PRODUCTION OF HYALURONIC ACID BY STREPTOCOCCUS ZOOEPIDEMICUS ATCC 39920

NOOR FAZLIANI BINTI SHOPARWE

UNIVERSITI SAINS MALAYSIA 2010

PRODUCTION OF HYALURONIC ACID BY STREPTOCOCCUS ZOOEPIDEMICUS ATCC 39920

by

NOOR FAZLIANI BINTI SHOPARWE

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

APRIL 2010

ACKNOWLEDGEMENT

In the name of Allah the Most Beneficient and the Most Merciful. Alhamdulillah, All praises to Allah The Almighty for giving me the strengths, guidance and patience in completing my Master Degree. Peace and blessing to Nabi Muhammad S.A.W, all the prophets, their families and all the Muslims. This research project would not have been successful without help and assistance from many people. With my honor and gratitude, I offer my recognition to all who lend me their assistance and support.

First and foremost, my deepest gratitude to my loving husband Mr. Mera Uzaini Syaihan bin Rajam for his love, understanding, encouragement, prayers and patience that supported me through the whole course of this study. Words are inadequate to express my deep sense of devotion and indebtedness to my loving father Shoparwe bin Marto, sweetest mother Kasminah bte Hussin, Siblings and Parents in Law, whose heart beat with golden sentiment, whose hand are always raised to pray for my success.

I wish to express my profound appreciation and sincerest thanks to my worthy supervisors Associate Professor Dr. Mashitah Mat Don, Department of Chemical Engineering, Univeristi Sains Malaysia for her keen interest, continuous support and help, constructive suggestion and scholastic persuation during the course of this project and preparation of this dissertation. I fell highly privileged to extend my genuine appreciation to my co-supervisor Dr. Mohammad Hekarl Uzir for his incessant support, guidance and provided constructive comment during my study.

ii

I would like to express my sincere gratitude to the Dean School of Chemical Engineering, Professor Dr. Abdul Latif Ahmad, Deputy Dean of Postgraduate Student Affairs, Dr. Zainal Ahmad and Deputy Dean of Academic and Student Affair, Dr. Syamsul Rizal Abd Shukor for the continuous support and help towards my postgraduate affairs. Sincere thanks to all lecturers, technicians and staff for their cooperation and warmest helping hand. On top of that, I would like to express my appreciation to Mr. Fendi, Mr. Ibrahim and Miss Fuziana From Veterinar Department, Bukit Minyak, Pulau Pinang for their cooperation and warmest helping during sheep blood collection.

Last but not least, thanks to all my beloved friends Teeja, Aziah, Kak Min, Syura, Nora, Jus, Jib, Hafiz, Shitah and other colleagues whom I not able to address here for your sincere help, concern, moral support and kindness. Thanks for the friendship and memories. Finally, I would like to thank everybody who was important to the successful realization of my Master Degree, as well as expressing my apology that I could be mention personally one by one. I love you all!!!

Noor Fazliani Shoparwe, 2010

School of Chemical Engineering, USM

TABLES OF CONTENTS

Page

ACK	NOWL	EDGMENTS	ii
TAB	LE OF	CONTENTS	iv
LIST	OF TA	ABLES	ix
LIST	OF FI	GURES	xii
LIST	OF PL	ATES	xviii
LIST	OF SY	MBOLS	xix
LIST	OF AF	BREVIATIONS	XX
ABS	ГRAK		xxi
ABS	ГКАСТ		xxiv
CHA	PTER	ONE: INTRODUCTION	1
1.1	Backg	ground	1
1.2	Proble	em Statement	8
1.3	Resea	rch Objectives	12
1.4	Scope	e of Study	13
1.5	Orgar	nization of the Thesis	16
CHA	PTER	FWO: LITERATURE REVIEW	18
2.1	Hyalu	ronic acid (HA)	18
2.2	Struct	ure and Properties of HA	19
2.3	Biosy	nthesis of HA	21
2.4	Appli	cations of HA	24
2.5	Produ	ction of HA	25
2.6	Produ	ction of HA by Microbial Fermentation of S. zooepidemicus	27
	2.6.1	S. zooepidemicus	27
	2.6.2	Culture Condition for HA Production S. zooepidemicus	28
		2.6.2 (a) Effect of Inoculums Size	28
		2.6.2 (b) Effect of Medium Composition	29
		2.6.2 (c) Effect of Culture pH	30

2.6.2 (d) Effect of Temperature 30

	2.6.2 (e) Effect of Agitation Speed and Aeration	31
2.7	Process Optimization Studies	31
	2.7.1 Design of Experiment (DoE)	31
	2.7.2 Response Surface Methodology (RSM)	32
	2.7.3 Central Composite Design (CCD)	34
2.8	Oxidative stress	36
2.9	Hydrogen Peroxide (H ₂ O ₂)	39
2.10	Batch Fermentation Process	40
	2.10.1 Batch Fermentation Kinetics Studies	40
	2.10.1 (a) Specific Growth Rate, (μ) .	40
	2.10.1 (b) Yield of Coefficient	41
	2.10.1 (c) Doubling Time, t_D	41
	2.10.2 Batch Fermentation Kinetic models	42
2.11	Continuous Fermentation Process (Chemostat Technique)	43
	2.11.1 Continuous Fermentation Kinetic studies	45
	2.11.2 Continuous Fermentation Model	46
2.12	Volumetric Mass Transfer Coefficient	46
CHA	PTER THREE: MATERIAL AND METHODS	47
3.1	Materials and Chemicals	47
3.2	Equipments	48
3.3	Microorganism	49
3.4	Flowchart of Experiment	50
3.5	Preparation of Cell Suspension	51
3.6	Preparation of Inoculum	51
3.7	Preparation of Fermentation Medium	51
3.8	Fermentation Equipment	52
	3.8.1 Shake-flask Experimental Set-up	52
	3.8.2 Bioreactor Set-up	52
	3.8.3 Continuous Fermentation Set-up	53
3.9	Culture Methods for Cell Growth and HA production	55
	3.9.1 Shake-flask Studies	55
	3.9.1 (a) Optimization using one "One-factor-at-a-time" Technique	55

		Effect of Inoculum Size	55
		• Effect of pH	55
		• Effect of Temperature	55
		• Effect of Agitation Speed	56
		3.9.1 (b) Optimization using the Design of Experiment (DoE)	56
	3.9.2	Bioreactor Studies	57
		3.9.2 (a) Optimization of Fermentation Condition using the Design of Experiment (DOE) in a 2 L Bioreactor	57
	3.9.3	Continuous Fermentation Studies	58
		3.9.3 (a) Effect of Dilution Rate	58
3.10	Studies H ₂ O ₂	on the Sensitivity of S. zooepidemicus to an Oxidizing Agent,	58
	3.10.1	Shake-flask Culture Studies	58
	3.10.2	Bioreactor Studies	59
3.11	Analyti	cal Methods	59
	3.11.1	Determination of Cell Biomass	59
		3.11.1 (a) Optical Density	60
		3.11.1 (b) Dry Cell Weight Determination	60
	3.11.2	Determination of HA Concentration	60
		3.11.2 (a) HA Calibration Plot	62
	3.11.3	Determination of Glucose Concentration	62
		3.11.3 (a) Glucose Calibration Plot	62
3.12	Determ	ination of H ₂ O ₂ Concentration	63
3.13	Determi	nation of Volumetric Mass Transfer Coefficient, $k_L a$	63
СНА	PTER F	OUR: RESULTS AND DISCUSSION	66
4.1	Batch Cultur	Fermentation of HA by <i>S. zooepidemicus</i> in Shake-flask e	67
	4.1.1	Optimization using "One-factor-at-a-time" Technique	68
		4.1.1 (a) Effect of Inoculum Size	68
		4.1.1 (b) Effect of pH	70
		4.1.1 (c) Effect of Temperature	72
		4.1.1 (d) Effect of Agitation Speed	74
	4.1.2	Optimization of Fermentation Conditions using Response	76

Surface Methodology (RSM) in Shake-flask Culture

		4.1.2	(a) Development of Regression Model Equation and Statistical Analysis	77
		4.1.2	(b) Effect of Process Parameter	81
		4.1.2	(c) Responses of <i>S. zooepidemicus</i> Cells to Self Produced H_2O_2 during Fermentation	87
		4.1.2	(d) Optimum Range of Process Parameter Studies	90
		4.1.2	(e) Validation of the Models	91
		4.1.2	(f) Comparison of the Performance of Cell Growth and HA Production by <i>S. zooepidemicus</i> using "One- factor-at-a-time" and Response Surface Methodology Technique	93
4.2 B	atch Fe	rmenta	tion of HA by S. zooepidemicus in a 2 L Bioreactor	94
	4.2.1	Optim Surfac	ization of Fermentation Conditions using Response ce Methodology (RSM)	94
		4.2.1	(a) Development of Regression Model Equation and Statistical Analysis	95
		4.2.1	(b) Process Parameter Studies	102
		4.2.1	(c) Optimum Range of Parameter Studies	115
		4.2.1	(d) Validation of the Models	117
		4.2.1	(e) Batch Fermentation Profiles of HA Fermentation at Optimum Condition	119
4.3	Kinet Produ	ics and tion in	d Modeling of <i>S. zooepidemicus</i> Growth and HA n Batch Culture	121
		4.3.1	(a) Proposed Kinetic Model	121
			(i) Microbial Growth	121
			(ii) Substrate Consumption	123
			(iii)Product Formation	125
		4.3.1	(b) Model Parameters Estimation	127
		4.3.1	(c) Model Fitting	127
			(i) Microbial Growth	127
			(ii) Substrate Consumption	130
			(iii)Product Formation	132
		4.3.1	(d) Validation of Models	134
		4.3.1	(e) Comparison of Substrate Inhibition Model	137
4.4	Sensiti Differe	ivity of ent Gro	S. zooepidemicus Cells to Oxidizing Agent, H_2O_2 at with Phase in Batch Culture	142

