatif dan menghasilkan 

H2O2  yang boleh memberi kesan terhadap pertumbuhan sel, penghasilan HA dan 

penggunaan glukosa. Bagi mengenalpasti daya kerintangan sel terhadap agen 

pengoksidaan H2O2, kesan penambahan H2O2 daripada luar terhadap pelbagai fasa 

pertumbuhan kelompok telah dikaji.  Keputusan menunjukkan semakin tinggi 

kepekatan H2O2 ke dalam kultur media semakin tinggi kesan perencatan berlaku. Sel 

daripada fasa pegun telah menunjukkan ketahanan yang lebih terhadap keadaan 

beroksida berbanding dengan sel di dalam keadaan fasa eksponen dan fasa susulan. 

Sel di fasa pegun lebih tahan kerencatan sehingga mencecah 50 mM kepekatan H2O2 

di dalam kaldu pertumbuhan. 

 

Untuk mempertingkatkan penghasilan biojisim dan HA, fermentasi secara 

suapan selanjar dengan menggunakan teknik kemostat telah digunakan. Kesan 

pengoksidaan daripada agen pengoksidaan, H2O2 pada keadaan mantap juga turut 

dikaji. Lebih tinggi kadar pencairan lebih kurang biojisim sel, walaupun substrat 

pertumbuhan terhad glukosa menunjukkan peningkatan. Produktiviti biojisim dan 

HA yang tertinggi iaitu 0.41 gl
-1 

j
-1  

dan 0.30 gl
-1 

j
-1  

diperolehi pada julat kadar 

pencairan iaitu 0.24 j
-1

. Beberapa pemalar kinetik turut juga ditentukan; kadar 

pertumbuhan spesifik yang maximum, µmaks, 1.09 j
-1

, pemalar ketepuan pertumbuhan 

sel Monod, Ks 54.87 gl
-1

 dan kadar julat yang kritikal, Dc 0.504 j
-1

, masing-masing. 

Model tidak berstruktur berasaskan persamaan Monod dan Leudeking Piret telah 

dicadangkan, dan keputusan menunjukkan model-model tersebut sesuai digunakan 

untuk menerangkan pertumbuhan sel, penggunaan glukosa dan penghasilan HA di 

dalam keadaan mantap. 
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PRODUCTION OF HYALURONIC ACID BY STREPTOCOCCUS 

ZOOEPIDEMICUS ATCC 39920 

 

ABSTRACT 

 

In view of the demand for hyaluronic acid (HA) products as a starting 

material for the preparation of new biocompatible and biodegradable polymers that 

have applications in many medical and cosmetics domains, research on microbial 

fermentation of HA by S. zooepidemicus ATCC 39920 was undertaken in batch and 

continuous system. Optimization of fermentation conditions using “one-factor-at-a-

time” technique was investigated in shake-flask culture in order to determine the 

suitable ranges and conditions for use in the study. An inoculum size 10% (v/v), pH 

7.0, temperature 37
o
C, and agitation speed 300 rpm gave the highest specific growth 

rate, cell biomass and HA production at 0.72 h
-1

 1.96 gl
-1

 and 0.82 gl
-1

, respectively. 

 

In order to improve the cell and product yield, optimization of the process 

parameters were further studied in shake-flask culture using response surface 

methodology (RSM) coupled with the central composite design (CCD). The 

optimum conditions obtained from this method were as follows: temperature 37
o
C, 

pH 6.96 and agitation 300 rpm, with HA yield per glucose consumed (YHA/glucose) 0.11 

gHA gglucose
-1

 and biomass yield per glucose consume (YX/glucose) 0.19 gcellbiomass gglucose
-

1
, respectively. Temperature and pH have positive effect on accumulation of 

hydrogen peroxide (H2O2) but insensitive against agitation. H2O2 supported growth 

and HA production at limited levels (< 10 mM) regardless of H2O2 being released by 

the cells itself.  
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For bioreactor studies, a central composite design (CCD) was also employed 

to evaluate the optimal aeration, agitation rates and initial glucose concentration so as 

to improve HA production by the S. zooepidemicus cells. The cell biomass and HA 

production were greatly influenced by these factors. The optimal culture conditions 

were at aeration 4.5 lmin
-1

, agitation speed 330 rpm, and initial glucose concentration 

45.0 gl
-1

. Under these conditions, maximum specific growth rate (µmax) obtained was 

1.18 h
-1

, HA and biomass yield per glucose consumed were 0.218 gHA gglucose
-1

 and 

0.37 gcell gglucose
-1

, volumetric mass transfer coefficient and H2O2 concentration were 

0.0323 s
-1

 and 6.94 mM, respectively.  

 

The unstructured kinetic models namely the Logistic, the Logistic 

incorporated Leudeking-Piret-like equation, and Logistic incorporated Leudeking-

Piret equation with time delay, ∆t were proposed and validated. It is found that all the 

models were suitable to describe bacterial growth, substrate utilization and HA 

production at different initial glucose concentration ranging from 10-60 gl
-1

 in batch 

culture. The inhibition of substrate on the growth of the tested strain was also studied 

using different type of models. The Han and Levenspiel model, and the Teissier-type 

model gave the best fit for all the systems studied with R
2
=0.997 and 0.985. 