	4.4.1	Shake-	-flask Studies	142
	4.4.2	Biorea	actor Studies	144
4.5	Contin	uous Fe	ermentation of HA by S. zooepidemicus	150
	4.5.1	Effect zooepie	of Dilution Rate on HA Fermentation by <i>S</i> . <i>idemicus</i> in Continuous Culture	152
4.6	Kinetio Contin	cs and uous Cu	Modeling of HA Production by S. zooepidemicus in ulture	157
		4.6.1	(a) Proposed Kinetic Model	157
			(i) Microbial Growth	157
			(ii) Substrate Consumption	159
			(iii) Product Formation	161
			(iv) Washout in Continuous Culture	162
		4.6.1	(b) Kinetic Parameters Estimation	162
		4.6.1	(c) Model Fitting	163
			(i) Microbial Growth	163
			(ii) Substrate Consumption	164
			(iii) Product Formation	165
		4.6.1	(d) Validation of Models	166
		4.6.1	(c) Comparison between Batch and Continuous Fermentation	168
CHAI	PTER F	TVE: C	CONCLUSIONS AND RECOMMENDATIONS	170
5.1	Conclu	usions		170
5.2	Recom	nmendat	tions	173
REFE	RENC	ES		174
APPE	NDICE	ËS		191
Appen	dix A: S	Standard	d Calibration Curve and HPLC Chromatograms	191
Appen	dix B: I	Polymat	th Results	196
Appen	dix C: A	Analytic	cal Solution of Unstructured Model	197

LIST OF PUBLICATIONS AND SEMINARS	203

LIST OF TABLES

		Page
Table 1.1	Commercial polysaccharides and their sources	1
Table 1.2	Industrially important microbial extracellular polysaccharides, their sources and uses	2
Table 1.3	Occurrence of hyaluronic acid (HA) in different animal tissues and its concentration	4
Table 1.4	Some commercially pharmaceuticals products containing hyaluronic acid (HA)	7
Table 2.1	Classification and clinical application of HA	24
Table 2.2	Summary of the current and potential applications of HA and its derivatives	25
Table 2.3	Some giant producers of HA in throughout the world	26
Table 2.4	Molecules mediating oxidative stress	37
Table 3.1	Chemical used in the experiment	47
Table 3.2	List of major equipments used in this experiment	48
Table 3.3	Independent variables of design of experiment (DOE) for shake-flask study	56
Table 3.4	Independent variables of design of experiment (DOE) for bioreactor study	58
Table 4.1	Kinetic analysis of cells growth and HA production by <i>S. zooepidemicus</i> in shake-flask culture at different pH	71
Table 4.2	Kinetic analysis of cells growth and HA production by <i>S. zooepidemicus</i> in shake-flask culture at different temperature	72
Table 4.3	Kinetic analysis of cells growth and HA production by <i>S. zooepidemicus</i> in shake-flask culture at different agitation speed	75
Table 4.4	List of levels of the experimental independent variables	77

Table 4.5	Comparison between experimental and predicted values of HA yield, cell biomass yield and H_2O_2 concentration by <i>S. zooepidemicus</i> in shake-flask culture	78
Table 4.6 (a)	Analysis of variance (ANOVA) for the regression model of HA yields	79
Table 4.6 (b)	Analysis of variance (ANOVA) for the regression model for of cell biomass yield	80
Table 4.6 (c)	Analysis of variance (ANOVA for the regression model for H_2O_2 concentration	80
Table 4.7	Verification study at optimum condition of pH, temperature and agitation in shake-flask culture	92
Table 4.8	Performance of HA production by <i>S. zooepidemicus</i> at optimum condition obtained by using "one-factor-at-a-time" and response surface methodology	94
Table 4.9	List of range and levels of the experimental independent variables	95
Table 4.10	Comparison of experimental and predicted values of specific growth rate, HA yield, cell biomass yield, volumetric mass transfer coefficient (k_La), and H ₂ O ₂ concentration by <i>S. zooepidemicus</i> in a 2 L bioreactor	96
Table 4.11 (a)	Analysis of variance (ANOVA) for regression model of specific growth rate	98
Table 4.11 (b)	Analysis of variance (ANOVA) for regression model of HA yield	99
Table 4.11 (c)	Analysis of variance (ANOVA) for regression model of cell biomass yield	99
Table 4.11 (d)	Analysis of variance (ANOVA) for regression model of mass transfer coefficient, $k_L a$	100
Table 4.11 (e)	Analysis of variance (ANOVA) for regression model of hydrogen peroxide concentration	100
Table 4.12	Verification of predicted and experimental values for aeration, agitation speed and initial glucose concentration under optimum condition	118
Table 4.13	Empirical constant for product formation	125

Table 4.14	Kinetic model parameters of cell biomass production at different initial glucose concentrations	129
Table 4.15	Kinetic model parameters of substrate utilization at different initial glucose concentrations	131
Table 4.16	Kinetic model parameters of HA production at different initial glucose concentrations	133
Table 4.17	Mean squares error (MSE) value obtained from experimental data and simulated value, for cell biomass production, glucose utilization and HA production	137
Table 4.18	Substrate inhibition kinetic model	138
Table 4.19	Estimated parameter values of substrate inhibition model for batch fermentation of <i>S. zooepidemicus</i> at different initial glucose concentrations.	139
Table 4.20	Parameter estimation from continuous fermentation model	163
Table 4.21	Comparison between Batch and Continuous Culture	168

LIST OF FIGURES

Figure 2.1	Structure (disaccharide repeating unit) of HA	20
Figure 2.2	Biosynthetic pathway of HA	22
Figure 2.3	Three types of central composite design	35
Figure 2.4	Continuous fermentation using chemostat technique	44
Figure 3.1	Steps involved in HA production by S. zooepidemicus	50
Figure 3.2	Results obtained experimentally during dynamic gassing out method for determination of $k_L a$ during HA production by <i>S. zooepidemicus</i> (agitation speed 300 rpm and aeration 4 lmin ⁻¹)	65
Figure 4.1	Effect of inoculum sizes on (a) cells growth, (b) Maximum specific growth rate and (c) HA productions by <i>S. zooepidemicus</i> in shake-flask culture.	69
Figure 4.2	Effect of pH on (a) cells growth and (b) HA production by <i>S. zooepidemicus</i> in shake-flask culture	71
Figure 4.3	Effect of temperature on (a) cells growth and (b) HA production by <i>S. zooepidemicus</i> in shake-flask culture	73
Figure 4.4	Effect of agitation speed on (a) cells growth and (b) HA production by <i>S. zooepidemicus</i> in shake-flask culture	75
Figure 4.5 (a)	Response surface plot for the effect of agitation and pH on HA yield	82
Figure 4.5 (b)	Response surface plot for the effect of agitation and temperature on HA yield	82
Figure 4.5 (c)	Response surface plot for the effect of pH and temperature on HA yield	83
Figure 4.6 (a)	Response surface plot for the effect of agitation and pH on cell biomass yield	83
Figure 4.6 (b)	Response surface plot for the effect of agitation and temperature on cell biomass yield	84

Figure 4.6 (c)	Response surface plot for the effect of pH and temperature on cell biomass yield	84
Figure 4.7 (a)	Response surface plot for the effect of agitation and pH on concentration of H_2O_2	88
Figure 4.7 (b)	Response surface plot for the effect of agitation and temperature on concentration of H_2O_2 .	88
Figure 4.8 (a)	Response surface plot for the effect of aeration and agitation on specific growth rate	103
Figure 4.8 (b):	Response surface plot for the effect of aeration and agitation on HA yield	103
Figure 4.8 (c)	Response surface plot for the effect of aeration and agitation on cell biomass yield	104
Figure 4.8 (d)	Response surface plot for the effect of aeration and agitation on mass transfer coefficient, $k_L a$ (s ⁻¹)	104
Figure 4.8 (e)	Response surface plot for the effect of aeration and agitation on H_2O_2 concentration	105
Figure 4.8 (f)	Response surface plot for the effect of initial glucose concentration and aeration on specific growth rate	109
Figure 4.8 (g)	Response surface plot for the effect of initial glucose concentration and agitation speed on specific growth rate	109
Figure 4.8 (h)	Response surface plot for the effect of initial glucose concentration and aeration on HA yield	110
Figure 4.8 (i)	Response surface plot for the effect of initial glucose concentration and agitation on HA yield	110
Figure 4.8 (j)	Response surface plot for the effect of initial glucose concentration and aeration on cell biomass yield	111
Figure 4.8 (k)	Response surface plot for the effect of initial glucose concentration and agitation on cell biomass yield	111
Figure 4.8 (l)	Response surface plot for the effect of initial glucose concentration and aeration on mass transfer coefficient, $k_L a$.	112
Figure 4.8 (m)	Response surface plot for the effect of initial glucose concentration and agitation on mass transfer coefficient, k_La .	112

- Figure 4.8 (n) Response surface plot for the effect of initial glucose 113 concentration and aeration on H_2O_2 concentration
- Figure 4.8 (o) Response surface plot for the effect of initial glucose 113 concentration and agitation on H_2O_2 concentration
- Figure 4.9 Fermentation profiles of cell growth, HA production, 121 dissolved oxygen and accumulation of H₂O₂ in culture broth at optimum conditions as developed by RSM
- Figure 4.10 Predicted and actual values of cell biomass 129 concentrations at different initial glucose concentrations
- Figure 4.11 Predicted and experimental data of glucose utilization 131 by *S. zooepidemicus* at different initial glucose concentrations
- Figure 4.12 Predicted and experimental data of HA production at 133 different initial glucose concentrations
- Figure 4.13 (a) Comparison between simulated and experimental value 135 of cell biomass, glucose and HA production in batch culture of *S. zooepidemicus* with different initial glucose concentration: (a) 10gl⁻¹, (b) 20 gl⁻¹ (c) 30 gl⁻¹ (
 (■) experimental data of cell biomass production; (▲) experimental data of glucose utilization; (●) experimental data of HA production; (−) simulated value
- Figure 4.13 (b) Comparison between simulated and experimental value 136 of cell biomass, glucose and HA production in batch culture of *S. zooepidemicus* with different initial glucose concentration: (a) 40 gl⁻¹ (b) 50 gl⁻¹ (c) 60 gl⁻¹
 (■) experimental data of cell biomass production; (▲) experimental data of glucose utilization; (●) experimental data of HA production; (−) simulated value
- Figure 4.14 Simulation of experimental data to the predicted 141 models of different substrate inhibition kinetics model
- Figure 4.15 Effect of H_2O_2 addition at the beginning of the *S*. 143 *zooepidemicus* growth phase on the (a) cell biomass and (b) HA production in shake-flask culture (The arrow underneath the x-axis showed the time t=0 h of which H_2O_2 was added into the flask).

- Figure 4.16 Effect of different initial H_2O_2 concentration added at 145 the exponential growth phase of the *S. zooepidemicus* cells to the biomass production (The arrow underneath the x-axis showed the time t=4 h of which H_2O_2 was added into the bioreactor).
- Figure 4.17 Effect of different initial H_2O_2 concentration added at 146 the stationary growth phase of the *S. zooepidemicus* cells to the cell biomass production (The arrow underneath the x-axis showed the time t=12 h of which H_2O_2 was added into the bioreactor).
- Figure 4.18 Effect of different initial H_2O_2 concentration added at 146 the stationary growth phase of the *S. zooepidemicus* cells to the HA production (The arrow underneath the x-axis showed the time t=12 h of which H_2O_2 was added into the bioreactor).
- Figure 4.19: Effect of different initial H_2O_2 concentration added at 147 the exponential growth phase of the *S. zooepidemicus* cells to the HA production (The arrow underneath the x-axis showed the time t=4 h of which H_2O_2 was added into the bioreactor).
- Figure 4.20 Effect of different initial H_2O_2 concentration added at 147 the exponential growth phase of the *S. zooepidemicus* cells to the glucose consumption (The arrow underneath the x-axis showed the time t=4 h of which H_2O_2 was added into the bioreactor).
- Figure 4.21 Effect of different initial H_2O_2 concentration added at 148 the stationary growth phase of the *S. zooepidemicus* cells to the glucose consumption (The arrow underneath the x-axis showed the time t=12 h of which H_2O_2 was added into the bioreactor).
- Figure 4.22 Effect of different initial H_2O_2 concentration added at 149 the exponential growth phase of the *S. zooepidemicus* cells to the partial dissolved oxygen concentration (The arrow underneath the x-axis showed the time t=4 h of which H_2O_2 was added into the bioreactor).
- Figure 4.23 Effect of different initial H_2O_2 concentration added at 150 the stationary growth phase of the *S. zooepidemicus* cells to the partial dissolved oxygen concentration (The arrow underneath the x-axis showed the time t=12 h of which H_2O_2 was added into the bioreactor).

Figure 4.24	Transient profile of cell biomass, glucose consumption, HA production and H_2O_2 concentration released into the media by <i>S. zooepidemicus</i> in continuous culture. The vertical dotted line indicates the initiation of the continuous cultivation phase and arrow bar showed the steady state condition.	153
Figure 4.25	The effect of dilution rate, D on (a) cell biomass yield and (b) HA yields	155
Figure 4.26	The effect of dilution rate, D on (a) volumetric cell biomass productivity and (b) volumetric HA productivity	156
Figure 4.27	Comparison of experimental and calculated data for cell biomass in continuous fermentation	164
Figure 4.28	Comparison of experimental and calculated data for substrate consumption in continuous fermentation.	165
Figure 4.29	Comparison of experimental and calculated data for HA production in continuous fermentation	166
Figure 4.30	Time profiles of cell biomass, glucose and HA production in continuous culture of <i>S. zooepidemicus</i> (MSE for cell biomass=0.41%, MSE for substrate utilization=2.96% and MSE for HA production=2.61%)	167
Figure A.1	Empirical OD_{600} -cell biomass correlation based on three replicated sets of data	191
Figure A.2	Standard calibration curve for HA concentration (Slope of the calibration curve, $m=418416.42$)	192
Figure A.3	Chromatogram of High Performance Liquid Chromatography (HPLC) for standard peak of HA at concentration 1.0 gl^{-1}	192
Figure A.4	Calibration curve for glucose concentration. (Slope of the calibration curve, $m=438402$)	193
Figure A.5	Chromatogram of High Performance Liquid Chromatography (HPLC) for standard peak of glucose at concentration 50 gl ⁻¹ .	193
Figure A.6	Calibration curve for hydrogen peroxide concentration (Slope of the calibration curve, $m=0.370$)	194

- Figure A.7 Chromatogram of High Performance Liquid 195 Chromatography (HPLC) for organic acid component in culture broth (including HA at retention time, t=8.577 and glucose at retention time, t= 14.457).
- Figure B.1 Example of simulation of logistic model (nonlinear 196 equation) from Polymath software

LIST OF PLATES

		Page
Plate 2.1	<i>S. zooepidemicus</i> cell with HA capsule from aerated culture	19
Plate 2.2	Cross-section of <i>S. zooepidemicus</i> cell with HA capsule from aerated culture	19
Plate 2.3	Photograph of <i>Streptococcus zooepidemicus</i> visualized under the oil immersion lenses of a microscope using capsule staining.	27
Plate 3.1	Streptococcus zooepidemicus cultured on sheep blood agar (SBA)	49
Plate 3.2	Experimental set-up for batch fermentation using shake-flask culture	52
Plate 3.3	Experimental set-up for batch fermentation using 2 L bioreactor	53
Plate 3.4	Experimental set-up for continuous fermentation using 2 L bioreactor	54
Plate 3.5	High Performance Liquid Chromatography (HPLC) use for determination of HA and glucose (The results of Chromatogram of HPLC for HA, glucose and other component are shown in Figure A.7 of Appendix A)	61

LIST OF SYMBOLS

А	First factor or input variable- agitation	rpm
В	Second factor or input variable-pH	dimensionless
b_o	The offset term	dimensionless
b_i	The linear effect	dimensionless
b_{ii}	The first order interaction effect	dimensionless
b_{ij}	The squared effect	dimensionless
С	Third factor of input variable- temperature	°C
Δt	Time delay	h^{-1}
$K_L a$	Volumetric mass transfer coefficient	s^{-1}
K_s	Monod saturation constant	dimensionless
K _I	Inhibition constant	dimensionless
m_s	maintenance coefficient	$g_{glucose}$, $g_{biomass}$ $^{-1}h^{-1}$
R^2	Squared regression correlation coefficient	dimensionless
S	substrate concentration	g 1 ⁻¹
Т	Temperature	°C
Δt	time delay	h
t	time	h
μ_o	specific growth rate	h^{-1}
μ_{max}	maximum specific growth rate	h^{-1}
X	biomass concentration	g 1 ⁻¹
X_o	maximum biomass concentration	g l ⁻¹
Y	The Predicted response	dimensionless
Y_1	The first response	dimensionless
Y_2	The second response	dimensionless
Y_3	The third response	dimensionless
Y _{HA/glu}	HA yield per glucose consumed	$g_{\rm HA} g_{\rm glucose}^{-1}$
$Y_{X/glu}$	Biomass yield per glucose consumed	$g_{cell} g_{glucose}^{-1}$