 

S. zooepidemicus is known to be catalase negative and produced H2O2 which 

may affect cell growth, HA production and glucose utilization. In order to determine 

the resistances of the cell against this oxidizing agent, H2O2, the effect of external 

addition of H2O2 were determined at different batch growth phase. The results 

showed that higher the concentration of H2O2 in the medium, the greater was the 

inhibition. Cells from stationary phase were shown to be more oxidative tolerant 
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compared to the exponential and lag phase. Stationary phase cells were resistant to 

the oxidative agent up to a concentration of 50 mM in the culture broth. 

 

In order to improve the cell biomass and HA production, a continuous culture 

using a chemostat technique also applied. The oxidative response by the oxidizing 

agent, H2O2 at steady state condition also studied. The higher the dilution rate, the 

lower was the cell biomass although the growth limiting substrate glucose increased. 

The highest cell biomass and HA productivity of 0.41 gl
-1

h
-1  

and 0.30 gl
-1

h
-1  

were 

obtained at a dilution rate of 0.24 h
-1

. Several kinetic parameters were also 

determined; maximum specific growth rate, µmax  1.09 h
-1

, Monod cell growth 

saturation, Ks  54.87 gl
-1

 and critical dilution rate, DC  0.504 h
-1

, respectively.  An 

unstructured model based on Monod and Leudeking Piret equation was proposed and 

found to be suitable to describe the cell growth, HA production and glucose 

consumption by S. zooepidemicus at steady state conditions. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Background 

Polysaccharides are renewable resources which offer a wide variety of 

potentially useful products to mankind. They offer a wide variety of glycosidically 

linked structures based on 40 different monosaccharides (Sutherland, 2004). 

Polysaccharide comprised of a distinct class of biopolymer, produced universally 

among living organisms. Polysaccharides form major structural components of the 

walls of marine crustaceans, plants, algae and microorganism. In fact, they exhibit a 

large variety of unique and rather complex chemical structures, different 

physiological functions, and wide range of applications (Steinbüchel and Rhee, 

2005). The importance of polysaccharides in industrial and cosmetic applications is 

enormous with the world market biopolymer estimated to be around US$ 5 to 10 

billion per annum (Goh, 1998). Some of the major commercial polysaccharides and 

their sources are shown in Table 1.1 (Linton et al., 1991).  

 

Table 1.1: Commercial polysaccharides and their sources (De Philippis et al., 2001; 

Sutherland, 1998) 

 

Type of polysaccharides Sources 

 

Alginate Marine algae (Phaeophyceae) 

Carrageenan Marine algae (Rhodophyceae) 

Curdlan Bacteria (Agrobacterium) 

Dextran Bacteria (Leuconostac) 

Gellan Bacteria (Sphingomonas) 

Arabic Gum Plants (Acacia) 

Hyaluronic acid (HA) Bacteria (Streptococcus zooepidemicus) 

Xanthan Bacteria (Xanthomonas campestris) 

Starch Plants 

Pullulan Fungi (Aureobasidium pullulans) 

Pectin Plants (citrus fruits and other sources) 
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During the second half of the 20
th

 century, many new and useful 

polysaccharides of scientific and commercial interests have been discovered which 

can be obtained from microbial fermentation (Sutherland, 1998). The microbial cell 

generally contained various polysaccharide structures contributing its shape and 

rigidity. In prokaryotes, according to Sutherland (2002), these polysaccharides 

include peptidoglycan (composed of repeated units of N-acetyl-D-glucosamine and 

N-acetyl-D-glucuronic acid, found in almost all Eubacteria), lipopolysaccharides (in 

gram-negative bacteria) and teichoic and teichuronic acid (in gram-positive bacteria). 

Microorganisms such as bacteria and fungi produced three distinct types of 

carbohydrate polymers: (1) extracellular polysaccharides (EPS), which can be found 

either as a capsule that enveloped the microbial cell or as an amorphous mass 

secreted into the surrounding medium, (2) structural polysaccharides, which can be 

part of the cell wall and (3) intracellular storage polysaccharides (Kumar and Mody, 

2009). Some of the EPS‟s that have been successfully commercialized are listed in 

Table 1.2. 

 

Table 1.2: Industrially important microbial extracellular polysaccharides, their 

sources and uses (Goh, 1998; Lapasin and Pricl, 1999) 

 

Polysaccharide Microbial source Applications 

 

Alginate Pseudomonas aeruginosa 

Azotobacter vinelandii 

Textile, food and separation media 

Curdlan Alcaligenes faecalis Food 

Dextran Leuconostoc mesenteroides Therapeutic and separation media  

Gellan (S-60) Aereomonas elodea 

Sphingomonas paucimobilis 

Food and reagent 

Hyaluronic acid Streptococcus zooepidemicus Biomedical and cosmetic 

Lentinan Lentinus edodes Anti-cancer 

Pullulan Aereobasidium pullulans Food packaging industrial 

Succinoglycan Pseudomonas 

Rhizobium meliloti 

Oil field and industrial 

Welan (S-130) Alcaligenes Oil field and industrial 

Xanthan  Xanthomonas campestris Food, oil field, paint and industrial 
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The scientific and industrial success of polysaccharides of microbial origin 

was due to several factors. First, they can be produced under controlled conditions 

with selected species; second, they usually present a high structural regularity and 

third, different microorganisms can synthesize a wide range of very specific ionic 

and neutral polysaccharides with widely varying compositions and properties 

(Lapasin and Pricl, 1999). Such a variety is not found among plant polysaccharides 

and perhaps more importantly, it cannot be imitated by means of synthetic chemistry 

(Sutherland, 1999).  

 

One of the important polysaccharides which can be derived from animal 

sources and also produced by microbial fermentation is hyaluronic acid (HA) 

(Marcellin et al., 2009). In Yuzurlhara, a small Japanese village outside Tokyo, ten 

times as many people live the age of 85 than anywhere else in the United States. The 

inhabitants were also healthier and enjoyed great joint mobility, healthy vision and 

displayed usually smooth and well toned skin, even after spending decades farming 

under the sun. Scientist and researchers have examined the reasons for this selective 

longetivity and have determined that HA is the key component: the native lives on a 

diet of sweet potatoes and sticky vegetables that promoted the synthesis of HA 

(Petrella et al., 2007; Price et al., 2007). 

 

HA was discovered by Meyer and Palmer in 1934. This biopolymer was first 

isolated from the vitreous of bovine eyes (Kogan et al., 2007). It was special 

mucopolysaccharides that exist naturally in all living organisms. It occurred 

primarily in the extracellular matrix (ECM) and pericellular matrix (Almond, 2007).  

The largest content of HA so far is found in rooster combs (Kogan et al., 2007). A 
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brief listing of the occurrence of HA in different animal tissues and their contents is 

provided in Table 1.3. Besides vertebrates, HA is also present in the capsules of 

some bacteria (e.g strains of Streptococci), which is absent in fungi, plants and insect 

(Sutherland, 2004) 

 

Table 1.3: Occurrence of hyaluronic acid (HA) in different animal tissues and its 

concentration (Kogan et al., 2007) 

 

Tissues or body 

fluid 

 

Concentration 

(µgml
-1

) 

 

Remarks 

 

 

Rooster comb 

 

7500 

 

The animal tissue with by far the highest HA 

content 

Human 

umbilical cord 

 

4100 

 

Contains primarily HA with a relatively high 

molar mass 

Human joint 

(synovial) fluid 

 

1400-3600 

 

 

The volume of the synovial fluid increases 

under inflammatory conditions. This leads to a 

decreased HA concentration 

Bovine nasal 

cartilage 

 

1200 

 

Often used as a cartilage model in experimental 

studies 

Human vitreous 

body 

 

140-340 

 

 

HA concentration increases upon the 

maturation of this tissue 

 

Human dermis 

 

 

200-500 

 

 

Suggested as a „rejuvenating‟ agent in cosmetic 

dermatology 

 

Human 

epidermis 

 

100 

 

 

HA concentration is much higher around the 

cells that synthesize HA 

 

Rabbit brain 

 

 

65 

 

 

HA is supposed to reduce the probability of 

occurrence of brain tumors 

 

Human thoracic 

lymph 

 

 

0.2-50 

 

 

 

The low molar mass of this HA is explained by 

the preferential uptake of the larger molecules 

by the liver endothelial cells 

 

Human urine 

 

 

0.1-0.3 

 

 

Urine is also an important source of 

hyaluronidase 

 

Human serum 

 

 

 

0.01-0.1 

 

 

 

HA concentrations increase in serum from 

elderly people as well as in patients with 

rheumatoid arthritis and liver cirrhosis. 
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Swan and Kuo (1991) reported that HA was an essential functional 

component of almost all tissues in vertebrate organisms and various animal tissues; 

for instant, rooster combs, shark fin and bovine eyeballs have been used as sources of 

isolation and production of higher molecular weight of HA traditionally. However, it 

was difficult to isolate such a high molecular weight of HA economically from these 

sources because it formed a complex with proteoglycans (O‟Regan et al., 1994). It is 

presently impractical to control the molecular weight of the biopolymer while it is 

synthesized in animal tissue (Vert, 2001). Subsequently, extraction and purification 

processes result in an inherent molecular weight reduction. From a social viewpoint, 

the use of animal-derived biochemical for human therapeutics is being met with 

growing resistance, besides ethic arguments, because of the risk of viral infection 

(Goh, 1998). Besides that, extraction from animal sources also showed higher risks 

of contamination with protein and other glycosaminoglycans (GAGs), which 

required extensive purification (Poli et al., 1996). Therefore, most industries have 

instead turned into bacterial fermentation processes, hoping to obtain commercially 

viable biopolymers (Goh, 1998).  

 

In the nineties, HA from microbial sources through fermentation process has 

provoked great scientific and industrial biopolymer interest especially using gram-

positive bacteria Streptococcus zooepidemicus (Sutherland, 2004). This interest is 

due to an extraordinary properties of HA as well as the increasing demand of HA 

used as a starting materials for the preparation of new biocompatible and 

biodegradable polymers that have applications in many medical and cosmetics 

domains (Jagur-Grodzinski, 1999). For the medicinal purposes, HA is used as an 

anti-adhesive component for a variety of clinical applications such as ophthalmic 
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viscosurgery, viscosupplementation for arthritis (Prestwich et al., 1998; Volpi et al., 

2009), wound healing and plastic surgery (Alaish et al., 1994), supplementation of 

the synovial fluid in patients with osteoarthritis, as a membrane for postsurgical 

separation of tissues (Kogan et al., 2008), and as drug delivery systems (Prestwich 

and Vercruysse, 1998; Luo et al., 2000). Many cosmetics contained HA as an 

ingredient, because it is believed to keep skin young and fresh by preventing dryness 

as a results of its water binding capacity (Baumann, 2009). 