LIST OF ABBREVIATIONS

ANOVA	Analysis of Variance
ATCC	American Type Culture Collection
CCD	Central Composite Design
DoE	Design of Experiment
CV	Coefficient of Variation
DF	Degree of Freedom
OD	Optical density
O ₂	Oxygen
HA	Hyaluronic acid
H_2O_2	Hydrogen peroxide
HPLC	High Performance Liquid Chromatography
mM	Milimolar
Р	Probability
рН	Measure of acid or alkali
rpm	Rotation per minute
RSM	Response Surface Methodology
ROS	Reactive Oxygen Species
SBA	Sheep Blood Agar
SOD	Superoxide dismustase

PENGHASILAN ASID HYALURONIK OLEH STREPTOCOCCUS ZOOEPIDEMICUS ATCC 39920

ABSTRAK

Memandangkan permintaan yang semakin meningkat bagi produk asid hyaluronik (HA) sebagai bahan permulaan bagi penyediaan polimer bioserasi dan biopenurunan baru yang telah digunakan dalam kebanyakan industri perubatan dan kosmetik, kajian fermentasi mikrob bagi penghasilan HA oleh *S. zooepidemicus* ATCC 39920 telah dijalankan dalam sistem kelompok dan suapan selanjar. Pengoptimuman keadaan fermentasi menggunakan teknik "satu-faktor-pada-satumasa" telah dijalankan di dalam kultur kelalang goncang supaya julat dan keadaan yang sesuai untuk digunakan dalam kajian ini boleh dianggarkan. Saiz inokulum 10% (v/v), pH 7.0, suhu 37°C dan kelajuan pengaduk 300 rpm menunjukkan kadar pertumbuhan spesifik yang maksimum, biojisim dan penghasilan HA yang tinggi pada 0.72 j⁻¹, 1.96 gl⁻¹ and 0.82 gl⁻¹, masing-masing.

Untuk mempertingkatkan penghasilan sel dan produk, pengoptimuman bagi parameter untuk proses ini telah dijalankan secara mendalam di dalam kultur kelalang goncang dengan menggunakan kaedah sambutan permukaan (RSM) bersama dengan rekabentuk komposit berpusat (CCD). Keadaan optimum yang diperolehi adalah seperti berikut: suhu 37°C, pH 6.96 and kelajuan pengaduk 300 rpm, dengan penghasilan HA per glukosa yang digunakan ($Y_{HA/glukosa}$) sebanyak 0.11 g_{HA} g_{glukosa}⁻¹ dan penghasilan biojisim per glukosa yang digunakan ($Y_{X/glukosa}$) sebanyak 0.19 g_{biojisim} g_{glukosa}⁻¹. Suhu dan pH menunjukkan kesan positif terhadap pengumpulan Hydrogen peroksida (H₂O₂), tetapi tidak sensitif terhadap kelajuan

pengaduk. H_2O_2 membantu pertumbuhan dan penghasilan HA pada kadar yang terhad (< 10 mM), meskipun H_2O_2 dirembeskan oleh sel-selnya sendiri.

Bagi kajian di dalam bioreaktor, rekabentuk komposit berpusat (CCD) telah digunakan untuk mengkaji keadaan yang optimum bagi pengudaraan, kelajuan pengaduk dan kepekatan awal glukosa supaya penghasilan HA oleh *S. zooepidemicus* dapat dipertingkatkan. Faktor-faktor ini telah memberi pengaruh yang kuat terhadap penghasilan sel dan HA. Keadaan kultur yang optimum bagi pengkulturan tersebut adalah seperti berikut: pengudaraan 4.5 lmin⁻¹, kelajuan pengaduk 330 rpm dan kepekatan awal glukosa 45.0 gl⁻¹. Pada keadaan optimum ini, kadar pertumbuhan spesifik yang maksimum (μ_{maks}) adalah 1.18 j⁻¹, penghasilan HA dan biojisim per glukosa digunakan 0.218 g_{HA} g_{glukosa}⁻¹ dan 0.37 g_{biojisim} g_{glukosa}⁻¹, pekali isipadu pemindahan jisim k_La dan kepekatan H₂O₂ adalah 0.0323 s⁻¹ and 6.94 mM, masingmasing.

Model kinetik tidak berstruktur dikenali sebagai Logistik, persamaan Logistik digabungkan bersama Leudeking-Piret dan Logistik digabungkan bersama persamaan Leudeking-Piret dengan masa lengah, Δt telah dicadang dan disahkan, dan keputusan menunjukkan ketiga-tiga model yang digunakan ini sesuai untuk menerangkan pertumbuhan sel, penggunaan glukosa dan penghasilan HA pada setiap kepekatan awal glukosa yang berbeza di dalam keadaan berkelompok. Kerencatan bagi substrat terhadap pertumbuhan sel bagi strain ini turut juga dikaji menggunakan pelbagai jenis model. Model Hans dan Levenspiel dan Teissier menunjukkan padanan yang sesuai bagi semua sistem yang dikaji dengan R^2 =0.997 dan 0.985, masing-masing.

S. zooepidemicus dikenali sebagai perangsang negatif dan menghasilkan H_2O_2 yang boleh memberi kesan terhadap pertumbuhan sel, penghasilan HA dan penggunaan glukosa. Bagi mengenalpasti daya kerintangan sel terhadap agen pengoksidaan H_2O_2 , kesan penambahan H_2O_2 daripada luar terhadap pelbagai fasa pertumbuhan kelompok telah dikaji. Keputusan menunjukkan semakin tinggi kepekatan H_2O_2 ke dalam kultur media semakin tinggi kesan perencatan berlaku. Sel daripada fasa pegun telah menunjukkan ketahanan yang lebih terhadap keadaan beroksida berbanding dengan sel di dalam keadaan fasa eksponen dan fasa susulan. Sel di fasa pegun lebih tahan kerencatan sehingga mencecah 50 mM kepekatan H_2O_2 di dalam kaldu pertumbuhan.

Untuk mempertingkatkan penghasilan biojisim dan HA, fermentasi secara suapan selanjar dengan menggunakan teknik kemostat telah digunakan. Kesan pengoksidaan daripada agen pengoksidaan, H₂O₂ pada keadaan mantap juga turut dikaji. Lebih tinggi kadar pencairan lebih kurang biojisim sel, walaupun substrat pertumbuhan terhad glukosa menunjukkan peningkatan. Produktiviti biojisim dan HA yang tertinggi iaitu 0.41 gl⁻¹ j⁻¹ dan 0.30 gl⁻¹ j⁻¹ diperolehi pada julat kadar pencairan iaitu 0.24 j⁻¹. Beberapa pemalar kinetik turut juga ditentukan; kadar pertumbuhan spesifik yang maximum, μ_{maks} , 1.09 j⁻¹, pemalar ketepuan pertumbuhan sel Monod, K_s 54.87 gl⁻¹ dan kadar julat yang kritikal, D_c 0.504 j⁻¹, masing-masing. Model tidak berstruktur berasaskan persamaan Monod dan Leudeking Piret telah dicadangkan, dan keputusan menunjukkan model-model tersebut sesuai digunakan untuk menerangkan pertumbuhan sel, penggunaan glukosa dan penghasilan HA di dalam keadaan mantap.

PRODUCTION OF HYALURONIC ACID BY STREPTOCOCCUS ZOOEPIDEMICUS ATCC 39920

ABSTRACT

In view of the demand for hyaluronic acid (HA) products as a starting material for the preparation of new biocompatible and biodegradable polymers that have applications in many medical and cosmetics domains, research on microbial fermentation of HA by *S. zooepidemicus* ATCC 39920 was undertaken in batch and continuous system. Optimization of fermentation conditions using "one-factor-at-a-time" technique was investigated in shake-flask culture in order to determine the suitable ranges and conditions for use in the study. An inoculum size 10% (v/v), pH 7.0, temperature 37° C, and agitation speed 300 rpm gave the highest specific growth rate, cell biomass and HA production at 0.72 h⁻¹ 1.96 gl⁻¹ and 0.82 gl⁻¹, respectively.

In order to improve the cell and product yield, optimization of the process parameters were further studied in shake-flask culture using response surface methodology (RSM) coupled with the central composite design (CCD). The optimum conditions obtained from this method were as follows: temperature 37° C, pH 6.96 and agitation 300 rpm, with HA yield per glucose consumed ($Y_{HA/glucose}$) 0.11 g_{HA} g_{glucose}⁻¹ and biomass yield per glucose consume ($Y_{X/glucose}$) 0.19 g_{cellbiomass} g_{glucose}⁻¹, respectively. Temperature and pH have positive effect on accumulation of hydrogen peroxide (H₂O₂) but insensitive against agitation. H₂O₂ supported growth and HA production at limited levels (< 10 mM) regardless of H₂O₂ being released by the cells itself.