 

 Commercially available HA is produced with the molecular weight ranging 

from less than 1x10
6
 Daltons to as high as 8x10

6 
Daltons (Sutherland, 2004). The 

world market of HA is difficult to estimate, but many companies produced it for 

medical and cosmetic applications. The current world market for HA-based products 

and therapies is worth at least US$ 500,000 per annum and this is rapidly expanding 

in view of the emerging applications (Kogan et al., 1997). The current US market of 

$157 million for viscosupplementation in osteoarthritis is driven by two products, 

Genzyme and Hyalgan from Fidia Pharmaceutical (Sutherland, 1990). The details of 

the major pharmaceutical products are listed in Table 1.4. Although, microbes have 

been exploited for the production of HA by fermentation especially from S. 

zooepidemicus, yet an economically viable biosynthetic process for HA production is 

still to be developed and explored. 
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Table 1.4: Some commercially pharmaceuticals products containing hyaluronic acid 

(HA) (Lerner,1997) 

 

 

No 

 

Products 

Concentration 

(mg ml
-1

) 

Size 

(ml) 

 

Company 

 

Application 

Price 

(USD) 

 

1 AMO Vitrax 

Syringe 

30 65 Allergen Ophthalmology 138 

2 Amvisc Plus 

Syringe 

16 5 Chiron Ophthalmology 145 

3 Amvisc Plus 

Syringe 

16 8 Chiron Ophthalmology 190 

4 Amcisc 

Syringe 

12 5 Chiron Ophthalmology 112 

5 Healon GV 

Syringe 

14 55 Kabi Ophthalmology 101 

6 Healon GV 

Syringe 

14 85 Kabi Ophthalmology 131 

7 Healon 

Syringe 

10 55 Kabi Ophthalmology 94 

8 Hyalgan 

SDV 

10 2 Sanofi Osteoarthritis 166 

9 Hyalgan 

Syringe 

10 2 Sanofi Osteoarthritis 166 

10 Provisc 

Syringe 

10 4 Alcon Ophthalmology 117 

11 Provisc 

Syringe 

10 55 Alcon Ophthalmology 142 

12 Provisc 

Syringe 

10 85 Alcon Ophthalmology 178 

13 Synvisc 

Syringe 

8 3 Wyeth Osteoarthritis 705 

14 Viscous 

Syringe 

 

40 5 Alcon Ophthalmology 151 

 

 

 

 

1.2 Problem Statement 

HA has a great potential for medical and pharmaceutical applications owing to 

its ability to retain large volumes of water and its rheological properties (Holmstrom, 

1967). It is well known that HA and its salts can be obtained from animal sources such 

as human umbilical cord, rooster combs, and from bacterial streptococci culture (A 

and C hemolytic groups) (Ogrodowski et al., 2005). However, some disadvantages are 
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associated with the animal sources, such as relatively low yields, contamination, and 

labor-intensive processing during the purification steps (Chong et al., 2005).  

 

Nowadays, HA from microbial sources through fermentation process has 

received increased attention especially using the gram-positive bacterium S. 

zooepidemicus. Production of HA by this species has been advocated for several 

reasons, technical and economical as well as ethical (Akasaka et al., 1989). 

Furthermore, the biopolymer produced is identical to the eukaryotic HA (Ogrodowski 

et al., 2005). The development of large scale processes had overcome many obstacles, 

including growth in chemically defined media (Van De Rijn and Kessler, 1980; 

Armstrong and John, 1997; Armstrong et al., 1997; Cooney et al., 1999), the 

production of high molecular-weight material (Kim et al., 1996), the elimination of 

toxic impurity such as streptomycin and increasing the yield (Kumar et al., 2008; 

Rangaswamy and Jain, 2008). This bacterial reaction not only gives an opportunity to 

optimize the product yield and quality through genetic engineering and control of 

culture conditions, but can also reduce the manufacturing cost (Armstrong et al., 

1997; Goh, 1998; Marcellin et al., 2009). 

 

Fermentations can be operated in batch, fed-batch or continuous process. In 

most fermentation process, fed-batch process offers many advantages over batch and 

continuous culture (Bibila and Robinson, 1995; Sanchez and Cardona, 2008). A cyclic 

fed batch culture has an advantage where the productive phase of a process may be 

extended under controlled conditions (Arpornwichanop and Shomchoam, 2007). 

However, the controlled periodic shifts in growth rate provide an opportunity to 

optimize product synthesis, particularly if the product of interest is a secondary 
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metabolite whereby maximum production takes place during stationary phase 

(Stanbury et al., 1995). Since the HA is a primary metabolite (Gaudin and 

Meulenberg, 2006) and with respect to studies by Ellwood et al. (1996) on production 

of HA by continuous fermentation of S. zooepidemicus in a chemostat culture which 

gave high yields of HA and uncontaminated by toxic impurities, it was reasonable to 

focus this study on batch and continuous system. 

 

During the fermentation processes, microorganisms is often exposed to multi 

environmental stresses such as low and high temperature, low pH, high osmotic 

pressure, nutrient starvation, and oxidation that can cause loss or reduction of bacterial 

viability, reproducibility as well as organoleptic and fermentative qualities. Among 

these stress factors, oxidation can be considered as one of the most deleterious to the 

cells, causing cellular damage at both molecular and metabolic levels, which is known 

as an oxidative stress (Moodie et al., 2004). Although, several studies have been 

conducted regarding the optimal culture condition for HA production, there are still a 

considerable divergence on the optimization and design of culture conditions 

especially in HA batch culture. 