For bioreactor studies, a central composite design (CCD) was also employed to evaluate the optimal aeration, agitation rates and initial glucose concentration so as to improve HA production by the *S. zooepidemicus* cells. The cell biomass and HA production were greatly influenced by these factors. The optimal culture conditions were at aeration 4.5 lmin⁻¹, agitation speed 330 rpm, and initial glucose concentration 45.0 gl⁻¹. Under these conditions, maximum specific growth rate (μ_{max}) obtained was 1.18 h⁻¹, HA and biomass yield per glucose consumed were 0.218 g_{HA} g_{glucose}⁻¹ and 0.37 g_{cell} g_{glucose}⁻¹, volumetric mass transfer coefficient and H₂O₂ concentration were 0.0323 s⁻¹ and 6.94 mM, respectively.

The unstructured kinetic models namely the Logistic, the Logistic incorporated Leudeking-Piret-like equation, and Logistic incorporated Leudeking-Piret equation with time delay, Δt were proposed and validated. It is found that all the models were suitable to describe bacterial growth, substrate utilization and HA production at different initial glucose concentration ranging from 10-60 gl⁻¹ in batch culture. The inhibition of substrate on the growth of the tested strain was also studied using different type of models. The Han and Levenspiel model, and the Teissier-type model gave the best fit for all the systems studied with R^2 =0.997 and 0.985.

S. zooepidemicus is known to be catalase negative and produced H_2O_2 which may affect cell growth, HA production and glucose utilization. In order to determine the resistances of the cell against this oxidizing agent, H_2O_2 , the effect of external addition of H_2O_2 were determined at different batch growth phase. The results showed that higher the concentration of H_2O_2 in the medium, the greater was the inhibition. Cells from stationary phase were shown to be more oxidative tolerant compared to the exponential and lag phase. Stationary phase cells were resistant to the oxidative agent up to a concentration of 50 mM in the culture broth.

In order to improve the cell biomass and HA production, a continuous culture using a chemostat technique also applied. The oxidative response by the oxidizing agent, H₂O₂ at steady state condition also studied. The higher the dilution rate, the lower was the cell biomass although the growth limiting substrate glucose increased. The highest cell biomass and HA productivity of 0.41 gl⁻¹h⁻¹ and 0.30 gl⁻¹h⁻¹ were obtained at a dilution rate of 0.24 h⁻¹. Several kinetic parameters were also determined; maximum specific growth rate, μ_{max} 1.09 h⁻¹, Monod cell growth saturation, K_s 54.87 gl⁻¹ and critical dilution rate, D_C 0.504 h⁻¹, respectively. An unstructured model based on Monod and Leudeking Piret equation was proposed and found to be suitable to describe the cell growth, HA production and glucose consumption by *S. zooepidemicus* at steady state conditions.

CHAPTER ONE

INTRODUCTION

1.1 Background

Polysaccharides are renewable resources which offer a wide variety of potentially useful products to mankind. They offer a wide variety of glycosidically linked structures based on 40 different monosaccharides (Sutherland, 2004). Polysaccharide comprised of a distinct class of biopolymer, produced universally among living organisms. Polysaccharides form major structural components of the walls of marine crustaceans, plants, algae and microorganism. In fact, they exhibit a large variety of unique and rather complex chemical structures, different physiological functions, and wide range of applications (Steinbüchel and Rhee, 2005). The importance of polysaccharides in industrial and cosmetic applications is enormous with the world market biopolymer estimated to be around US\$ 5 to 10 billion per annum (Goh, 1998). Some of the major commercial polysaccharides and their sources are shown in Table 1.1 (Linton *et al.*, 1991).

Type of polysaccharides	Sources
Alginate	Marine algae (Phaeophyceae)
Carrageenan	Marine algae (Rhodophyceae)
Curdlan	Bacteria (Agrobacterium)
Dextran	Bacteria (Leuconostac)
Gellan	Bacteria (Sphingomonas)
Arabic Gum	Plants (Acacia)
Hyaluronic acid (HA)	Bacteria (Streptococcus zooepidemicus)
Xanthan	Bacteria (Xanthomonas campestris)
Starch	Plants
Pullulan	Fungi (Aureobasidium pullulans)
Pectin	Plants (citrus fruits and other sources)

Table 1.1: Commercial polysaccharides and their sources (De Philippis *et al.*, 2001; Sutherland, 1998)

During the second half of the 20th century, many new and useful polysaccharides of scientific and commercial interests have been discovered which can be obtained from microbial fermentation (Sutherland, 1998). The microbial cell generally contained various polysaccharide structures contributing its shape and rigidity. In prokaryotes, according to Sutherland (2002), these polysaccharides include peptidoglycan (composed of repeated units of N-acetyl-D-glucosamine and N-acetyl-D-glucuronic acid, found in almost all Eubacteria), lipopolysaccharides (in gram-negative bacteria) and teichoic and teichuronic acid (in gram-positive bacteria). Microorganisms such as bacteria and fungi produced three distinct types of carbohydrate polymers: (1) extracellular polysaccharides (EPS), which can be found either as a capsule that enveloped the microbial cell or as an amorphous mass secreted into the surrounding medium, (2) structural polysaccharides, which can be part of the cell wall and (3) intracellular storage polysaccharides (Kumar and Mody, 2009). Some of the EPS's that have been successfully commercialized are listed in Table 1.2.

Table 1.2: Industrially important microbial extracellular polysaccharides, their sources and uses (Goh, 1998; Lapasin and Pricl, 1999)

Polysaccharide	Microbial source	Applications
Alginate	Pseudomonas aeruginosa	Textile, food and separation media
Curdlan	Alcaligenes faecalis	Food
Dextran	Leuconostoc mesenteroides	Therapeutic and separation media
Gellan (S-60)	Aereomonas elodea	Food and reagent
	Sphingomonas paucimobilis	
Hyaluronic acid	Streptococcus zooepidemicus	Biomedical and cosmetic
Lentinan	Lentinus edodes	Anti-cancer
Pullulan	Aereobasidium pullulans	Food packaging industrial
Succinoglycan	Pseudomonas	Oil field and industrial
	Rhizobium meliloti	
Welan (S-130)	Alcaligenes	Oil field and industrial
Xanthan	Xanthomonas campestris	Food, oil field, paint and industrial
	_	_

The scientific and industrial success of polysaccharides of microbial origin was due to several factors. First, they can be produced under controlled conditions with selected species; second, they usually present a high structural regularity and third, different microorganisms can synthesize a wide range of very specific ionic and neutral polysaccharides with widely varying compositions and properties (Lapasin and Pricl, 1999). Such a variety is not found among plant polysaccharides and perhaps more importantly, it cannot be imitated by means of synthetic chemistry (Sutherland, 1999).

One of the important polysaccharides which can be derived from animal sources and also produced by microbial fermentation is hyaluronic acid (HA) (Marcellin *et al.*, 2009). In Yuzurlhara, a small Japanese village outside Tokyo, ten times as many people live the age of 85 than anywhere else in the United States. The inhabitants were also healthier and enjoyed great joint mobility, healthy vision and displayed usually smooth and well toned skin, even after spending decades farming under the sun. Scientist and researchers have examined the reasons for this selective longetivity and have determined that HA is the key component: the native lives on a diet of sweet potatoes and sticky vegetables that promoted the synthesis of HA (Petrella *et al.*, 2007; Price *et al.*, 2007).

HA was discovered by Meyer and Palmer in 1934. This biopolymer was first isolated from the vitreous of bovine eyes (Kogan *et al.*, 2007). It was special mucopolysaccharides that exist naturally in all living organisms. It occurred primarily in the extracellular matrix (ECM) and pericellular matrix (Almond, 2007). The largest content of HA so far is found in rooster combs (Kogan *et al.*, 2007). A

brief listing of the occurrence of HA in different animal tissues and their contents is provided in Table 1.3. Besides vertebrates, HA is also present in the capsules of some bacteria (e.g strains of *Streptococci*), which is absent in fungi, plants and insect (Sutherland, 2004)

Table 1.3: Occurrence of hyaluronic acid (HA) in different animal tissues and its concentration (Kogan *et al.*, 2007)

Tissues or body	Concentration	Remarks
fluid	(µgml ⁻¹)	
Rooster comb	7500	The animal tissue with by far the highest HA content
Human umbilical cord	4100	Contains primarily HA with a relatively high molar mass
Human joint (synovial) fluid	1400-3600	The volume of the synovial fluid increases under inflammatory conditions. This leads to a decreased HA concentration
Bovine nasal cartilage	1200	Often used as a cartilage model in experimental studies
Human vitreous body	140-340	HA concentration increases upon the maturation of this tissue
Human dermis	200-500	Suggested as a 'rejuvenating' agent in cosmetic dermatology
Human epidermis	100	HA concentration is much higher around the cells that synthesize HA
Rabbit brain	65	HA is supposed to reduce the probability of occurrence of brain tumors
Human thoracic lymph	0.2-50	The low molar mass of this HA is explained by the preferential uptake of the larger molecules by the liver endothelial cells
Human urine	0.1-0.3	Urine is also an important source of hyaluronidase
Human serum	0.01-0.1	HA concentrations increase in serum from elderly people as well as in patients with rheumatoid arthritis and liver cirrhosis.