 

For HA production, it seemed that the agitation and aeration rates were 

additional factors that influenced cell growth and HA production, and it has been a 

subject for many investigations (John et al., 1994; Kim et al., 1996; Armstrong and 

John, 1997; Hasegawa et al., 1999; Chong and Nielsen, 2003; Mashitah et al., 2005).  

Based on the work carried out by John et al. (1994) on the effect of pH, agitation and 

aeration on the production of HA by S. zooepidemicus, HA yield from glucose could 

be improved by improvement of agitation and aeration rates during the fermentation 
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process. Huang et al. (2006) reported that the dissolved oxygen (DO) saturation 

acted as a stimulant to HA synthesis; for scaling up, the DO that was above the 

critical level (5% air saturation) need to be maintained, and a mild agitation was 

needed for homogeneity in the fermenter. Nevertheless, there were some drawbacks 

related to the Streptococcal HA production routes. According to Goh (1998) under 

aerated conditions, HA production was found to be suppressed as a result of growth 

inhibition by the reactive oxygen species which is hydrogen peroxide (H2O2) in 

shake flask culture. Halliwell and Gutteridge (2007) and Mashitah et al. (2005) 

reported that H2O2 though chemically less reactive, was nevertheless a threat to the 

structure and functions of proteins, nucleic acids, lipids and membranes, whether it 

was added externally or produced intracellularly. Little attention has been paid and 

very little published information is available on the effect of oxygen demand and its 

relationship to the oxidative stress responses derived from reactive oxygen species 

on the production of HA by S. zooepidemicus.  In fact, optimization of the aeration 

and agitation rate during fermentation using glucose as a carbon source with respect 

to HA and H2O2 production by this strain has not yet been investigated. 

 

As in lactic acid bacteria, S. zooepidemicus lack in catalases and cytochrome 

system in their respiratory chain (Goh, 1998).  As a result, the reactive oxygen 

species (H2O2), can accumulate to a level that is autoinhibitory or inhibitory to other 

metabolites or bacteria (Condon, 1987). Although, Mashitah et al. (2005) reported 

that in aerobic batch fermentation, a protective response could have been created by 

S. zooepidemicus cells up to a certain level of H2O2, but at high levels the protective 

mechanism became fully saturated. Previously, Halliwell and Gutteridge (1990) also 
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reported that most living organisms may evolve defense mechanisms or oxidative 

stress response when exposed to sub-lethal levels of H2O2.  

 

Different concentrations of H2O2 were believed to have different influence on 

the different types of microorganisms (Roundy, 1958). For example, for Escherichia 

coli, the concentration of H2O2 that lied between 0.1 and 1.0 mM have shown to have 

killing or toxic effects and the killing was maximal between the concentration of 1.0 

and 3.0 mM; whereas, killing occurred at higher concentrations of H2O2 (up to at 

least 50 mM) has showed to occur at slower rate (Farr and Kogoma, 1991). For S. 

zooepidemicus, a systematic study of how H2O2 effects streptococcal HA 

concentration in a bioreactor has not been reported, nor has there been any 

description of how the interaction between H2O2 and HA capsule and its defense 

mechanism are related over batch and continuous time courses. 

 

From the above discussion, it is apparent that the S. zooepidemicus cells have 

significant effect on the oxidative stress by the cell itself as well by the addition of 

exogenous H2O2. Consequently, fermentation kinetic analyses over a broad range of 

environmental conditions need to be carried out for the development of better 

strategies for the optimization of the fermentation process. It is anticipated that such 

an approach would provide a means of assessing the importance of such effects to 

substrate limitation, product inhibition, endogenous metabolism, etc. and will allow 

an estimation of the values of the kinetic constants involved in each of them. 
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1.3 Research Objectives 

In view of the above observations, this study was carried out with the 

following objectives: 

 

i. To determine the optimum fermentation conditions of HA production by 

S. zooepidemicus using “one-factor-at-a-time” technique and statistical 

design approach in shake-flask culture. 

 

ii. To determine the optimum of initial glucose concentration, aeration and 

agitation speed in a bioreactor of batch mode using a statistical design 

approach in order to improve the HA production by S. zooepidemicus 

cells. 

 

iii. To propose and validate the kinetics model for microbial growth, glucose 

consumption and inhibition and HA production by S. zooepidemicus in 

batch culture. 

 

iv. To determine the sensitivity of S. zooepidemicus cells to an oxidizing 

agent, H2O2 added externally at different growth phases during HA 

production in batch culture. 

 

v. To evaluate the effect of dilution rate, proposed and validate the kinetic 

models of cell growth, substrate utilization, HA production and 

accumulation of H2O2 by the S. zooepidemicus cells in continuous mode. 
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1.4 Scope of Study 

In view of the demand for HA products in pharmaceutical and cosmetic 

industries by microbial fermentation, this study presents an investigation on the 

fermentation of HA by S. zooepidemicus ATCC 39920 at various conditions of 

fermentation using optimization and kinetic analysis to increase the production of 

HA either in batch or continuous system. An oxidative stress response to the S. 

zooepidemicus cells due to accumulation of H2O2 in culture broth and external 

addition of H2O2 into the fermentation medium was studied at different phases of the 

fermentation processes.  

 

Initially, process optimization of various inoculum sizes, temperature, pH, 

and agitation speed required for the production of HA by S. zooepidemicus using 

“one-factor-at-a-time” approach were evaluated in shake-flask cultures. After that, 

optimization using a statistical approach was carried out with a selected independent 

factor in a similar batch mode. At present, there is still no report on the use of 

statistical design in improving HA production from S. zooepidemicus. This method 

has been widely used in order to improve the product yield, reduce development time 

and overall process costs (Kammoun et al., 2008; Guo et al., 2009). In this study, 

process optimization was employed using response surface methodology (RSM) 

based on central composite design (CCD). The interaction between the factors that 

influenced the response of cell biomass yield, HA yield, and accumulation of H2O2 

in culture broth has been discussed.  

 

 Since the initial glucose concentration, aeration, and agitation have 

significant impact on cell growth and HA yield, process optimization using DOE 
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coupled with RSM was further used to investigate the optimum condition in a 

bioreactor for improving the HA production. The focus of this study is not only to 

clarify the effect of oxygen demand to the cell growth and HA production by 

changing the agitation speed and aeration, but also to study the effect of various 

initial glucose concentrations so as to find the limitation and inhibition 

characteristics of the substrate utilization by the tested strain. Volumetric mass 

transfer coefficient (kLa) and accumulation of H2O2 in culture broth were also taken 

into account as a response during the process optimization.  

 

Kinetic studies of cell growth, glucose uptake and HA productions were 

carried out to evaluate the fermentation characteristics. Three different models 

namely Monod and Logistic equations for cell growth, the Logistic incorporated 

Leudeking-Piret-like equation for glucose consumption and the Logistic incorporated 

Leudeking-Piret equation with time delay, ∆t for HA production were proposed.  The 

inhibition of substrate and toxic materials production on the growth of S. 

zooepidemicus in HA production using glucose as the major carbon source in a batch 

culture was also studied. Different kinetic models for inhibition studies were tested 

and the results obtained for each parameter were compared. 

 

Oxidative stress in cell is usually studied by exposing the cell to high 

concentration of pro-oxidants for a short period of time by single addition of 

stressing chemicals, and comparing the enzymes activities obtained in stressed 

cultures and control cultures a few hours after the addition of the stressing compound 

such as H2O2. Studies on the effect of H2O2 are quite interesting as it is very reactive 

and a strong oxidizing agent. Since H2O2 is uncharged, it can readily diffuse across 
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membrane. H2O2 causes significant damage because it is not restricted to its point of 

synthesis in the cell and enter into numerous other reactions. Therefore, the 

fermentation products may be damaged and decreased under aerobic conditions as a 

result of the inhibition and the metabolism by H2O2. Due to that, the cultures 

response to oxidative stress produced either by the S. zooepidemicus cells itself or by 

the addition of exogenous H2O2 has been studied at different phases of fermentation, 

and various conditions of the fermentation processes. 

 

Although traditional batch fermentation seemed to dominate the bacterial 

biopolymer fermentation today (Garcia-Ochoa et al., 2000; Ogrodowski et al., 2005), 

there is much interest in using fed batch and continuous culture for improving the 

biomass and HA productions. However, with respect to Streptococci cell, which have 

cell wall could be changed by growth under different nutrient limitations, in this 

study, a continuous fermentation using chemostat technique has been carried out at 

different dilution rate on the growth, substrate utilization, HA production, and 

accumulation of H2O2 in culture broth. Thus, fermentation kinetic model of 

microbial growth, substrate utilization and product formation for continuous mode 

were proposed and validated. 
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1.5  Organization of the Thesis 

There are five chapters in this thesis and each chapter described the sequence of this 

study. 

 

 Chapter 1: This introductory chapter emphasized the importance of HA 

production to its commercial end-used functions. Problem statements, 

research objectives, scope of research and thesis organization were also 

highlighted. 

 

 Chapter 2: This chapter surveyed the history, chemical structure, 

application and properties of HA. Process fermentation of HA in batch and 

continuous system, oxidative stress phenomena, kinetic and modeling 

studies during fermentation process were also discussed in detail. 

 

 Chapter 3: The material and methods used in this study were discussed in 

detail in this section. 

 

 Chapter 4: This chapter presents the fermentation results of HA by S. 

zooepidemicus in batch and continuous system. Process parameter 

optimization of HA by S. zooepidemicus in shake flask culture and 

bioreactor were obtained from the design of experiment (DoE) coupled 

with response surface methodology (RSM). Sensitivity of the oxidizing 

agent (H2O2) in culture broth at every phase of the fermentation process 

was also discussed. The kinetics and modeling for fermentation process in 

batch and continuous systems were also presented.  
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 Chapter 5: This chapter summarized the overall findings based on the 

results obtained in the previous chapter. Recommendations for future 

research were also given in this section. 
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CHAPTER TWO 

LITERATURE REVIEW 

 

2.1 Hyaluronic acid (HA) 

Hyaluronic acid (HA) is a naturally occurring biopolymer, which serves as an 

important biological function in bacteria and higher animals including humans. In 

1934, Karl Meyer described a procedure for isolating a novel glycosaminoglycan 

from the vitreous humors of bovine eyes and named it hyaluronic acid (HA) (from 

the Greek hyalos=glassy, vitreous) (Luo et al., 2000). This substance contained 

uronic acid and an amino sugar, but no sulfoesters (Weigel et al., 1997). During the 