Swan and Kuo (1991) reported that HA was an essential functional component of almost all tissues in vertebrate organisms and various animal tissues; for instant, rooster combs, shark fin and bovine eyeballs have been used as sources of isolation and production of higher molecular weight of HA traditionally. However, it was difficult to isolate such a high molecular weight of HA economically from these sources because it formed a complex with proteoglycans (O'Regan *et al.*, 1994). It is presently impractical to control the molecular weight of the biopolymer while it is synthesized in animal tissue (Vert, 2001). Subsequently, extraction and purification processes result in an inherent molecular weight reduction. From a social viewpoint, the use of animal-derived biochemical for human therapeutics is being met with growing resistance, besides ethic arguments, because of the risk of viral infection (Goh, 1998). Besides that, extraction from animal sources also showed higher risks of contamination with protein and other glycosaminoglycans (GAGs), which required extensive purification (Poli et al., 1996). Therefore, most industries have instead turned into bacterial fermentation processes, hoping to obtain commercially viable biopolymers (Goh, 1998).

In the nineties, HA from microbial sources through fermentation process has provoked great scientific and industrial biopolymer interest especially using grampositive bacteria *Streptococcus zooepidemicus* (Sutherland, 2004). This interest is due to an extraordinary properties of HA as well as the increasing demand of HA used as a starting materials for the preparation of new biocompatible and biodegradable polymers that have applications in many medical and cosmetics domains (Jagur-Grodzinski, 1999). For the medicinal purposes, HA is used as an anti-adhesive component for a variety of clinical applications such as ophthalmic viscosurgery, viscosupplementation for arthritis (Prestwich *et al.*, 1998; Volpi *et al.*, 2009), wound healing and plastic surgery (Alaish *et al.*, 1994), supplementation of the synovial fluid in patients with osteoarthritis, as a membrane for postsurgical separation of tissues (Kogan *et al.*, 2008), and as drug delivery systems (Prestwich and Vercruysse, 1998; Luo *et al.*, 2000). Many cosmetics contained HA as an ingredient, because it is believed to keep skin young and fresh by preventing dryness as a results of its water binding capacity (Baumann, 2009).

Commercially available HA is produced with the molecular weight ranging from less than 1×10^6 Daltons to as high as 8×10^6 Daltons (Sutherland, 2004). The world market of HA is difficult to estimate, but many companies produced it for medical and cosmetic applications. The current world market for HA-based products and therapies is worth at least US\$ 500,000 per annum and this is rapidly expanding in view of the emerging applications (Kogan *et al.*, 1997). The current US market of \$157 million for viscosupplementation in osteoarthritis is driven by two products, Genzyme and Hyalgan from Fidia Pharmaceutical (Sutherland, 1990). The details of the major pharmaceutical products are listed in Table 1.4. Although, microbes have been exploited for the production of HA by fermentation especially from *S. zooepidemicus*, yet an economically viable biosynthetic process for HA production is still to be developed and explored.

		Concentration	Size			Price
No	Products	(mg ml^{-1})	(ml)	Company	Application	(USD)
1	AMO Vitrax	30	65	Allergen	Ophthalmology	138
	Syringe					
2	Amvisc Plus	16	5	Chiron	Ophthalmology	145
	Syringe			~ .		
3	Amvisc Plus	16	8	Chiron	Ophthalmology	190
	Syringe	10	~			110
4	Amcisc	12	5	Chiron	Ophthalmology	112
_	Syringe	1.4	<i></i>	17 1		101
2	Healon GV	14	55	Kabi	Opithalmology	101
6	Syringe	1.4	05	Vahi	Onbthalmalagy	121
0	Suringo	14	85	Nabi	Opiniannology	151
7	Healon	10	55	Kahi	Ophthalmology	0/
/	Svringe	10	55	Kaul	Opinianiology	94
8	Hyalgan	10	2	Sanofi	Osteoarthritis	166
0	SDV	10	2	Salion	Osteodrimitis	100
9	Hvalgan	10	2	Sanofi	Osteoarthritis	166
	Svringe	10	-	Suiton	Osteourinnus	100
10	Provisc	10	4	Alcon	Ophthalmology	117
	Syringe	-			1	-
11	Provisc	10	55	Alcon	Ophthalmology	142
11	Svringe	10	55	7 Heon	opininaniology	112
12	Provisc	10	85	Alcon	Ophthalmology	178
	Syringe	-			1	
13	Synvisc	8	3	Wyeth	Osteoarthritis	705
	Syringe			2		
14	Viscous	40	5	Alcon	Ophthalmology	151
	Syringe					
	-					

Table 1.4: Some commercially pharmaceuticals products containing hyaluronic acid (HA) (Lerner,1997)

1.2 Problem Statement

HA has a great potential for medical and pharmaceutical applications owing to its ability to retain large volumes of water and its rheological properties (Holmstrom, 1967). It is well known that HA and its salts can be obtained from animal sources such as human umbilical cord, rooster combs, and from bacterial streptococci culture (A and C hemolytic groups) (Ogrodowski *et al.*, 2005). However, some disadvantages are associated with the animal sources, such as relatively low yields, contamination, and labor-intensive processing during the purification steps (Chong *et al.*, 2005).

Nowadays, HA from microbial sources through fermentation process has received increased attention especially using the gram-positive bacterium *S. zooepidemicus*. Production of HA by this species has been advocated for several reasons, technical and economical as well as ethical (Akasaka *et al.*, 1989). Furthermore, the biopolymer produced is identical to the eukaryotic HA (Ogrodowski *et al.*, 2005). The development of large scale processes had overcome many obstacles, including growth in chemically defined media (Van De Rijn and Kessler, 1980; Armstrong and John, 1997; Armstrong *et al.*, 1997; Cooney *et al.*, 1999), the production of high molecular-weight material (Kim *et al.*, 1996), the elimination of toxic impurity such as streptomycin and increasing the yield (Kumar *et al.*, 2008; Rangaswamy and Jain, 2008). This bacterial reaction not only gives an opportunity to optimize the product yield and quality through genetic engineering and control of culture conditions, but can also reduce the manufacturing cost (Armstrong *et al.*, 1997; Goh, 1998; Marcellin *et al.*, 2009).

Fermentations can be operated in batch, fed-batch or continuous process. In most fermentation process, fed-batch process offers many advantages over batch and continuous culture (Bibila and Robinson, 1995; Sanchez and Cardona, 2008). A cyclic fed batch culture has an advantage where the productive phase of a process may be extended under controlled conditions (Arpornwichanop and Shomchoam, 2007). However, the controlled periodic shifts in growth rate provide an opportunity to optimize product synthesis, particularly if the product of interest is a secondary

8

metabolite whereby maximum production takes place during stationary phase (Stanbury *et al.*, 1995). Since the HA is a primary metabolite (Gaudin and Meulenberg, 2006) and with respect to studies by Ellwood *et al.* (1996) on production of HA by continuous fermentation of *S. zooepidemicus* in a chemostat culture which gave high yields of HA and uncontaminated by toxic impurities, it was reasonable to focus this study on batch and continuous system.

During the fermentation processes, microorganisms is often exposed to multi environmental stresses such as low and high temperature, low pH, high osmotic pressure, nutrient starvation, and oxidation that can cause loss or reduction of bacterial viability, reproducibility as well as organoleptic and fermentative qualities. Among these stress factors, oxidation can be considered as one of the most deleterious to the cells, causing cellular damage at both molecular and metabolic levels, which is known as an oxidative stress (Moodie *et al.*, 2004). Although, several studies have been conducted regarding the optimal culture condition for HA production, there are still a considerable divergence on the optimization and design of culture conditions especially in HA batch culture.

For HA production, it seemed that the agitation and aeration rates were additional factors that influenced cell growth and HA production, and it has been a subject for many investigations (John *et al.*, 1994; Kim *et al.*, 1996; Armstrong and John, 1997; Hasegawa *et al.*, 1999; Chong and Nielsen, 2003; Mashitah *et al.*, 2005). Based on the work carried out by John *et al.* (1994) on the effect of pH, agitation and aeration on the production of HA by *S. zooepidemicus*, HA yield from glucose could be improved by improvement of agitation and aeration rates during the fermentation

process. Huang et al. (2006) reported that the dissolved oxygen (DO) saturation acted as a stimulant to HA synthesis; for scaling up, the DO that was above the critical level (5% air saturation) need to be maintained, and a mild agitation was needed for homogeneity in the fermenter. Nevertheless, there were some drawbacks related to the Streptococcal HA production routes. According to Goh (1998) under aerated conditions, HA production was found to be suppressed as a result of growth inhibition by the reactive oxygen species which is hydrogen peroxide (H_2O_2) in shake flask culture. Halliwell and Gutteridge (2007) and Mashitah et al. (2005) reported that H₂O₂ though chemically less reactive, was nevertheless a threat to the structure and functions of proteins, nucleic acids, lipids and membranes, whether it was added externally or produced intracellularly. Little attention has been paid and very little published information is available on the effect of oxygen demand and its relationship to the oxidative stress responses derived from reactive oxygen species on the production of HA by S. zooepidemicus. In fact, optimization of the aeration and agitation rate during fermentation using glucose as a carbon source with respect to HA and H_2O_2 production by this strain has not yet been investigated.