1930s and 1940s, HA was isolated from many sources such as the vitreous body, 

synovial fluids, umbilical cord, skin, rooster comb and also from streptococci 

(Yamada and Kawasaki, 2005). The physical-chemical characterization of HA was 

carried out during 1950s and 1960s (Sutherland, 1994). Hardingham and Muir (1972) 

discovered that HA interacted with cartilage proteoglycan and served as a central 

structural backbone and cartilage. This was the first example of a specific interaction 

between HA and protein and many more such interactions were discovered during 

90’s. After 1980, the research has spread in many directions, mainly because it has 

been assumed that HA belonged to the proteoglycans and synthesis of HA occurred 

in Golgi body (Sutherland, 1994). The application of HA for medical purposes was 

first discovered by Balaz et al. in 1982 (Sutherland, 1994). A highly viscous and 

non-inflammatory preparation was produced and commercial scale for both 

ophthalmic surgery and as viscous-supplementation for synovial fluids in patients 

with osteoarthritis has been applied and well-known throughout the world (Kogan et 

al., 2007). 
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2.2 Structure and Properties of HA 

Naturally occurring HA could be found in the tissue of higher animals, in 

particular as intercellular space filler (Balazs et al., 1991). It is found at higher 

concentrations in the vitreous humour of the eye and in the synovial fluid of articular 

joints (Fraser et al., 1977). In gram positive streptococci, it appeared as a mucoid 

capsule surrounding the bacterium (Plate 2.1 and 2.2). 

 

 

Plate 2.1: S. zooepidemicus cell with HA capsule from aerated culture (Goh, 1998) 

 

 

 

 

Plate 2.2: Cross-section of S. zooepidemicus cell with HA capsule from aerated 

culture (Goh, 1998) 
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The following description of the structures and properties of HA are based on 

that of Kogan et al. (2007). The utility of this biopolymer is derived from a 

remarkably simple construction. HA belongs to the family of glycosaminoglycan, 

also known as mucopolysaccharide. Glycosaminoglycan is a group of biopolymers, 

which include chondroitin sulphate, dermatin sulphate and heparan sulphate. This 

polymer comprised of D-glucuronic acid (GlcUA) and N-acetylglucosamine 

(GlcNAc) linked by β(1-3) glycosidic bond, with the disaccharide repeating units 

linked β(1-4) glycosidic bonds (Figure 2.1) (Ogrodowski et al., 2005). However, the 

structure of HA was the most simple, the only one that is not covalently associated 

with the core protein, not synthesized in Golgi apparatus, and the only non-sulfate 

one (Chong et al., 2005 and Kogan et al., 2007).  

 

Figure 2.1: Structure (disaccharide repeating unit) of HA (Ogrodowski et al., 2005) 

 

When HA is incorporated into a neutral aqueous solution, hydrogen bond 

formation occurred between the water molecules and adjacent carboxyl and N-acetyl 

groups. This imparted a conformational stiffness to the polymer, which limited its 

flexibility (Fraser et al., 1997). The hydrogen bond formation resulted in a unique 

water-binding and retention capacity of the polymer. It also followed that the water-

binding capacity was directly related to the molecular weight of the molecule 

(Laurent and Fraser, 1992). Sutherland (1998) reported that up to six liters of water 
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may be bound in one gram of HA. The molecular mass of HA can reach as high as 

1x10
3
 kDa. Such high molecular mass and its associated unique viscouselastic and 

rheological properties predispose HA to play an important physiological roles in 

living organisms and made it an attractive biomaterial for various medical 

applications. The extrusion of HA through the cell membrane as it is produced 

permitted unconstrained polymer elongation, and hence, molecule with a very high 

molecular weight (Scott et al., 1991). 

 

2.3 Biosynthesis of HA 

HA is produced naturally in all eukaryotic cells (Sutherland, 2001). It is 

synthesized by a class of integral membrane proteins called hyaluronan synthases 

(HAS), of which vertebrates have three types: hasA, hasB, and hasC (Chong et al., 

2005). The hasA gene product was a 42 kDa membrane protein which displayed 

similarity in amino acid sequence to chitin synthase (DeAngelis, 1993), whereas 

hasB and hasC encode UDP-glucose dehydrogenase and UDP-glucose 

pyrophosphorylase, respectively. Both of them were essential in the synthesis of 

UDP-GlcUA. In fact, the UDP-GlcNAc precursor is believed to be synthesized by 

the so-called housekeeping genes since it is required in the synthesis of 

peptidoglycan (O’Reagen et al., 1994). These enzymes can be elongated  by 

repeatedly adding glucuronic acid (GlcUA) and N-acetylglucosamine (GlcNAc) to 

the nascent polysaccharide as it is extruded through the cell membrane into the 

extracellular space (Chong et al., 2005). Both monomers of HA are derived from 

intermediates of glycolysis – GlcUA from glucose-6-phosphate and GlcNAc from 

fructose-6-phosphate (Chong et al., 2005). Biosynthetic pathway for HA is described 

and presented in Figure 2.2 (Goh, 1998; Chong et al., 2005).  

http://en.wikipedia.org/wiki/Hyaluronan_synthase
http://en.wikipedia.org/wiki/Cell_membrane
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Figure 2.2: Biosynthetic pathway of HA (Goh, 1998) 

 