As in lactic acid bacteria, *S. zooepidemicus* lack in catalases and cytochrome system in their respiratory chain (Goh, 1998). As a result, the reactive oxygen species (H_2O_2), can accumulate to a level that is autoinhibitory or inhibitory to other metabolites or bacteria (Condon, 1987). Although, Mashitah *et al.* (2005) reported that in aerobic batch fermentation, a protective response could have been created by *S. zooepidemicus* cells up to a certain level of H_2O_2 , but at high levels the protective mechanism became fully saturated. Previously, Halliwell and Gutteridge (1990) also reported that most living organisms may evolve defense mechanisms or oxidative stress response when exposed to sub-lethal levels of H_2O_2 .

Different concentrations of H_2O_2 were believed to have different influence on the different types of microorganisms (Roundy, 1958). For example, for *Escherichia coli*, the concentration of H_2O_2 that lied between 0.1 and 1.0 mM have shown to have killing or toxic effects and the killing was maximal between the concentration of 1.0 and 3.0 mM; whereas, killing occurred at higher concentrations of H_2O_2 (up to at least 50 mM) has showed to occur at slower rate (Farr and Kogoma, 1991). For *S. zooepidemicus*, a systematic study of how H_2O_2 effects streptococcal HA concentration in a bioreactor has not been reported, nor has there been any description of how the interaction between H_2O_2 and HA capsule and its defense mechanism are related over batch and continuous time courses.

From the above discussion, it is apparent that the *S. zooepidemicus* cells have significant effect on the oxidative stress by the cell itself as well by the addition of exogenous H_2O_2 . Consequently, fermentation kinetic analyses over a broad range of environmental conditions need to be carried out for the development of better strategies for the optimization of the fermentation process. It is anticipated that such an approach would provide a means of assessing the importance of such effects to substrate limitation, product inhibition, endogenous metabolism, etc. and will allow an estimation of the values of the kinetic constants involved in each of them.

1.3 Research Objectives

In view of the above observations, this study was carried out with the following objectives:

- To determine the optimum fermentation conditions of HA production by
 S. zooepidemicus using "one-factor-at-a-time" technique and statistical design approach in shake-flask culture.
- ii. To determine the optimum of initial glucose concentration, aeration and agitation speed in a bioreactor of batch mode using a statistical design approach in order to improve the HA production by *S. zooepidemicus* cells.
- iii. To propose and validate the kinetics model for microbial growth, glucose consumption and inhibition and HA production by *S. zooepidemicus* in batch culture.
- iv. To determine the sensitivity of *S. zooepidemicus* cells to an oxidizing agent, H_2O_2 added externally at different growth phases during HA production in batch culture.
- v. To evaluate the effect of dilution rate, proposed and validate the kinetic models of cell growth, substrate utilization, HA production and accumulation of H_2O_2 by the *S. zooepidemicus* cells in continuous mode.

1.4 Scope of Study

In view of the demand for HA products in pharmaceutical and cosmetic industries by microbial fermentation, this study presents an investigation on the fermentation of HA by *S. zooepidemicus* ATCC 39920 at various conditions of fermentation using optimization and kinetic analysis to increase the production of HA either in batch or continuous system. An oxidative stress response to the *S. zooepidemicus* cells due to accumulation of H_2O_2 in culture broth and external addition of H_2O_2 into the fermentation medium was studied at different phases of the fermentation processes.

Initially, process optimization of various inoculum sizes, temperature, pH, and agitation speed required for the production of HA by *S. zooepidemicus* using "one-factor-at-a-time" approach were evaluated in shake-flask cultures. After that, optimization using a statistical approach was carried out with a selected independent factor in a similar batch mode. At present, there is still no report on the use of statistical design in improving HA production from *S. zooepidemicus*. This method has been widely used in order to improve the product yield, reduce development time and overall process costs (Kammoun *et al.*, 2008; Guo *et al.*, 2009). In this study, process optimization was employed using response surface methodology (RSM) based on central composite design (CCD). The interaction between the factors that influenced the response of cell biomass yield, HA yield, and accumulation of H_2O_2 in culture broth has been discussed.

Since the initial glucose concentration, aeration, and agitation have significant impact on cell growth and HA yield, process optimization using DOE coupled with RSM was further used to investigate the optimum condition in a bioreactor for improving the HA production. The focus of this study is not only to clarify the effect of oxygen demand to the cell growth and HA production by changing the agitation speed and aeration, but also to study the effect of various initial glucose concentrations so as to find the limitation and inhibition characteristics of the substrate utilization by the tested strain. Volumetric mass transfer coefficient ($k_L a$) and accumulation of H₂O₂ in culture broth were also taken into account as a response during the process optimization.

Kinetic studies of cell growth, glucose uptake and HA productions were carried out to evaluate the fermentation characteristics. Three different models namely Monod and Logistic equations for cell growth, the Logistic incorporated Leudeking-Piret-like equation for glucose consumption and the Logistic incorporated Leudeking-Piret equation with time delay, Δt for HA production were proposed. The inhibition of substrate and toxic materials production on the growth of *S. zooepidemicus* in HA production using glucose as the major carbon source in a batch culture was also studied. Different kinetic models for inhibition studies were tested and the results obtained for each parameter were compared.

Oxidative stress in cell is usually studied by exposing the cell to high concentration of pro-oxidants for a short period of time by single addition of stressing chemicals, and comparing the enzymes activities obtained in stressed cultures and control cultures a few hours after the addition of the stressing compound such as H_2O_2 . Studies on the effect of H_2O_2 are quite interesting as it is very reactive and a strong oxidizing agent. Since H_2O_2 is uncharged, it can readily diffuse across

14

membrane. H_2O_2 causes significant damage because it is not restricted to its point of synthesis in the cell and enter into numerous other reactions. Therefore, the fermentation products may be damaged and decreased under aerobic conditions as a result of the inhibition and the metabolism by H_2O_2 . Due to that, the cultures response to oxidative stress produced either by the *S. zooepidemicus* cells itself or by the addition of exogenous H_2O_2 has been studied at different phases of fermentation, and various conditions of the fermentation processes.

Although traditional batch fermentation seemed to dominate the bacterial biopolymer fermentation today (Garcia-Ochoa *et al.*, 2000; Ogrodowski *et al.*, 2005), there is much interest in using fed batch and continuous culture for improving the biomass and HA productions. However, with respect to *Streptococci* cell, which have cell wall could be changed by growth under different nutrient limitations, in this study, a continuous fermentation using chemostat technique has been carried out at different dilution rate on the growth, substrate utilization, HA production, and accumulation of H_2O_2 in culture broth. Thus, fermentation kinetic model of microbial growth, substrate utilization and product formation for continuous mode were proposed and validated.

1.5 Organization of the Thesis

There are five chapters in this thesis and each chapter described the sequence of this study.

- Chapter 1: This introductory chapter emphasized the importance of HA production to its commercial end-used functions. Problem statements, research objectives, scope of research and thesis organization were also highlighted.
- Chapter 2: This chapter surveyed the history, chemical structure, application and properties of HA. Process fermentation of HA in batch and continuous system, oxidative stress phenomena, kinetic and modeling studies during fermentation process were also discussed in detail.
- Chapter 3: The material and methods used in this study were discussed in detail in this section.
- Chapter 4: This chapter presents the fermentation results of HA by *S. zooepidemicus* in batch and continuous system. Process parameter optimization of HA by *S. zooepidemicus* in shake flask culture and bioreactor were obtained from the design of experiment (DoE) coupled with response surface methodology (RSM). Sensitivity of the oxidizing agent (H₂O₂) in culture broth at every phase of the fermentation process was also discussed. The kinetics and modeling for fermentation process in batch and continuous systems were also presented.

• Chapter 5: This chapter summarized the overall findings based on the results obtained in the previous chapter. Recommendations for future research were also given in this section.

CHAPTER TWO

LITERATURE REVIEW

2.1 Hyaluronic acid (HA)

Hyaluronic acid (HA) is a naturally occurring biopolymer, which serves as an important biological function in bacteria and higher animals including humans. In 1934, Karl Meyer described a procedure for isolating a novel glycosaminoglycan from the vitreous humors of bovine eyes and named it hyaluronic acid (HA) (from the Greek hyalos=glassy, vitreous) (Luo et al., 2000). This substance contained uronic acid and an amino sugar, but no sulfoesters (Weigel et al., 1997). During the 1930s and 1940s, HA was isolated from many sources such as the vitreous body, synovial fluids, umbilical cord, skin, rooster comb and also from streptococci (Yamada and Kawasaki, 2005). The physical-chemical characterization of HA was carried out during 1950s and 1960s (Sutherland, 1994). Hardingham and Muir (1972) discovered that HA interacted with cartilage proteoglycan and served as a central structural backbone and cartilage. This was the first example of a specific interaction between HA and protein and many more such interactions were discovered during 90's. After 1980, the research has spread in many directions, mainly because it has been assumed that HA belonged to the proteoglycans and synthesis of HA occurred in Golgi body (Sutherland, 1994). The application of HA for medical purposes was first discovered by Balaz et al. in 1982 (Sutherland, 1994). A highly viscous and non-inflammatory preparation was produced and commercial scale for both ophthalmic surgery and as viscous-supplementation for synovial fluids in patients with osteoarthritis has been applied and well-known throughout the world (Kogan et al., 2007).

2.2 Structure and Properties of HA

Naturally occurring HA could be found in the tissue of higher animals, in particular as intercellular space filler (Balazs *et al.*, 1991). It is found at higher concentrations in the vitreous humour of the eye and in the synovial fluid of articular joints (Fraser *et al.*, 1977). In gram positive streptococci, it appeared as a mucoid capsule surrounding the bacterium (Plate 2.1 and 2.2).

Plate 2.1: S. zooepidemicus cell with HA capsule from aerated culture (Goh, 1998)

Plate 2.2: Cross-section of *S. zooepidemicus* cell with HA capsule from aerated culture (Goh, 1998)

The following description of the structures and properties of HA are based on that of Kogan *et al.* (2007). The utility of this biopolymer is derived from a remarkably simple construction. HA belongs to the family of glycosaminoglycan, also known as mucopolysaccharide. Glycosaminoglycan is a group of biopolymers, which include chondroitin sulphate, dermatin sulphate and heparan sulphate. This polymer comprised of D-glucuronic acid (GlcUA) and N-acetylglucosamine (GlcNAc) linked by β (1-3) glycosidic bond, with the disaccharide repeating units linked β (1-4) glycosidic bonds (Figure 2.1) (Ogrodowski *et al.*, 2005). However, the structure of HA was the most simple, the only one that is not covalently associated with the core protein, not synthesized in Golgi apparatus, and the only non-sulfate one (Chong *et al.*, 2005 and Kogan *et al.*, 2007).

Figure 2.1: Structure (disaccharide repeating unit) of HA (Ogrodowski et al., 2005)

When HA is incorporated into a neutral aqueous solution, hydrogen bond formation occurred between the water molecules and adjacent carboxyl and N-acetyl groups. This imparted a conformational stiffness to the polymer, which limited its flexibility (Fraser *et al.*, 1997). The hydrogen bond formation resulted in a unique water-binding and retention capacity of the polymer. It also followed that the waterbinding capacity was directly related to the molecular weight of the molecule (Laurent and Fraser, 1992). Sutherland (1998) reported that up to six liters of water may be bound in one gram of HA. The molecular mass of HA can reach as high as 1×10^3 kDa. Such high molecular mass and its associated unique viscouselastic and rheological properties predispose HA to play an important physiological roles in living organisms and made it an attractive biomaterial for various medical applications. The extrusion of HA through the cell membrane as it is produced permitted unconstrained polymer elongation, and hence, molecule with a very high molecular weight (Scott *et al.*, 1991).

2.3 Biosynthesis of HA

HA is produced naturally in all eukaryotic cells (Sutherland, 2001). It is synthesized by a class of integral membrane proteins called hyaluronan synthases (HAS), of which vertebrates have three types: hasA, hasB, and hasC (Chong et al., 2005). The hasA gene product was a 42 kDa membrane protein which displayed similarity in amino acid sequence to chitin synthase (DeAngelis, 1993), whereas hasB has*C* encode UDP-glucose dehydrogenase and UDP-glucose and pyrophosphorylase, respectively. Both of them were essential in the synthesis of UDP-GlcUA. In fact, the UDP-GlcNAc precursor is believed to be synthesized by the so-called housekeeping genes since it is required in the synthesis of peptidoglycan (O'Reagen et al., 1994). These enzymes can be elongated by repeatedly adding glucuronic acid (GlcUA) and N-acetylglucosamine (GlcNAc) to the nascent polysaccharide as it is extruded through the cell membrane into the extracellular space (Chong et al., 2005). Both monomers of HA are derived from intermediates of glycolysis - GlcUA from glucose-6-phosphate and GlcNAc from fructose-6-phosphate (Chong et al., 2005). Biosynthetic pathway for HA is described and presented in Figure 2.2 (Goh, 1998; Chong et al., 2005).

Figure 2.2: Biosynthetic pathway of HA (Goh, 1998)

The first reaction in the pathway leaving the glucose-6-phosphate node as a common step in the production of storage polysaccharides in many organisms. The α -phosphoglucomutase (EC 5.4.2.2) converts glucose-6-phosphate to glucose-1-phosphate in a reversible reaction. UDP-glucose pyrophosphorylase (EC 2.7.7.9), then catalyses the reaction of UTP and glucose-1-phosphate to produce the nucleotide sugar UDP-glucose. UDP-glucuronic acid is then obtained by a specific oxidation of the primary alcohol group of UDP-glucose through the action of UDP-glucose dehydrogenase (EC 1.1.1.22). The pathway originated from fructose-6-phosphate was involved in the production of amino sugars. Amino group transfer from glutamine to fructose-6-phosphate by an amidotransferase (EC 2.6.1.16)

yielded the glucosamine-6-phosphate. Acetyl group transfer by an acetyltransferase (EC 2.3.1.4) formed N-acetyl glucosamine-6-phosphate (Goh, 1998; Chong *et al.*, 2005).

Actually, this was an energy-consuming step since hydrolysis of the thioester bond in acetyl-CoA liberated the energy equivalent of ATP hydrolysis. Phosphate group rearrangement by a mutase (EC 5.4.2.3) generated N-acetyl glucosamine-1phosphate from N-acetyl glucosamine-6-phosphate. Finally, a pyrophosphorylase (EC 2.7.7.23) added UDP to obtain UDP-N-acetylglucosamine. The participation of UTP in these reactions generates activated glycosyl donors that can be polymerised into HA by HA synthase.

A total of 4 mol ATP were consumed to produce 1 mol HA disaccharide repeating unit; 2 mol ATP were consumed in two glucokinase reactions to provide a phosphorylated hexose precursor for each branch of the HA pathway, and the other 2 mol ATP were utilized to regenerate the donor species UTP. The oxidation reaction catalysed by UDP-glucose dehydrogenase generated 2 mol of NADH for each 1 mol of HA synthesized. In the facultative microbes that naturally produced HA, these reduction equivalents cannot be utilized for energy generation (Chong *et al.*, 2005). Besides furnishing precursors for HA synthesis, these two pathways also supplied the structural constituents of the bacterial cell wall, specifically peptidoglycan, teichoic acids and antigenic wall polysaccharides. These three major wall components accounted for 20% (w/w) of the cell dry weight, and represented a significant drain on the precursor pool used to synthesis HA (Yamada and Kawasaki, 2005).

2.4 Applications of HA

Balaz et al., (1982) pioneered the application of HA for medical purposes which produced a highly viscous and non inflammatory process (Hargittai and Hargittai, 2008). The US Food and Drug Administration (FDA) have approved this drug for clinically utilizable material, such as in eye surgery, knee joint and the treatment of burns and skin ulcers (Yadav *et al.*, 2008). HA is widely needed by all range of people regardless of sexes and age. The basic area of the clinical applications of HA and its derivative are classified by Balaz *et al.* (1989) as shown in Table 2.1, and applications of HA in the biomedical field are summarized in Table 2.2.

Application	Description	
Viscosurgery	To protect delicate tissue and provide space during surgical manipulations, as in ophthalmological surgeries.	
Viscoargumentation	To fill and augment tissue spaces, as in skin, sphincter muscles, vocal and pharyngeal tissues.	
Viscoseparation	To separate connective tissue surface traumatized by surgical procedure or injury, in order to prevent adhesions and excessive scar formation.	
Viscosupplementation	To replace or supplement tissue fluids, such as replacement of synovial fluid in painful arthritis, and to relieve pain.	
Viscoprotection	To protect healthy, wounded or injured tissue surfaces from dryness or noxious environmental agents and to promote the healing of such surfaces.	

Table 2.1: Classification and clinical application of HA (Garg and Hales, 2004)

Application of HA	Description	References
Ophthalmic	HA has been used as viscous gel which could be injected into the arterial chamber of the eye to protect tissues such as the cornel endothelium	Nishida <i>et al.,</i> 1991
Arthritis	HA has been used for several degenerative joint diseases as an alternative to the traditional steroid therapy	Wobig <i>et al.</i> , 1999
Wound Healing and Scaring	HA has been used to foster the healing process, for burn and chronic ulcer patients	Goa and Benfield, 1994
Adhesion Prevention	HA preparations such as Separafilm from Genzyme can reduce adhesions and improve the surgical outcome	Beck, 1997
Drug Delivery	HA is an ideal molecule for use as carrier of drugs, particularly for local administration. Investigations are on- going for topical and intravenous drug delivery system using modified HA	Vercruysse and Prestwich, 1998

Table 2.2: Summary of the current and potential applications of HA and its derivatives.

2.5 **Production of HA**

HA has been commercially produced by two methods: chemical extraction of animal tissue and microbial fermentation (Chong *et al.*, 2005). There are many HA producers worldwide as shown in Table 2.3. Today, there are still many products in the market that contained HA, which was isolated and extracted from animal tissue. This could be due to the high molecular weight, purity and non-inflammatory properties of HA (Kim *et al.*, 2006).