The first reaction in the pathway leaving the glucose-6-phosphate node as a 

common step in the production of storage polysaccharides in many organisms. The 

α-phosphoglucomutase (EC 5.4.2.2) converts glucose-6-phosphate to glucose-1-

phosphate in a reversible reaction. UDP-glucose pyrophosphorylase (EC 2.7.7.9), 

then catalyses the reaction of UTP and glucose-1-phosphate to produce the 

nucleotide sugar UDP-glucose. UDP-glucuronic acid is then obtained by a specific 

oxidation of the primary alcohol group of UDP-glucose through the action of UDP-

glucose dehydrogenase (EC 1.1.1.22). The pathway originated from fructose-6-

phosphate was involved in the production of amino sugars. Amino group transfer 

from glutamine to fructose-6-phosphate by an amidotransferase (EC 2.6.1.16) 
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yielded the glucosamine-6-phosphate. Acetyl group transfer by an acetyltransferase 

(EC 2.3.1.4) formed N-acetyl glucosamine-6-phosphate (Goh, 1998; Chong et al., 

2005). 

 

Actually, this was an energy-consuming step since hydrolysis of the thioester 

bond in acetyl-CoA liberated the energy equivalent of ATP hydrolysis. Phosphate 

group rearrangement by a mutase (EC 5.4.2.3) generated N-acetyl glucosamine-1-

phosphate from N-acetyl glucosamine-6-phosphate. Finally, a pyrophosphorylase 

(EC 2.7.7.23) added UDP to obtain UDP-N-acetylglucosamine. The participation of 

UTP in these reactions generates activated glycosyl donors that can be polymerised 

into HA by HA synthase.  

 

A total of 4 mol ATP were consumed to produce 1 mol HA disaccharide 

repeating unit; 2 mol ATP were consumed in two glucokinase reactions to provide a 

phosphorylated hexose precursor for each branch of the HA pathway, and the other 2 

mol ATP were utilized to regenerate the donor species UTP. The oxidation reaction 

catalysed by UDP-glucose dehydrogenase generated 2 mol of NADH for each 1 mol 

of HA synthesized. In the facultative microbes that naturally produced HA, these 

reduction equivalents cannot be utilized for energy generation (Chong et al., 2005). 

Besides furnishing precursors for HA synthesis, these two pathways also supplied the 

structural constituents of the bacterial cell wall, specifically peptidoglycan, teichoic 

acids and antigenic wall polysaccharides. These three major wall components 

accounted for 20% (w/w) of the cell dry weight, and represented a significant drain 

on the precursor pool used to synthesis HA (Yamada and Kawasaki, 2005).  
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2.4 Applications of HA 

Balaz et al., (1982) pioneered the application of HA for medical purposes 

which produced a highly viscous and non inflammatory process (Hargittai and 

Hargittai, 2008). The US Food and Drug Administration (FDA) have approved this 

drug for clinically utilizable material, such as in eye surgery, knee joint and the 

treatment of burns and skin ulcers (Yadav et al., 2008). HA is widely needed by all 

range of people regardless of sexes and age. The basic area of the clinical 

applications of HA and its derivative are classified by Balaz et al. (1989) as shown in 

Table 2.1, and applications of HA in the biomedical field are summarized in Table 

2.2. 

 

Table 2.1: Classification and clinical application of HA (Garg and Hales, 2004) 

 

Application Description 

 

Viscosurgery To protect delicate tissue and provide space 

during surgical manipulations, as in 

ophthalmological surgeries. 

 

Viscoargumentation To fill and augment tissue spaces, as in skin, 

sphincter muscles, vocal and pharyngeal tissues. 

 

Viscoseparation To separate connective tissue surface traumatized 

by surgical procedure or injury, in order to 

prevent adhesions and excessive scar formation. 

 

Viscosupplementation To replace or supplement tissue fluids, such as 

replacement of synovial fluid in painful arthritis, 

and to relieve pain. 

 

Viscoprotection To protect healthy, wounded or injured tissue 

surfaces from dryness or noxious environmental 

agents and to promote the healing of such 

surfaces. 
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Table 2.2: Summary of the current and potential applications of HA and its 

derivatives. 

 

Application of HA Description References 

 

 

Ophthalmic 

 

HA has been used as viscous gel which 

could be injected into the arterial 

chamber of the eye to protect tissues 

such as the cornel endothelium 

 

 

Nishida et al., 

1991 

Arthritis HA has been used for several 

degenerative joint diseases as an 

alternative to the traditional steroid 

therapy 

 

Wobig et al., 1999 

 

Wound Healing 

and Scaring 

HA has been used to foster the healing 

process, for burn and chronic ulcer 

patients 

 

Goa and Benfield, 

1994 

Adhesion 

Prevention 

HA preparations such as Separafilm 

from Genzyme can reduce adhesions 

and improve the surgical outcome 

 

Beck, 1997 

Drug Delivery HA is an ideal molecule for use as 

carrier of drugs, particularly for local 

administration. Investigations are on-

going for topical and intravenous drug 

delivery system using modified HA  

 

Vercruysse and 

Prestwich, 1998 

 

 

2.5 Production of HA  

HA has been commercially produced by two methods: chemical extraction of 

animal tissue and microbial fermentation (Chong et al., 2005).  There are many HA 

producers worldwide as shown in Table 2.3. Today, there are still many products in 

the market that contained HA, which was isolated and extracted from animal tissue. 

This could be due to the high molecular weight, purity and non-inflammatory 

properties of HA (Kim et al., 2006).  
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